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This paper presents a novel color segmentation technique using fuzzy co-clustering approach in which
both the objects and the features are assigned membership functions. An objective function which
includes a multi-dimensional distance function as the dissimilarity measure and entropy as the
regularization term is formulated in the proposed fuzzy co-clustering for images (FCCI) algorithm. The
chrominance color cues an and bn of CIELAB color space are used as the feature variables for co-clustering.
The experiments are conducted on 100 natural images obtained from the Berkeley segmentation
database. It is observed from the experimental results that the proposed FCCI yields well formed, valid
and high quality clusters, as verified from Liu’s F-measure and Normalized Probabilistic RAND index. The
proposed color segmentation method is also compared with other segmentation methods namely Mean-
Shift, NCUT, GMM, FCM and is found to outperform all the methods. The bacterial foraging global
optimization algorithm gives image specific values to the parameters involved in the algorithm.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The segmentation of color images is a potential area of research
due to its practical significance in various fields. Image
segmentation partitions the image into regions/segments such
that pixels belonging to a region are more similar to each other
than those belonging to different regions. Clustering is a well
known approach for segmenting images. It strives to assess the
relationships among patterns of the data set by organizing them
into groups or clusters such that patterns within a cluster are more
similar to each other than those belonging to different clusters.
Many algorithms for both hard and fuzzy clustering have been
developed to achieve this purpose. In hard clustering, data is
divided into crisp clusters, where each data belongs to exactly one
cluster. In fuzzy clustering, the data points can belong to more
than one cluster, and associated with each of the points are
membership grades that indicate the degree to which the data
points belong to the different clusters. Clustering in the color
domain gives improved segmentation results since color
components carry more information than the gray scale
components.
ll rights reserved.
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Several techniques have been proposed in the field of color
segmentation. Histogram based segmentation of color [1] is one of
the existing techniques. But it does not guarantee contiguity of
the resulting regions. Edge detection based techniques [2] pose the
difficulty of determining the boundary of an image due to the
ambiguity of the response of a weak edge. Recently, Arbelaez et al.
in [3] have proposed a hierarchical segmentation obtained from
the output of a contour detector which overcomes the difficulties
of weakly linked boundaries. In [4] color segmentation by region
growing and merging is investigated. One drawback of the con-
ventional region growing technique is the selection of the seed
point and the order in which regions grow or merge. In [5], the
problem of seed selection is solved by using the relaxation labeling
technique which yields satisfactory results. Recent techniques for
region growing use automated seed selection process as in [6]
which uses a fuzzy similarity and fuzzy distance based approach.
In [7], after the region growing of similar color, Markov Random
Fields (MRF) are applied to improve the results. However, it is
observed that some homogeneous regions may get disconnected
due to the MRF process. Blobworld [8], a popular image segmenta-
tion and retrieval algorithm groups pixels into regions by model-
ing the joint distribution of color texture and position features by a
mixture of Gaussians with parameters being decided by the
expectation maximization algorithm. However, the resulting
blobs may not contain all the details of objects and also may
not distinguish an object which is not visually distinct. Further
an iterative post-processing step is required to correct the
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mis-alignment of object boundaries. Mean-Shift filtering [9] and
Graph partitioning [10,11] methods and their hybrids [12] perform
clustering in feature–space and are found to be effective for color
segmentation. But they are very sensitive to the parameters like color
bandwidth (Mean-Shift) and the threshold edge length (Graph
method). Neural network based approaches [13,14] for image seg-
mentation like Competitive Learning Neural Network (CLNN) and
Self Organizing of Kohonen Feature Map (SOFM) avoid complex
programming but usually consume a lot of training time. Other
significant works on image segmentation include: Watershed tech-
nique[15] based on the morphological watershed transform, seg-
mentation using the K-nearest neighbor (K-NN) technique [16] which
is sensitive to the choice of reference sample and JSEG [17]—a
segmentation algorithm based on color and texture. Various combi-
nations of popular segmentation algorithms like region merging and
graph partitioning [18], mean-shift and region merging [19],
watershed and Kohonen SOM [20] have been suggested together
with their advantages. In [21], color segmentation is carried out by
applying a set of fuzzy if-then-rules on 200 fixed color samples. The
Fuzzy C-Means (FCM) clustering method, a popular choice for color
segmentation has been investigated in the works of [22]. The results
are quite good but for the computational complexity and sensitivity
to the initialization. Several variants of FCM are summarized in [14].
In [23] fuzzy set theory and maximum fuzzy entropy principle are
used to convert the image to the fuzzy domain and a Space Scale
filter is used to analyze the homogeneity histogram to find the
appropriate segments. Fuzzy co-clustering algorithm with its dual
fuzzy (object and feature) membership functions was originally
derived for document clustering, examples being FCCM, FCoDoK
[24,25] and robust versions PFCC [26], RFCC[27]. The co-clustering
done so far on images [28,29] is limited to indexing of images for
Content based image retrieval (CBIR) in which low level semantic
features derived from image histogram are the feature variables for
clustering.

In this paper the Fuzzy co-clustering approach is adapted for
the segmentation of natural images. An algorithm for the Fuzzy
Co-clustering of images (FCCI) is developed by incorporating the
distance between each feature data point and the feature cluster
center as the dissimilarity measure and the entropies of the
objects and features as the regularization terms in the objective
function. To prove the effectiveness of our approach we apply the
FCCI algorithm for the segmentation of color images with
successful results. Some preliminary work on color segmentation
of histo-pathological images is reported in [30] and this serves as a
precursor to the main work. The CIELAB color space is favored for
our experiments due to the wide range of colors possible and its
closeness to the human perception system [31], and its chromi-
nance color vector {an,bn} is proved to be the best feature
combination for the segmentation task [32]. It is found from the
experimental results that the color segmentation results obtained
by the proposed technique are of high quality with respect to both
Liu’s evaluation measure and NPR index which are global seg-
mentation evaluation measures and also outperforms over other
popular color segmentation methods. The choice of the number of
clusters for the experiment is determined in a novel manner by
plotting Xie and Beni’s cluster validity [33] as the number of
clusters is increased and by checking for the first local minima of
the curve. The resulting segmentation offers a good tradeoff
between color difference and human perception.

