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Imputing missing data from a multivariate time series dataset remains a challenging problem. There is 

an abundance of research on using various techniques to impute missing, biased, or corrupted values to 

a dataset. While a great amount of work has been done in this field, most imputing methodologies are 

centered about a specific application, typically involving static data analysis and simple time series mod- 

elling. However, these approaches fall short of desired goals when the data originates from a multivariate 

time series. The objective of this paper is to introduce a new algorithm for handling missing data from 

multivariate time series datasets. This new approach is based on a vector autoregressive (VAR) model 

by combining an expectation and minimization (EM) algorithm with the prediction error minimization 

(PEM) method. The new algorithm is called a vector autoregressive imputation method (VAR-IM). A de- 

scription of the algorithm is presented and a case study was accomplished using the VAR-IM. The case 

study was applied to a real-world data set involving electrocardiogram (ECG) data. The VAR-IM method 

was compared with both traditional methods list wise deletion and linear regression substitution; and 

modern methods Multivariate Auto-Regressive State-Space (MARSS) and expectation maximization algo- 

rithm (EM). Generally, the VAR-IM method achieved significant improvement of the imputation tasks as 

compared with the other two methods. Although an improvement, a summary of the limitations and 

restrictions when using VAR-IM is presented. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Throughout the literature, many imputation methods for miss-

ng data have been proposed. The methods fall primarily into two

road classifications: traditional and modern techniques. Tradi-

ional techniques such as simple deletion, averaging, or regression

stimation are limited but still used in many cases. On the other

and, modern approaches such as multiple imputation (MI) and

aximum likelihood (ML) routines, have proved superior and are

ave gained favour. In fact modern data imputation algorithms that

se these approaches are very prevalent and can be easily admin-

stered in standard statistical packages such as Statistical Package

or Social Sciences (SPSS) and Multivariate Autoregressive State-

pace (MARSS or even standalone applications such as NORM [1,2] .

he MI approach first imputes multiple data sets from random
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amples of the population using techniques such as bootstrapping

3] or data augmentation [4] . Then, using Rubins rules, the results

rom the imputed data sets are combined [5] . The ML technique

or handling missing data is becoming commonplace in microcom-

uter packages. Specifically, ML algorithms are currently available

n many existing software packages (e.g. EM algorithm) [6] . When

onducted properly, both ML and MI techniques enable researchers

o make valid statistical inferences when data are missing at ran-

om [7] . However, these techniques either have limitations or are

ifficult to carry out for dynamic systems modelling [8] . For exam-

le, many dynamic models involve autoregressive variables and the

utput is normally a linear or nonlinear combination of a lagged

ariable. The estimation of autoregressive models requires that the

ata be fully observed. With the existence of missing values, this

s not possible, rendering it impossible to estimate the model. Fur-

hermore, these methods often lead to bias in the estimates. In this

aper, a new method is proposed for missing data imputation in

ultivariate time series datasets. The new algorithm utilizes a vec-

or autoregressive model (VAR) to handle missing data by combin-

ng the prediction error minimization (PEM) [9] with an EM algo-
in multivariate time series using a vector autoregressive model- 
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Fig. 1. The flow chart of the VAR-MI algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. QRS wave properties for complete data. 
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rithm. The new algorithm is called a vector autoregressive imputa-

tion method (VAR-IM). A description of the algorithm is presented

and a case study was accomplished using the VAR-IM. The case

study involved electrocardiogram waves that contain multivariate

time series data. Also the advantages and limitations of the pro-

posed method are analyzed. Finally, a simulation study of the pro-

posed algorithm is compared to traditional and modern imputation

methods. 