The organization of the paper is as follows: The Fuzzy Co-
Clustering algorithm for Images (FCCI) is introduced in Section 2.
While minimizing the objective function in FCCI, Bacterial Fora-
ging is adapted for global learning of parameters. Later in Section
3, the proposed algorithm is applied for the color segmentation
together with the state of the art comparisons. Finally conclusions
from over-all results are given in Section 4.
2. Fuzzy co-clustering algorithm for images

2.1. Motivation for the algorithm and related work

Co-clustering simultaneously clusters both objects and features
together [24]. This provides two membership functions: the
partition or object membership function and the ranking or
the feature membership function. The latter serves to filter out
the relevant features only during the computation of the object
membership function and thus solves the problem of sparseness of
data by reducing the dimensionality. The co-clustering algorithm
is thus suited to applications with large dimensions and is found to
be apt for our experiments on multi-feature color images. The
problem of outliers is also minimized by using feature member-
ship function [26]. The problem with using only the feature
memberships is that it may lead to coincident/overlapping clusters
therefore highlighting the need for both feature and object
memberships. Further we include the distance function of feature
data points from the feature cluster centroids in the co-clustering
process to create richer co-clusters than other fuzzy co-clustering
algorithms. The inclusion of the distance factor in the degree of
aggregation reduces the optimization problem to a minimization
one. In this work co-clustering is integrated with the Fuzzy
approach with a view to obtain distinct clusters [24,26]. Both the
object and feature memberships in the proposed method are
fuzzy, i.e. the object membership is calculated when different
clusters compete for a data point and feature memberships are
defined when different features compete for a cluster. Thus we
have two constraints on the two fuzzy memberships (object and
feature memberships) in our method.

Therefore the aim is to have a co-clustering algorithm with the
following advantages:
1.
 It must be insensitive to initialization and form distinct
clusters. (Fuzzy clustering)
2.
 It should perform well in high dimensions and provide well
defined clusters. (Co-clustering)
3.
 It should minimize the impact of outliers to improve the
accuracy of co-clustering. (Ranking/Feature memberships)
4.
 Its objective function should integrate the distance measure of
input features w.r.t. feature centroids into the entropy regular-
ization framework.
5.
 It must be reasonably fast enough.

Several maximum entropy clustering algorithms and their
variants are available in the literature [34,35]. One such approach
of interest to the present work is the variant of FCM which props
on entropy regularization [36]. It involves the minimization of the
following objective function:

JFCM ¼ ∑
C

c ¼ 1
∑
N

i ¼ 1
uciDistðxi;pcÞþTU ∑

C

c ¼ 1
∑
N

i ¼ 1
uciloguci ð1Þ

subject to the constraint

∑
C

c ¼ 1
uci ¼ 1; uci∈½0;1�;∀i¼ 1;:::;N ð2Þ

where the symbols C,N represent the number of clusters and data
points respectively, uci the fuzzy membership function, TU the
weight factor in the entropy term, Distðxi;pcÞ the dissimilarity term
equal to the square of the Euclidean distance between pixel xi and
cluster center pc.

The first term in the R.H.S of (1) denotes the effective squared
distance; the second term is the entropy which serves as a
regulating factor during the minimization process. The proposed
approach aims at co-clustering in the entropy framework of FCM.
For this we begin by replacing the distance function Distðxi;pcÞwith
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Distðxij;pcjÞ in the proposed objective function. Distðxij;pcjÞ is com-
puted for each feature j¼1,2,…,K separately.

2.2. Formulating the objective function

Let X ¼ fx1; x2;…; xi;…; xNg∈ℝKbe the set of N data points
associated with an image I of sizeN1 � N2 ¼N, and K is the
dimension of the feature space associated with each data point.
Let xijdenote the jth feature of the ith data point, P ¼ fpcjg be the set
of feature cluster centers and Dcij ¼Distðxij; pcjÞ be the square of the
Euclidean distance between feature data point xij and the feature
cluster centroid pcj given by

Dcij ¼ d2ðxij; pcjÞ ¼ ðxij−pcjÞ2 ð3Þ

Let uci denotes the object membership of the ith data point to
cluster c, U ¼ fucig be the C�N object membership function matrix
of image I, vcj denotes the feature membership defined as the
membership of feature j to the cth cluster and V ¼ fvcjg be the
corresponding C�K feature membership matrix for image I.

Including the feature membership function vcj in the first term
of (1) and replacing the distance function by Dcij ¼Distðxij; pcjÞ
yields ∑C

c ¼ 1∑
N
i ¼ 1∑

K
j ¼ 1ucivcjDcij, which is regarded as the degree of

aggregation of the proposed objective function JFCCI. Separate
entropy regularizing terms ∑C

c ¼ 1∑
N
i ¼ 1uciloguci and ∑C

c ¼ 1∑
K
j ¼ 1

vcjlogvcj for the object and feature membership functions consti-
tute the second and third terms of JFCCI respectively. Minimizing
these two terms is equivalent to maximizing the fuzzy entropies
−∑C

c ¼ 1∑
N
i ¼ 1uciloguci and −∑C

c ¼ 1∑
K
j ¼ 1vcjlogvcj. The entropies are

maximized when the fuzzy memberships uci and vcj are uniformly
distributed according to their constraints i.e. uci ¼ 1=C and
vcj ¼ 1=K .

The objective function JFCCI resulting from combining all the
above terms is

JFCCIðU;V;PÞ ¼ ∑
C

c ¼ 1
∑
N

i ¼ 1
∑
K

j ¼ 1
ucivcjDcijþTU ∑

C

c ¼ 1
∑
N

i ¼ 1
uciloguci

þTV ∑
C

c ¼ 1
∑
K

j ¼ 1
vcjlogvcj ð4Þ

the above expression is minimized subject to the following
constraints:

∑
C

c ¼ 1
uci ¼ 1; uci∈½0;1�;∀i¼ 1;…;N ð5Þ

∑
K

j ¼ 1
vcj ¼ 1; vcj∈½0;1�; ∀c¼ 1;…;C ð6Þ

The minimization of the first term in (4) assigns to the object a
higher membership value taking into account the feature cluster
center it is closest to and which is more relevant than other
features for that particular cluster. The inner product
fvcjDcijgassigns a higher weight to the distance function pertaining
to the prominent features and a lower weight to that of the
irrelevant features. The first term therefore denotes the effective
squared distance. The second and third entropy regularization
terms combine all u′cisand v′cjs separately. These contribute to the
fuzziness in the resulting clusters. TU and TV are the weighting
parameters that specify the degree of fuzziness. Increasing TU and
TV increases the fuzziness of the clusters.

2.3. Deriving the update equations

The constrained optimization problem of FCCI can now be
defined from (4) by applying the Lagrange multipliers λi and γc to
constraints (5) and (6) respectively as shown below.

JðU;V;PÞ ¼ ∑
C

c ¼ 1
∑
N

i ¼ 1
∑
K

j ¼ 1
ucivcjDcijþTU ∑

C

c ¼ 1
∑
N

i ¼ 1
uciloguci

þTV ∑
C

c ¼ 1
∑
K

j ¼ 1
vcjlogvcj þ ∑

N

i ¼ 1
λi ∑

C

c ¼ 1
uci−1

� �
þ ∑

C

c ¼ 1
γc ∑

K

j ¼ 1
vcj−1

 !

ð7Þ
Taking the partial derivative of J(U,V,P) in (7) with respect to U

and setting the gradient to zero we have,

∂J
∂U

¼ ∑
K

j ¼ 1
vcjDcij þ TU ð1þ loguciÞ þ λi ¼ 0 ð8Þ

Subjecting uci derived from (8) to the constraint in (5) the
formula for computing the object membership function uci

reduces to,

uci ¼
e

− ∑
K

j ¼ 1

vcjDcij
TU

� �

∑
C

c ¼ 1
e

− ∑
K

j ¼ 1

vcjDcij
TU

� � ð9Þ

In a similar manner, taking the partial derivative of J(0,V,P) with
respect to V and setting the gradient to zero we have,

∂J
∂V

¼ ∑
N

i ¼ 1
uciDcij þ TV ð1þ logvcjÞ þ γc ¼ 0 ð10Þ

Applying the constraint (6) to vcj derived from (10), we obtain
the formula for the feature membership function vcjas

vcj ¼
e

− ∑
N

i ¼ 1

uciDcij
TV

� �

∑
K

j ¼ 1
e

− ∑
N

i ¼ 1

uciDcij
TV

� � ð11Þ

Taking the partial derivative of J(U,V,P) with respect to P and
setting the gradient to zero we have

∂J
∂P

¼ vcj ∑
N

i ¼ 1
ucixij−vcjpcj ∑

N

i ¼ 1
uci ¼ 0 ð12Þ

Solving (12) yields the formula for pcj as

pcj ¼
∑N

i ¼ 1ucixij
∑N

i ¼ 1uci
ð13Þ

The solution of the constrained optimization problem in (7) can
be approximated by Picard iteration or Alternating Optimization
(AO) [37] through (9), (11) and (13) which are the update
equations for the object, feature memberships and the cluster
centroids respectively in each iteration. Optimal partitions Un of X
can be obtained by solving for (Un,Vn,Pn) at the local minima of
JFCCI. The proof of convergence of the FCCI algorithm to a local
optimum is given in Appendix A. Since Un,Vnand Pn are unknowns,
the objective function in (4) is neither concave nor convex and
usually has many local optima. To find a global optimum of the
constrained optimization problem, the FCCI algorithm is further
given as a learning step to the Bacterial Foraging algorithm which
optimizes the values of the weight parameters TU and TV.

2.4. Pseudo-code of FCCI algorithm
1.
 1. Initialize the parameters TU, TV, maximum error limit ε and
maximum number of iterations τmax.
2.
 Set iteration number τ¼1.

3.
 Initialize uci such that 0≤uci≤1.

4.
 REPEAT
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5.
 Calculate pcj using (13)

START
6.
 Calculate Dcij using (3).
7.
 Calculate vcj using (11).