2. Overview of traditional and modern data imputation 

techniques 

Obtaining good, reliable, and complete data for a research study

is often taken for granted, however, without good data; the re-

sults of a research project will be incorrect and could lead to sig-

nificant errors in model development. For various reasons the ob-

tained data may be corrupted with missing, incorrect, or distorted

values. These anomalies may occur during or after the data col-

lection process. The problem of how to deal with corrupted data

has been a significant problem throughout many research fields

for many years. Data imputation is the process of replacing miss-

ing, abnormal and distorted values of dataset. Many techniques of

imputing missing data have been developed as it constitutes a cen-

tral part of data mining and analysis [10] . For this study, two of the

traditional and modern methods were selected as baseline compar-

isons to the proposed new algorithm. These are list wise deletion,

linear regression imputation, MARSS package and EM algorithm. 
Please cite this article as: F. Bashir, H.-L. Wei, Handling missing data 
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.1. Listwise deletion 

List wise deletion is among the simplest techniques for imput-

ng missing data. Specifically, in this technique, all measured values

t a specific time point, are ignored if one of the variables has a

issing value for that specific measurement. Because this method

emoves the data with missing values, it decreases the number of

ariables and the length of sequences resulting in a reduced sam-

le size. In dynamic modelling where all values are important for

stimating the current values, the list wise deletion approach can

ignificantly affect the autoregressive model estimation. Although

ven with these weaknesses, this approach is still being used for

issing data analysis due to its simplicity. In some mainstream

tatistical programming such as R and SAS, this method is the

ost popular one for dealing with missing values, especially when

nalysing time series. However, there is no obvious indication that

ist wise deletion is adequate for handling missing data involving

ultivariate time series modelling [8] . 

.2. Linear regression imputation 

Linear regression imputation is a very general technique for

ealing with missing values in time series analysis. Linear regres-

ion imputation uses the available data (observed data) to estimate

he missing values by using a linear model: 

 1 = B 10 + B 11 Y 2 + B 12 Y 3 + · · · + B 1 n Y n + e 

 2 = B 20 + B 21 Y 1 + B 22 Y 3 + · · · + B 2 n Y n + e 

 n = B n 0 + B n 1 Y 1 + B n 2 Y 2 + · · · + B nn Y n −1 + e 

 Y 1 } = { Z 1 }{ B } + { e } 
here { Y 1 } contains the imputation data, { B } is the parameters of

he linear model, { e } is the error vector at each data point, and [ Z 1 ]

s regression matrix with n time series and m length of observed

ata: 

 1 = 

⎡ 

⎢ ⎣ 

1 Y 21 Y 31 Y 1 n 
1 Y 22 Y 32 Y n 2 
1 .. .. .. 

1 Y 2 m 

Y 3 m 

B nm 

⎤ 

⎥ ⎦ 

he main advantage of this method is that it does not decrease

he variation of data as compared to mean substitution. The main
in multivariate time series using a vector autoregressive model- 
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Fig. 3. QRS wave properties VAR-IM imputed data (10% MCAR ). 

Fig. 4. QRS wave properties for linear-regression imputed data (10% MCAR ). 
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Table 1 

VAR model order selection. 

Model order AIC SC LR HQ FPE 

1 4.8001 6.4028 21.4 94 8 5.4479 0.0 0 02 

2 2.1151 3.2691 17.8260 2.5816 0.0 0 01 

3 5.1866 9.3537 91.4041 6.8710 0.0 0 02 

4 5.5062 10.956 53.7518 7.7089 0.0 0 02 
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rawback of this method is that it handles the available data as

tatic, thus eliminating the property of autoregression. 

.3. Multivariate Auto-Regressive State-Space (MARSS) Model 

The Multivariate Auto-Regressive State Space (MARSS) model

as introduced in 2012 as the first complete package for handling

issing data in multivariate time series data [11] . MARSS incor-

orates an expectation-maximization (EM) algorithm. It is an R

ackage employing a special formula of vector autoregressive state-

pace models to fit multivariate time series with missing data via

n EM algorithm. A MARSS model has the following matrix struc-

ure: 
 

x t = A t x t−1 + B t b t + ε t 

y t = C t x t−1 + D t d t + μt 

(1) 

here εt ∼ MVN (0, Q t ), μt ∼ MVN (0, R t ) and x 1 ∼ MVN ( π , �) or

 0 ∼ MVN (0, �) 

The state vector is represented by x t and the measured value

s designated by y t . Driven by data, the model evolves but it is

ossible that some value may be missing when measuring y . The

ariables b t and d t are inputs representing for example some indi-

ators or exogenous variables. A t , B t , C t , and D t are system matri-

es, εt and μt are process and non-process error respectively, Q t 
Please cite this article as: F. Bashir, H.-L. Wei, Handling missing data 
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nd R t are m × m and n × n variance–covariance matrices, respec-

ively, where m is number of states and n the number of time se-

ies. Compared with the traditional approaches, MARSS can gener-

te better results especially for multivariate time series modelling

12] . 