8.
 Calculate uci using (9).
Set c=3 , Sold =50 (high),
9.
 Calculate τ¼τ+1.

Initialize TU=10,

7
10.
 UNTIL maxðjuciðτÞ−uciðτ−1ÞjÞ≤ε or τ¼τmax.
 TV=9x10

Optimize TU, TV  by
Since all our experiments are found to converge within
200 iterations, τmax¼200 and the maximum error limit ε taken
to be 10−2.
STOP

Run the FCCI algorithm
and obtain fuzzy object 
membership function uci

Is 
Snew>Sold

-Number of clusters : 1 

N

Y

Calculate Xie and Beni’s 
cluster validity Snew  
as per (14)

Bacterial Foraging algorithm

c=c+1,        
Sold=Snew

Fig. 1. Flowchart for determining the number of clusters.
3. Color image segmentation using FCCI

3.1. A. Algorithm for color segmentation

3.1.1. Review of Xie and Beni’s cluster validity S
According to Xie and Beni [33] the validity function S of the

clusters for the worst case is defined by

S¼ s=N

dmin
2 ð14Þ

The dmin in (14) is evaluated from

dmin ¼min
∀c

f ∑
K

j ¼ 1
ðpðcþ1Þj�pcjÞ2g ð15Þ

where dmin is the minimum distance between the cluster centroids
pcj for cluster c¼1,…,C and feature j and s is the maximum
variation among all the clusters C, given by

s¼max
∀c

f ∑
N

i ¼ 1
uci

2 ∑
K

j ¼ 1
ðxij�pcjÞ2g ð16Þ

To determine the number of clusters based on the above
Cluster Validity S a flowchart is given in Fig. 1 which checks for
the occurrence of the first local minima of S.

3.2. Algorithm for color image segmentation using FCCI

The algorithm is outlined as follows:
1.
 Obtain the three dimensional RGB input image.

2.
 Convert RGB color space into the CIELAB color space with color

dimensions K¼2, i.e. {an,bn}.

3.
 Perform 2D to 1D transformation [38] (by lifting the elements

columnwise) to generate data point xij in the jth dimension,
j¼1,2 for each pixel i¼1,…,N, where N is the size of the data.
This step is important since the computations become simpler
when data is one dimensional rather than two dimensional.
4.
 Determine the number of clusters C as per the flowchart in
Fig. 1.
5.
 Run the FCCI algorithm for C clusters and obtain the object uci
membership function.
6.
 Defuzzify uci into clusters.

3.3. B. Bacterial Foraging for the global minimum

The Bacterial Foraging (BF) [39] based on the bacterial chemo-
tactic behavior of E. Coli is used for optimizing the values of fuzzy
parameters TU and TV in the FCCI algorithm. The BF algorithm
initially accepts a set of initial values from the user before
optimizing these to global minimum values by subsequent itera-
tions. The following initial values: TU¼10, TV¼9�107 are assumed
for the color segmentation experiments. The choice of these initial
values is made by conducting a set of random experiments by hit
and trial. Bacterial Foraging is treated as an optimization process
[40], where each bacterium seeks to maximize the energy
obtained per unit time spent on foraging. Suppose that θ is the
position of a bacterium and let JD(θ) represent the combined
effects of attractants and repellents from the environment, for e.
g. JD(θ)o0, JD(θ)¼0, JD(θ)40, representing that the bacterium at
location is in nutrient rich, neutral, and noxious environments,
respectively.

Chemotaxis is a foraging behavior that implements a type of
optimization where bacteria try to climb up the nutrient concen-
tration (i.e. find lower and lower values of JD(θ)o0 termed as
swim), avoid noxious substances (for JD(θ)40 termed as tumble),
and search for ways out of neutral media (avoid being at positions
where JD(θ)¼0).

At the end of the required number of chemotaxis steps an
assessment is made about the health of the bacteria by sorting
them in the ascending order. Half of the healthy bacteria is
replicated by assigning the same location and the other half is
eliminated. This operation constitutes the reproduction step.

After the end of the desired number of reproduction steps, each
bacterium may be eliminated or dispersed with some probability.
This step is known as Elimination and dispersal and is meant
shake up the bacteria so as to move them to better locations.

The initialization for the Bacterial Foraging algorithm is done as
per the guidelines in [39]
1.
 Set the number of bacteria B¼50.
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2.
 The number of parameters w to be optimized are 2: TU, TV.

3.
 Swimming length Ns¼4.

4.
 Nc, the number of iterations in a chemotactic loop is set to 100.

5.
 Nre, the number of reproduction steps is set to 2.

6.
 Ned, the number of elimination and dispersal events is set to 2.

7.
 The probability ped that each bacterium will be eliminated/

dispersed is set to 0.25.

8.
 Location of each bacterium L(w,B, Nc, Nre, Ned).

3.4. C. Results of color segmentation

3.4.1. Segmentation evaluation indices
The quality of the segmentation is generally judged by two

types of indices: the goodness methods such as Liu’s F-measure
which ascertains the color difference in the CIELAB color space and
also penalizes the formation of large number of segments, and the
discrepancy methods which ascertain the quality with respect to
some reference result like ground truth images for example the
RAND index. The above two types of quality measures are used
together to judge the efficiency and practicality of the proposed
algorithm.
1.
 Liu’s Evaluation Measure (F): The performance of color
segmentation is evaluated using Liu and Yang’s [41] evaluation
function F:

FðIÞ ¼ 1
1000ðN1 � N2Þ

ffiffiffiffi
G

p
∑
G

i ¼ 1

ei2ffiffiffiffiffi
Ai

p ð17Þ

where I is the segmented image and N1�N2 is the image size, G
is the number of regions of the segmented image, Ai is the area
and ei is the average color error of the ith region where ei is
defined as the sum of Euclidean distances between the {an,bn}
color vector of the pixels of region i and the color centroid
attributed to region i in the segmented image. The smaller the
value of F(I) the better the segmentation result. We choose Liu’s
F-factor as one of our evaluation criteria since it gives an
accurate measure of the color differencing achieved by the
segmentation algorithm and at the same time penalizes large
number of regions formed.
2.
 (a) Probabilistic RAND index (PR): The PR index is a general-
ization of the RAND index [42] introduced by Unnikrishnan
et al. in [43]. It allows a comparison of the test segmentation
with multiple ground truth images through soft non-uniform
weighting of pixel pairs as a function of the variability in the
ground truth sets.