.4. EM algorithm 

The expectation-maximization (EM) algorithm is an iterative al-

orithm for parameter estimation using maximum likelihood pa-

ameter values when the information (e.g. measurements) of some

ariables are incomplete [13–15] . The EM algorithm is achieved

hrough two basic steps: estimation step (aka E-step) which re-

laces missing values by estimated values, and the maximization

tep (aka M-step) which estimates the parameters. These two steps

lternately iterate until convergence [16,17] . The conditional expec-

ations of missing data in observed series and estimates of model

arameters in the E-step are calculated by 

(B n | B n +1 ) = E (x m | X 0 ) ,B n +1 
[ logL (B ; X 0 , X m 

)] (2)

here, L ( B ; X 0 , X m 

) is the likelihood function, B is the parameter

ector, B n +1 is the estimate of the model parameters, X 0 is ob-

erved data, X m 

is the missing data. In the M-step, the model pa-

ameters can be calculated using (2) to maximize complete data

og likelihood function from the E-step: 

 n +1 = arg B maxQ(B | B n ) (3)

. Overview of stationary multivariate time series 

A time-series is a sequence of measured values arranged by

heir sequential time order. The time-series may be in either dis-

rete or continuous time units. Multivariate time series processes

re of considerable interest in a variety of fields of engineering, sci-

nces, and medicine. By studying many related variables together

ather than a single variable a better understanding of the ob-

erved process is often obtained. Nowadays, improved data collec-

ion methods permit large amounts of time series multivariate data

o be collected from various application domains. For n time se-

ies random variables y 1 t , y 2 t , . . . , y nt , let Y t denote a multivariate

ime series for an n -dimensional time series vector, where each y it 
ime series represents i th raw of Y t vector, that is, for any time t ,

 t = (y 1 t , y 2 t , . . . , y nt ) 
T One of the fundamental objectives of mul-

ivariate time series analysis of Y t is to fit the data to a model

nd demonstrate the dynamic relationships among univariate time

eries. The selection of each time series model, included in Y t de-

ends on the dynamic interrelationships between these time series

ariables which are affected directly by time lags between the data

oints for each time series. The multivariate time series data set Y t 
s stationary time series if at arbitrary time intervals t 1 , t 2 , . . . , t k 
he probability distributions of the component time series vari-

bles y t1 , y t2 , . . . , y tk and y t1 −p , y t2 −p , . . . , y tk −p are the same, where

 is the number of the measured values p represents the lag. That

eans cross time intervals t 1 , t 2 , . . . , t k throughout the stationary

ultivariate time series, has a random probability distribution of

he observed data points with respect to the time lags. Conse-

uently, any stationary multivariate time series should have the
in multivariate time series using a vector autoregressive model- 
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Table 2 

A comparison of different methods for the heart-rate data (10% MCAR). 

Method The conventional 12 leads 

i ii iii avr avl avf V1 V2 V3 V4 V5 V6 

Complete-data 78.12 65.87 73.02 58.58 56.05 65.48 34.96 42.67 52.95 75.82 75.58 74.38 

Missing-data 73.9 63.8 66.78 47.8 49.95 60.91 30.48 37.82 45.78 66.23 66.35 64.85 

VAR-IM 79 67.08 70.13 54.58 55.08 65.48 37.73 43.58 50.48 70.97 73.51 72.13 

List-wise 87.79 74.05 76.07 49.82 58.84 72.17 34.71 43.92 52.03 74.40 74.96 72.85 

Linear-reg 76.82 67.80 70.28 50.07 56.57 100.40 76.32 52.65 57.55 85.47 83.57 69.87 

MARSS 73.98 63.8 66.83 47.87 49.98 60.93 30.51 37.92 45.82 66.32 66.38 64.9 

EM 75.37 64.05 67.33 49.3 51.27 61.38 31.31 38.6 48.95 70.57 66.36 69.6 

Fig. 5. QRS wave properties for EM imputed data (10% MCAR ). 

Fig. 6. QRS wave properties for MARSS imputed data (10% MCAR ) . 
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same mean value M at any time intervals where: 

M = E(Y t ) = 

⎡ 

⎢ ⎣ 

m 1 

m 2 

.. 

m n 

⎤ 

⎥ ⎦ 

(4)

In addition, the covariance matrix, �Y , of a stationary time se-

ries Y t is a constant matrix [18] : ∑ 

= E[(Y t − M)(Y t − M) T ] . 

Y 

m

Please cite this article as: F. Bashir, H.-L. Wei, Handling missing data 
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. Filtering of multivariate time series 

A multivariate linear (time-invariant) filter relating an l dimen-

ional input series U t to n -dimensional output series Y t often for-

ulated as 

 t = 

∞ ∑ 

N= −∞ 

U t−N B N (5)

here B N are n × 1 matrices. The filter is physically realizable

r causal if B N = 0 for N < 0 leading to Y t = 

∑ ∞ 

N=0 U t−N B N , which

eans that Y t can be characterized by past values of the input

 t . The filter is said to be stable, if Y t = 

∑ ∞ 

N= −∞ 

‖ B N ‖ < ∞ .Under

he stability condition, together with an assumption that the input

andom vectors U t have uniformly bounded second moments, the

utput random vector Y t defined by (5) , exists uniquely and repre-

ents the limit: 

im r −→∞ 

r ∑ 

N= −r 

U t−N B N (6)

uch that as r −→ ∞ 

 t = E 

⎡ 

⎣ 

( 

Y t −
r ∑ 

N= −r 

U t−N B N 

) ( 

Y t −
r ∑ 

N= −r 

U t−N B N 

) T 
⎤ 

⎦ . 

hen the filter is stable and the input series U t is stationary with

ross-covariance matrices �U ( p ), Eq. (5) is a stationary process [19] .

he cross-covariance matrices of the stationary process Y t are then

iven by 

U (p) = Cov (Y t , Y t−p ) = 

i = ∞ ∑ 

i = −∞ 

j= ∞ ∑ 

j= −∞ 

B i �U (p + i − j) B 

T 
j (7)

. Vector autoregressive model (VAR) 

The vector autoregressive model (VAR) is commonly used

odel for the analysis of multivariate time series. In many ap-

lications where the variables of interest are linearly each related

o each other the VAR model has shown to be a good choice for

epresenting and predicting the behaviour of dynamic multivariate

ime series [20] . It primarily provides good forecasts as compared

o models from univariate time series and many other models. Be-

ause the VAR model can make conditions on the prediction paths

f specified time series within the model itself, the forecasts from

his model are relatively easy to derive [20] . In addition to time se-

ies analysis and prediction, the VAR model is additionally utilized

or causality inference and strategy investigation of the multiple

ime series. In causality analysis, specific hypotheses of the causal-

ty of the time series under analysis are assumed, and the subse-

uent causal effects of each time series are outlined. This chapter

oncentrates on the use of the VAR model to analyse stationary

ultiple time series datasets with missing data. 
in multivariate time series using a vector autoregressive model- 

/10.1016/j.neucom.2017.03.097 
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Table 3 

A comparison of different methods for the heart-rate data (20% MCAR). 