Suppose each human k provides information about the seg-
mentation in the form of binary numbers ∏ðliSk ¼ lj

Sk Þ for each pair
of pixels (xi,xj). The set of all perceptually correct segmentations
defines a Bernoulli distribution giving a random variable with the
expected value denoted as hij. The Probabilistic RAND index (PR) is
then defined as

PRðStest ; fSkgÞ ¼
1

ðN=2ÞΣi;j
io j

mijhij þ ð1−mijÞð1−hijÞ
� � ð18Þ

where mij denotes the event of a pair of pixels i and j having the
same label in the test image Stest:

mij ¼∏ðliStest ¼ lj
Stest Þ ð19Þ

This measure takes values [0,1], where 0 means no similarities
between Stest and {S1,S2,…SK}, and 1 means all segmentations are
identical.

(b) Normalized Probabilistic RAND index (NPR): The Normalized
PR index by Unnikrishnan et al. in [12], is an excellent means of
qualitative comparison among image segmentation algorithms.
Once the segmentation of all the test images for all the algorithms
being compared has been compiled the Normalized PR index is
calculated so that a global measure is possible.

Normalized PR¼ PR−Expected PR
Maximum PR−Expected PR

ð20Þ

The above equation assures that the expected value of normal-
ized index is zero providing a wider range. The maximum value of
PR, MaximumPR, in (20) is taken as 1.

3.4.2. Color segmentation results
In this section experimental results are presented to prove the

effectiveness of the proposed color segmentation algorithm on the
natural images. For these results MATLAB (ver.7.9) software is run
on a Pentium-IV 1.4 GHz PC. All images are digitized to 24 bits per
pixel in the RGB format. Since the distance between any two
points in the RGB space is not proportional to their color
difference, transformation from the RGB space to a uniform color
space: CIELAB [31] is performed. The vector {an,bn} of CIELAB color
space contains the total chrominance color information of pixels
and is the feature space for our color segmentation experiments.
The vector {Ln} or luminance vector which decides the darkness or
fairness of the image segments is discarded in the clustering
process to ensure that the illumination effects do not affect the
segmentation process. It is observed that the FCCI algorithm yields
highly crisp values of object membership function uci (close to
0 and 1). On the other hand the feature membership values vcj are
highly fuzzy (close to 0.5) due to averaging over the entire dataset.
The vcj values however are accentuated by the high values of
parameter TV (≈108) in Eq. (4) creating a considerable influence in
the computation of uci, eventually leading to crisp values of uci
after the iterative procedure. This helps in crisp classification
during the defuzzification process.

A set of 100 test images is taken from the Berkeley segmenta-
tion database [44,45] along with 5–7 ground truth segmentations
available for each image in the database for the evaluation of the
results. The size of each image is either 321�481 or 481�321 and
the average time taken by the FCCI algorithm for each image is
approximately 35 s. The segmentation of all 100 images by the
proposed FCCI algorithm is shown in Fig. 2, with the edges
superimposed on original images. The corresponding graphs for
Liu’s F-factor and the Probabilistic RAND index (PR) is shown in
Fig. 3 for 100 images bestowing excellent values for both segmen-
tation evaluation measures. The results show a good match
with human ground truth segmentations as indicated by a high
value of Probabilistic RAND index (PR), and also efficient color
differentiation as indicated by a low value of Liu’s evaluation
measure F. The number of clusters is determined from the first
local minima in the cluster validity S graph (normally o7 clusters
for our experiments) as demonstrated by the example shown in
Fig. 4.

Some observations made from the results obtained are as
follows:
1.
 Tradeoff between color differencing and human perception: in the
case of images with distinct colors (Fig. 5) there is an excellent
correspondence with human perception (high NPR) but the
color differentiation is not so good (high Liu’s F-factor). In the
case of images with indistinct colors (Fig. 6), very good color
difference is observed (low Liu’s F-factor) but the results appear
to be over-segmented and hence NPR value is relatively less.
The proposed technique therefore maintains a good tradeoff
between the two segmentation evaluation measures.
2.
 Sensitivity to parameters: the algorithm is found to be more
sensitive to the values of TU than TV since the values of uci



Fig. 2. Color Segmentation Results of 100 test images from Berkeley segmentation database [44] by the proposed method. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Liu’s F-measure and PR index in the increasing order for segmentations of 100 test images from Berkeley dataset [44] by the proposed method.

Fig. 4. Original image and Segmentation results (from left to right and top to bottom) of “Tree” image and the corresponding Clustering validity graph as the number of
clusters c is varied from 3 to 7. Corresponding values of NPR and Liu’s F-factor are: c: 3, 4, 5, 6, 7; NPR: 0.5519, 0.5203, 0.1314, −0.213, −0.1332; F: 0.00044, 0.000347,
0.000322, 0.000332, 0.000342. Number of clusters is aptly determined to be C¼4 (from the first local minima in the graph) as it results in the most optimum combination of
NPR and Liu’s F-factor.