Method The conventional 12 leads 

i ii iii avr avl avf V1 V2 V3 V4 V5 V6 

Complete-data 78.12 65.87 73.02 58.58 56.05 65.48 34.96 42.67 52.95 75.82 75.58 74.38 

Missing-data 73.90 63.80 66.78 47.80 49.95 60.91 30.48 37.82 45.78 66.23 66.35 64.85 

VAR-IM 80.87 68.20 70.55 52.05 56.78 68.15 38.72 44.43 50.53 69.82 73.30 72.22 

List-wise 71.63 62.55 64.85 42.27 48.17 58.17 28.43 35.63 44.35 63.57 63.35 61.85 

Linear-reg 74.48 66.47 68.35 44.23 57.317 101.32 73.97 56.28 59.45 84.73 82.92 67.03 

MARSS 71.67 62.55 64.93 42.32 48.22 58.15 28.50 35.68 44.42 63.63 63.38 61.90 

EM 74.80 63.05 65.77 44.28 51.70 59.13 29.68 36.87 49.83 69.58 64.33 67.95 

Fig. 7. QRS wave properties for VAR-IM imputed data (20% MCAR). 
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Fig. 8. QRS wave properties for linear-regression imputed data (20% MCAR ). 
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.1. Vector autoregressive state space model 

State-space models are models that use state variables to de-

cribe a system by a set of differential or difference equations.

tate variables can be reconstructed from the measured input–

utput data, but the variables themselves are not measured during

n experiment. A state-space models can be estimated using in ei-

her time and frequency domains. In this paper, the discrete-time

tate-space model is used to present the multivariate time series

ata set, having the following structure [21] : 

 (t + T s ) = AX (t) + BU(t) + E(t) (8)

 (t) = CX (t) + DU(t) + e (t) (9)

here x ( t ) is the vector of state values, A is the state matrix, B is

he input matrix, C is the output matrix, D is the feedforward ma-

rix, Y and U are the input and output vectors, respectively, and

( t ) are state errors as specified with the matrix q . Matrix r con-

ains the output errors, e ( t ). 

.2. VAR model for stationary time series 

Let Y t = (y 1 t ) , (y 2 t , . . . , y mt ) 
T be an ( m × 1) time series vector. A

AR ( p ) model for the multiple time series can be represented by 

 t = A 0 + 

p ∑ 

i =1 

A i Y t−i + ε(t) (10)

 t = A 0 + A 1 Y t−1 + A 2 Y t−2 + · · · + A p Y t−p ε(t) (11)

here t = 1 , . . . T , A i are M × coefficient matrices and ε( t ) ∈ (0, �)

enotes an M × 1 vector of white noise. 
Please cite this article as: F. Bashir, H.-L. Wei, Handling missing data 
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Eq. (11) can be written in lagged notation: 

 p (L ) Y t = A 0 + ε(t) (12)

here 

 p = I m 

− A 1 L − · · · − A p L 
p (13)

The stability of the VAR model is depended on the roots of

14) 

 I m 

− A 1 z − · · · − A p z 
p | = 0 (14)

. VAR-IM algorithm 

The proposed algorithm for imputing missing data into a

ultivariate time series dataset is to use a vector autoregressive-

mputation (VAR-IM) method combined with an EM algorithm

ogether with a prediction error minimization (PEM) algorithm.

he method based on a combination of these algorithms can

ignificantly improve the imputation performance for dealing with

issing data problem. Specifically, in the first step, the traditional

inear interpolation estimate is made for an initial guess of the

issing data. Then a VAR(p) model is estimated by selecting the

est lag value p . Finally, the parameters of the VAR(p) model

re estimated by alternatively using EM and PEM algorithms

esulting in an improved value for the data imputation. Basically,

he alternation of the two algorithms between imputing missing

ata and estimating models, improves the model performance by

pplying PEM algorithm in a way similar to the EM algorithm. The

ow chart for the proposed VAR-IM algorithm is shown in Fig. 1 . 

The VAR-IM method formalizes an intuitive idea for identifying

 best VAR model for imputing missing data: 

• Calculate the initial values to start the algorithm. 
in multivariate time series using a vector autoregressive model- 

/10.1016/j.neucom.2017.03.097 
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Fig. 9. QRS wave from the imputed data by the EM algorithm (20% MCAR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. QRS wave from the imputed data by the MARSS algorithm (20% MCAR). 
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• Check the causality of time series. 

• Select the order of the identified VAR ∗ Model. 

• Impute the missing values by using VAR ∗. 

• Identify the new VAR model. 

• If no convergence, go to step III, otherwise, go to step VII. 

• Perform PEM algorithm to update the missing values. 

• Impute the missing values. 