Fig. 5. Example segmentations of images with distinct colors—NPR(from left to right): 0.6065, 0.7962, 0.8007, 0.9213; F(from left to right): 0.00047, 0.000138, 0.000134,
0.000085. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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obtained are very crisp and a careful choice of TU in (4) is
required for the algorithm to converge. Replacing the Bacterial
Foraging optimization by the Genetic algorithm in our experi-
ments results in a large computational overhead with an initial
population of 100 chromosomes required for acceptable
results, while Bacterial Foraging starts giving good results for
the initial population of 8 bacteria, thereby, significantly redu-
cing the computational overhead.
The value of TU in our experiments is found to range from 1–30
for different images with values close to 1 for images with non-
distinct colors (Fig. 6) and higher values for visually distinct
colors (Fig. 5). The valid values of TV ranges widely from 106–
108 and do not have a major impact on the resulting clusters
since its only function is to contribute to the computation of uci
by scaling vcj.
3.
 Complex illumination Patterns: the algorithm is able to segment
natural scenes containing non-uniform illumination efficiently
(Fig. 7(a)) by segregating shadows from sunlit portions thus
agreeing with human perception. However in the cases where
the shadows tend to merge with the colors in the scene (Fig. 7
(b)) result tends to look over-segmented in spite of very good
color differencing (low F).
4.
 Under-segmentation: only in rare cases (1 out of 100) the
algorithm fails to segregate extremely indistinct colors as
demonstrated by the under-segmented result in Fig. 8 due to
formation of highly fuzzy clusters.
3.4.3. Comparisons with other methods
The proposed color segmentation technique is compared with

some well known methods in literature for unsupervised color
segmentation: Fuzzy C-Means (FCM) [22,37], Normalized Graph-
Cut (N-CUT) Method [10], Gaussian Mixture model (GMM) [8] and



Fig. 6. Example segmentations of images with indistinct/similar colors—NPR (from left to right): −0.284, −0.391, −0.334, −0.098; F(from left to right): 0.000053, 0.00023,
0.000057, 0.0000701. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Example segmentations with shadows and non-uniform illumination. NPR(from left to right): (a)−0.301, 0.314, −0.022 and (b) −0.7609; F(from left to right):
(a) 0.00025, 0.00023, 0.00026 and (b) 0.00015.
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Mean-Shift (MS) [9] segmentation methods. The CIELAB color
space is used for all the comparisons. While both mean shift and
NCUT graph based method are popular feature space clustering
methods, FCM is chosen since it is a widely popular fuzzy
clustering method for image segmentation. The parameters for
FCM algorithm used in our experiments are: index of fuzziness
m¼2, maximum error limit ε¼10−2, maximum iteration¼200.
Normalized Cuts graph based segmentation method uses eigen-
vector techniques to obtain graph partitions. It finds minimum
cuts in a graph while minimizing the similarity between different
patches. GMM models the color features as a mixture of Gaussian
kernels using Expectation Maximization algorithm for estimation
of parameters of the Gaussian mixture and is a popular method for
image segmentation and retrieval. Figs. 9 and 10 show the graphs
for F and NPR indices for the 100 test images from the Berkeley
Segmentation Dataset in the form of histograms for the five
methods. It is observed from the graphs that the proposed FCCI
algorithm provides the most optimum combination of the lowest
values of F-measure (of the order of 10−4) and sufficiently high
values of NPR index among all the five methods proving the
efficiency of the proposed color segmentation algorithm by strik-
ing a neat balance between color differencing and human percep-
tion standards.

Fig. 11 shows the color segmented results of the five methods
for six randomly selected test images from the Berkeley Segmen-
tation Dataset namely: ’Mud-Huts’, ‘Plane’, ‘Eagle’, ‘Building’,
‘Wolf’, ‘Tree’. The corresponding F and NPR segmentation evalua-
tion indices are listed in Table 1 depicting the lowest values of F for
the proposed method as compared to all other methods. The NPR
readings are also observed from Table 1, to be overall best for the
proposed method though the Mean-Shift algorithm performs
better for ‘Plane’ image. It is observed from the segmentation
results in Fig. 11(b) that the proposed method FCCI forms well
defined and interpretable clusters even when the color difference



Fig. 8. (a)Original image and (b) under-segmented result.

Fig. 9. Histograms of Liu’s F-measure achieved for individual images for the proposed method, NCUT Graph based method, FCM, GMM, Mean-shift segmentation methods.

Fig. 10. Histograms of NPR Index achieved for individual images for the proposed method, NCUT Graph based method, FCM, GMM, Mean-shift segmentation methods.
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between two regions is not too distinct as in the case of ‘Wolf’
image. The proposed technique is efficient in segmenting out
uniform color regions and gives less fake boundaries as observed
in the case of ‘Building’ image in Fig. 11(b) where the windows of
the building are nicely segmented out visually as compared to
other methods. An important factor that gives FCCI an edge over



Fig. 11. Color segmentation results (a) Original images from Berkeley segmentation database [57] : ‘Mud-Huts’, ‘Plane’, ‘Eagle’, ‘Building’, ‘Wolf’, ‘Tree’ (b) Proposed method
[(from top to bottom): TU¼{10.96,1.15,2.05,9.52,4.81,11.79}, TV¼108] (c) N-CUT (d) FCM (e) GMM (f) Mean Shift segmentations [Space Bandwidth hs¼15, Color bandwidth hr
(from top to bottom): {7,3,4,10,1,8}]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Liu’s F-measure and normalized probabilistic RAND index for the six test images: ‘Mud-Huts’, ‘Plane’, ‘Eagle’, ‘Building’, ‘Wolf’, ‘Tree’.

Mud-Huts Plane Eagle Building Wolf Tree

F NPR F NPR F NPR F NPR F NPR F NPR

Proposedmethod 0.000128 0.3324 0.000045 0.425 0.000142 0.4466 0.0010 0.3496 0.000147 −0.0979 0.000447 0.5203
N-CUT 0.060 0.1904 0.0054 −0.4135 0.0020 0.4419 0.2506 0.2653 0.0100 −0.4611 0.0449 0.049
FCM 0.0154 0.2514 0.0028 0.2234 0.0061 0.4097 0.0909 0.2403 0.0054 −0.6522 0.0086 0.09
GMM 0.0131 0.2237 0.0035 0.1815 0.0034 0.3476 0.0874 0.135 0.0034 −0.6996 0.0084 0.3069
Meanshift 0.0075 0.3146 0.0122 0.6562 0.3013 0.5353 1.2487 0.3346 23.5 −0.4861 0.0225 0.3734
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Fig. 12. The plots for (a) F-value (logarithmic scale) and (b) NPR readings for 4 easy (E1 to E4) images (from Fig. 5) and 4 difficult (D1 to D4) images (from Fig. 6) are
shown below.
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FCM clustering technique is the reduced time complexity. The time
required by FCM for clustering is 10–15 min while the proposed
algorithm hardly takes 1 min for the same. How fuzzy co-
clustering scores over fuzzy clustering can be observed by compar-
ing the segmentations of the proposed method (Fig. 11(b)) with
that of FCM (Fig. 11(d)). The criterion for choosing number of
clusters is the same as that for the proposed method (from the
local minima in the clustering validity graph). As seen in the ‘Tree’
image co-clustering forms distinct and correct clusters with
Fig. 13. The comparison of fuzzy clustering results (with the best values in bold) on
(d) Spatially Weighted FCM (e) PFCM (f) OSFCM (g) Segmentation Evaluation results in t
Error (MSE) in the presence of noise.
criteria being maximum separation between clusters/colors. Thus
the green foliage and the blue sky being of distinct colors are
grouped into separate clusters by the proposed method whereas in
FCM, the parts of sky/clouds are clustered together with green
foliage. FCM also suffers from the problem of outliers as observed
from the pigmented segmentations in the ‘Mud-Huts’ example in
Fig. 11(d). The co-clustering results are improved because of the
grading/relevance factor (feature membership function) assigned
to each of the color feature (an,bn) with respect to a particular
the ‘Bird’ image for three clusters (a) FCCI (b) FCM (c) Histogram Weighted FCM
erms of Mean Square Error (MSE), Region Homogeneity Test (RH) and Mean Square



M. Hanmandlu et al. / Neurocomputing 120 (2013) 235–249246
cluster which leads to correct evaluation of clusters and also solves
the problem of outliers. The N-CUT Graph based method does not
give a very good correctness with respect to human ground truth
images as compared to the proposed method and mean shift
method. Also it tends to segregate uniform color regions into large
chunks. GMM by Expectation Maximization algorithm is an
unsupervised technique resulting in blob like segments. It classi-
fies the entire tree and green foliage of the example ‘Tree’ in Fig. 11
(e) into 1 segment performing well with respect to human
evaluation but poorly for color difference between regions. More-
over, the resulting blobs contain no internal details as demon-
strated in the blobs formed in ’Eagle’ image in Fig. 11(e). The mean
shift algorithm performs well corresponding to human ground
truths as indicated by a high value of NPR (example–‘Plane’ image
in Fig. 11(f)). However it fails in the absence of any dominant
colors in the scene as seen in the example of ‘Wolf’ image where
the colors are visually indistinct. The Liu’s F-measure values are
found to be generally high in the case of both mean shift and N-
CUT graph based algorithms. Also the mean shift method is very
sensitive to its color bandwidth parameter hr with a slight change
causing large changes in granularity of segmentation. The hr values
for the test images are in the range 1–15 while the space
bandwidth is hs¼15. Though some feature weighted clustering
algorithms have been proposed in the past [46] and were applied
for image segmentation problems [47], they do not incorporate a
separate feature membership to be independently updated in each
iteration along with pixel memberships and cluster centroids.
Fig. 12 shows the comparison (F and NPR values) between the
five methods for the mix of easy and difficult images in Figs. 5 and
6 respectively taken in the same order. The results affirm that
F-values are minimum for FCCI for all images, a fact already
established from the graphs in Fig. 9, while NPR values are highest
Table 2
Experimental parameters of the fuzzy clustering algorithms being compared.

Algorithm Parameters Parameter
optimization
technique

Clustering data
(from CIELnanbn

color space)

Fuzzy co-clustering algorithm
for images (FCC1)

TU, TV Bacterial foraging an,bn

Fuzzy C-means algorithm
(FCM)

m¼2 none an,bn

Histogram weighted FCM
(HWFCM)

m¼2 none Ln

Spatially weighted FCM
(SWFCM)

m¼2 none Ln

Possibilistic FCM (PFCM) m¼2,η¼1.2,
a¼b¼1

none an,bn

OSFCM m¼2 none an,bn

(nwhere number of clusters c¼1 to C, number of data points i¼1:N, number of feature
distance norm)
for FCCI for all the easy images E1 to E4 and most of the difficult
images except for the D2 difficult image for which NCUT, GMM
and Mean Shift yield better results. In Fig. 13 we compare the
segmentations using some recent fuzzy clustering algorithms
apart from FCM namely Spatially weighted FCM [48], Histogram
weighted FCM [49], Possibilistic FCM [50] and Orientation sensi-
tive FCM (OSFCM) [51] on an example image ‘Bird’ containing
three main clusters, the bird, the stones and the grass. The
experimental parameters of these algorithms are summarized in
Table 2. The results in Fig. 13 indicate that FCCI provides the most
optimum segmentation with respect to human evaluation of the
scene and is equivalent to FCM in terms of accuracy of the clusters
formed. FCM and FCCI form the most visually acceptable clusters
of the scene segmenting out the bird nicely in Cluster 2. Hence the
reason that FCM among all the existing fuzzy clustering algorithms
is most popular for image segmentation purpose. FCCI yields the
cleaner image of the two (with lesser number of regions as
compared to FCM as seen in Fig. 13) complying more with human
perception of the scene.