For more details, assume that X t represents a multivariate data

set and a set of VAR models can simulate X t with different lags

p = 1 , 2 , 3 , and parameters A p . If there is no missing values, it is of

interest to calculate the least squares estimate of A p based on: 

X t = φA + E (15)

For dynamic systems the auto-regression process depends on

the past values of the targeted data point, if the time series in-

cludes missing values, means that there is past values missed and

the auto-regression cannot be applied in (15) . In this case the tra-

ditional approaches such as list wise will not work, because ignor-

ing of missing values will effect on the property of dynamic sys-

tem. To start up the estimation process correctly, the initial values

are required; the simple way to determine these initial values is

using a simple traditional method such as linear interpolation. We

will denote this by expressing X t as ( X tmiss , X tobs ), where X tmiss de-

notes the multivariate data set with missing values, and X tobs rep-

resents the multivariate data set with replacing missing values by

initial values (imputed by interpolation technique). 

Consequently, Eq. (15) becomes [22] : 

ˆ X t = φk A pk + E �⇒ 

ˆ X t = φ0 A p0 + E (16)

A pk = (φT 
k φk ) 

−1 φT 
k X k �⇒ A p0 = (φT 

0 φ0 ) 
−1 φT 

0 X 0 (17)

where φ0 is the initial regression matrix, k = 0 , 1 , 2 , and A p 0 is the

initial coefficients matrix of the select VAR ( p k ) model. 

The order of the model p k is updated until the difference A pk −
A p(k + N) is less than ξ , where ξ is a prescribed small value [22] . 

6.1. Model order selection 

The model selection for the VAR ( p ) model is usually specified

utilizing model selection criteria. The basic idea is to identify mod-

els with different lags values p = 0 , 1 , 2 , . . . , p max and select the

p lag value that can minimizes the model selection criteria [23] .

Model order selection formula is represented by 

IC(p) = ln | ∑ 

(p) | + S T .ϕ(m, p) (18)
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here | �( p )| is the covariance matrix of the residual error S T are

he indexed values sequence (1 , . . . , T ) , and the penalty function

( m, p ) which impedes the large models order. The term | �( p )|

s non-growing function whereas the function ϕ( m, p ) increases

ith the order P . The basic idea of the model order selection de-

ends on balancing these two functions. There are five techniques

or model order selection in the applied VAR ( P ) model literature

enerally broadly utilized: 

• Akaikes information criterion ( AIC ) [24] . 

IC(p) = ln | ∑ 

(p) | + 

2 

T 
pm 

2 (19)

Where the penalizing function ϕ(m, p) = pm 

2 and S T = 

2 

T 

• Schwarz criterion ( SC ) [25] . 

C(p) = l n | ∑ 

(p) | + 

l nT 

T 
pm 

2 (20)

Where the penalizing function ϕ(m, p) = pm 

2 and S T = 

lnT 

T 

• Hannan–Quinn criterion ( HQ ) [26] . 

C(p) = l n | ∑ 

(p) | + 

2 l n (l nT ) 

T 
pm 

2 (21)

For which the penalizing function ϕ(m, p) = pm 

2 and S T =
2 l n (l nT ) 

T 
Note that for all the three criteria, the penalty function ϕ( m, p )

as the same formula. 

• Final Prediction Error ( FPE ) [27] . 

 P E(p) = [ 
T + mp + 1 

T − mp + 1 

] m | ∑ 

(p) | (22)

• Likelihood ratio test ( LRtest ) [28] . 

Where j = 1 , 2 , (p − 1) Other techniques do exist. They were

ot included in this study because they are not widely used in the

pplied VAR model literature. 
in multivariate time series using a vector autoregressive model- 
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Table 4 

Q-R–S wave properties in case of 10% MCAR. 

Data Imputed data 10% MCAR missing 

Complete data Missing-data VAR-IM List-wise Linear-reg MARSS EM 

MeanError_Qwave −0 .004 NAN −0 .0109 – 0.1420 −0 .0417 −0 .006 

MeanError_Rwave 0.021 NAN 0.0243 – 0.0277 0.0212 −0 .0068 

MeanError_Swave −0 .0155 NAN −0 .342 – −0 .0576 −0 .0147 −0 .018 

avg_riseTime 29 NAN 28 – 30 28.5 28 

avg_fallTime 56 NAN 59 – 56 56.5 57 

avg_riseLevel 1.4419 NAN 1.424 – 1.0171 1.4332 1.4312 

avg_fallLevel 1.9204 NAN 1.9165 – 1.5867 1.9199 1.9296 

Table 5 

Q–R–S wave properties in case of 20% MCAR. 

Data Imputed data 20% MCAR missing 

Complete data Missing -data VAR-IM List-wise Linear-reg MARSS EM 

MeanError_Qwave −0 .004 NAN −0 .0067 – 0.0131 0.0016 0.0014 

MeanError_Rwave 0.021 NAN 0.0191 – 0.0630 0.022 0.0163 

MeanError_Swave −0 .0155 NAN −0 .018 – −0 .0802 −0 .0096 −0 .0191 

avg_riseTime 29 NAN 29 – 27 28.5 28.5 

avg_fallTime 56 NAN 56.5 – 429.5 55.5 56.5 

avg_riseLevel 1.4419 NAN 1.4414 – 0.9402 1.4391 1.4 4 45 

avg_fallLevel 1.9204 NAN 1.9307 – 1.4009 1.9243 1.9341 
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. Case study 

The significance of a good data imputation process is espe-

ially important in the field of medicine where discovery and im-

utation of missing values can help to identify abnormal con-

itions and reduce incorrect diagnosis [22] . Hence, interest has

isen considerably in this and associated fields where it is im-

ortant to effectively model and analyze multivariate time series

ata. Therefore to examine the performance of the proposed algo-

ithm for handling a real-world missing data problem, a case study

nvolving Electro-Cardio Gram (ECG) signals was accomplished.

n ECG dataset without missing values was obtained from the

hysionet website ( http://www.physionet.org/physiobank/database/

tbdb ). Then two datasets were created by randomly removing

ata elements. A 10% missing completely at random (MCAR) and

 20% MCAR dataset was created. The initial Physionet dataset in-

luded 290 patients with 549 records (aged between 17 and 87,

ean 57.2; 209 men, mean age 55.5, and 81 women, mean age

1.6; ages were not recorded for 1 female and 14 male subjects).

ach subject is represented by one to five records. There are no

ubjects numbered 124, 132, 134, or 161. Each record includes 15

imultaneously measured signals: the conventional 12 leads ( i, ii,

ii, avr, avl, avf, v 1, v 2, v 3, v 4, v 5, v 6) together with three Frank

ead ECGs ( vx, vy, vz ). Each signal is digitized at 10 0 0 samples per

econd, with 16-bit resolution over a range of 16.384 mV. On spe-

ial request to the contributors of the database, recordings may

e available at sampling rates up to 10 KHz . More detailed discus-

ion can be found [29,30] . The diagnostic classes of the patients

re divided into nine types; this case study considered a 12-lead

CG signals for two diagnostic classes: myocardial infarction and

ealthy control for two patients. Two cases of MCAR missing data

echanism with two different percentages 10% and 20% were gen-

rated. Table 1 shows the values of the four model order selection

riteria. As can be seen each test indicates that the model with lag

wo has the highest priority. Tables 2 and 3 show the recovering

ccuracy for the missing data in the heart rate signal using differ-

nt imputation methods, under two cases of missing data mech-

nisms, i.e., 10% and 20% MCAR, respectively. In both cases, the

roposed method VAR-IM gives better results comparing with the

ther methods. 
a  
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.1. QRS waves 

The ventricular depolarization of the heart can be represented

y three nodes on the heart electrical wave displayed within ECG

ignal. These are the Q, R and S nodes, known as the QRS complex.

he amplitude of QRS represents the polarization and depolariza-

ion of the ventricular. The QRS duration is the required time for

he signal to pass through the ventricular myocardium [31] . The

ormality of QRS complex is measured by its duration (time in-

erval). A normal duration of the QRS complex is between 0.08

nd 0.10 s. An intermediate QRS complex has an interval between

.10 and 0.12 s. While an abnormal QRS time interval is more than

.12 s. Important QRS properties include rise level ( Lr ), fall level

 Lf ), rise duration ( Tr ), and fall duration ( Tf ). These factors repre-

ent the quality of a QRS wave in terms of specifying the ventricu-

ar depolarization. The rise and fall levels represent length of edges

f R peak on the right and left hand side, respectively, the rise and

all durations are the required time to move from the Q peak to R

eak and from R peak to S peak, respectively [32] . 

Lr = Amplitude R peak – Amplitude Q peak 

Lf = Amplitude S peak – Amplitude R peak 

Tr = Time point R peak – Time point Q peak 

Tf = Time point R peak – Time point Q peak 

Mean Error = mean (noisy-ECG (QRS locations) – ((filtered (QRS

ocations)) 

.2. QRS waves and missing values 

The performance of the VAR-IM method is evaluated by com-

aring the effectiveness of missing data imputation on QRS wave

roperties, in both cases of missing data (10% and 20% MCAR) and

omplete data. Furthermore, the efficiency of missing data impu-

ation is considered in the filtering processing. Fig. 2 shows the

RS complex rise level, fall level, rise time and fall time in the

ase of complete data. In comparison, Figs. 3 – 5 show various re-

ults with respect to the case of 10% MCAR. The four proposed

echniques with VAR-IM methods were applied to solve the miss-

ng data problem here. Clearly, most approaches generated obvi-

usly different results: for example, the list wise deletion could not

chieve any improvement in all features; it gave results similar to
in multivariate time series using a vector autoregressive model- 
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the case of missing data. on the other hand, all the other meth-

ods gave acceptable results, for some features such as Lr, Lf, Tr and

Tf , but the VAR-IM methods still has the highest priority to be the

best methods to recover the missing values, which is similar to the

real data especially the QRS peaks locations. Table 4 summarizes

the results of the effectiveness of missing data imputation of the

four methods for the QRS wave properties. 

When the percentage of the missing data increases from 10%

to 20%, the proposed VAR-IM method gives the best results among

the five methods. Table 5 summarizes the results generated from

the recovered data using the five methods, as well as a compari-

son with that generated from the complete data. As can be noted

in both cases of missing data (MCAR 10% and 20%) the MARSS

package and EM algorithm have similar results. The reason may

be that the MARSS depends mainly on EM algorithm in estimating

an MARSS model ( Fig. 6–10 ). 

8. Conclusion 

It is extremely important to effectively handle multivariate data

anomalies that contain missing values. This is especially true for

medical data, which could involve great number of critical health

diagnostic variables. The proposed VAR-IM method provides im-

provements to speed and accuracy for imputing missing values

of multivariate time series datasets. It outperforms the commonly

used methods such as list wise deletion, linear regression imputa-

tion, MARSS and EM algorithms. From the results of the case study,

the VAR-IM method provides an effective alternative for the im-

putation of missing values in multivariate time series. While the

other proposed traditional and modern methods become less ef-

fective with the increase of the proportion of missing data, VAR-

IM shows less deterioration in performance with increasing per-

centages of missing entries. In addition, the VAR-IM method is

more robust than the other proposed techniques when applied to

the data types discussed in the case study, and performed better

on static and noisy data. There are some limitations of the pro-

posed method. Firstly, this study only considered the scenario in

which data was missing completely at random (MCAR), that is,

the cause of the missing data was independent of both the ob-

served and missing values. A less stringent assumption of miss-

ing data mechanism missing at random (MAR) may be more re-

alistic in practice. MAR refers to the case in which missingness is

related to the observed values, but not to the missing values them-

selves. Secondly, the validity of VAR-IM approach requires that the

time series should be stationary. Finally, the percentage of missing

data has significant impact on most missing data analysis methods,

VAR-IM does not have the priority to be used if the percentage of

missing data is quite low (say less 10%). Despite these limitations,

VAR-IM provides an important alternative to existing methods for

handling missing data in multivariate time series. Further exten-

sion of the method to include other types of methods will be con-

sidered in other future work. 
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