The inlier or bridge pixels are properly clustered by FCCI
as compared to all other clustering algorithms as indicated by
the region homogeneity tests (criteria being uci40.5), though
the outlier problem of FCM persists. The inlier pixels are defined
as those that are equidistant from all centroids and have a
membership of 0.5 to all clusters as a result. Since FCCI computes
feature memberships as well which evaluates the relationship
of a cluster to a feature, it is taken into account the feature
value distribution of the inlier to compute its membership to a
cluster. However the outlier points or noise pixels are a problem
since for these data points the algorithm behaves like FCM and is
sensitive though some marginal improvement is noticed from the
Table in Fig. 13. Table 3 evaluates the memberships obtained from
Computational
complexityn

Dissimilarity
measuren

Average number
of iterations
needed for
convergence
(EL¼0.01)

Average
execution time

Object membership
u (CxN)

vcjDcij 33 (with 8 bacteria)

(CxNxK)

Feature
membership v (CxK)

o1 min

Centroid
p (CxK)
Object membership
u (CxN)

Dci 27 10–15 min

(CxN)

Centroid
p (CxK)
Object membership
u (GLxN)

Dci 61 10 s

(CxN)

Centroid
p (Cx1)
Object membership
u (CxN)

Dci 100 20 s

(CxN)

Centroid
p (Cx1)
Object membership
u (CxN)

Dci 33 20 min

(CxN)

Typicality
T (CxN)
Centroid
p (Cx1)
Object membership
u (CxN)

Dci 10 20 min

(CxN)

Centroid
p (Cx1)

s j¼1:K, number of Gray levels gl¼1 to GL with GL≪N, and D¼ || � ||, the Euclidean



Table 3
Clustering comparison of FCCI, FCM, PFCM—response to inliers and normal data points.

S. no. Fuzzy Co-clustering algorithm
for images (FCC1)

Fuzzy C-means
algorithm (FCM)

Possibilistic FCM (PFCM)
(Typicality values)

(Membership values) (Membership values) (m¼2,η¼2,a¼b¼1)
Data (TU¼0.96, TV¼9�107) (m¼2)

x y U1,U2 U1, U2 T1, T2

1 −5 0 1,0 0.936, 0.06 0.621,0.113
2 −3.34 1.67 1,0 0.97 ,0.03 0.801,0.165
3 −3.34 0 1,0 0.99, 0.01 0.953,0.171
4 −3.34 −1.67 1,0 0.9 ,0.1 0.642,0.157
5 −1.67 0 1,0 0.92,0.08 0.840,0.278
6 −1.67 0 0,1 0.08,0.92 0.278,0.840
7 −3.34 1.67 0,1 0.03, 0.97 0.165,0.801
8 −3.34 0 0,1 0.01, 0.99 0.171,0.953
9 −3.34 −1.67 0,1 0.1 ,0.9 0.157,0.642
10 5 0 0,1 0.06 ,0.94 0.113,0.621
11 (Inlier) 0 0 0.50031,0.4997 0.5 ,0.5 0.49,0.49

Cluster centers −3.03 0 −3.36 0 −2.99 0
(Centroids) 3.03 0 3.36 0 2.29 0
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FCCI, FCM and PFCM algorithms for the X11 dataset fX10∪ðinlierÞgin
[50] where X10 contains 10 two dimensional data points. The
results are found to be best for the proposed FCCI algorithm in
terms of crisp values of memberships (1,0) obtained and the
definitive values of inlier memberships that is indicative of the
clusters (uci40.5) to which they belong to. The only shortcoming
of FCCI clustering is the response to the outliers which need to be
minimized.
4. Conclusions

In this paper, the Fuzzy co-clustering approach based on the
simultaneous clustering of both object and feature memberships is
used for the color segmentation of natural images. A new objective
function is formulated and the update rules are derived. The new
algorithm (FCCI) is tried for color segmentation on 100 test images
from the Berkeley segmentation dataset yielding precise segmen-
tation. The color vectors {an,bn} of CIELAB color space are the
feature variables for the color segmentation algorithm. The per-
formance is evaluated on the basis of Liu’s Function F, and the
Normalized Probabilistic RAND (NPR) index. The number of
clusters is determined from the first local minima of Xie and
Beni’s cluster validity curve and is found to produce apt results
(low F and high NPR). The proposed method produces accurate
color differencing and at the same time adheres to the human
perception in segmenting the natural scenes with non-uniform
illumination and shading. It is also compared with some of the
existing color segmentation techniques and is found to outperform
them. The future scope of this work lies in improving the image
segmentation in the presence of outliers and exploring other
evolutionary algorithms for speedy solutions of the two para-
meters involved.
Appendix A

The proof of convergence of the FCCI algorithm is shown
below:

Theorem 1. The updated values of uci given by Eq.(9) never increase
the objective function in every iteration.
Proof. Consider the objective function as a function of uci alone.

JFCCIðUÞ ¼ ∑
C

c ¼ 1
∑
N

i ¼ 1
∑
K

j ¼ 1
ucivcjDcij

þTU ∑
C

c ¼ 1
∑
N

i ¼ 1
uciloguci þ constant ð31Þ

where, constant ¼ TV∑C
c ¼ 1∑

K
j ¼ 1vcjlogvcj

Also, the product vcj Dcij may be considered as constant. To
prove Theorem 1 we have to prove that Un, i.e the updated values
of uci given by Eq. (9) are the local minima of the objective function
JFCCI(Un) provided that the constraints in (5) and (6) are satisfied.
For this we need to prove that the Hessian matrix Δ2JFCCI (Un) is
positive definite.

Δ2JFCCIðUÞ ¼

∂2JFCCI ðUÞ
∂u11∂u11

⋯ ∂2JFCCI ðUÞ
∂u11∂uCN

⋮ ⋱ ⋮
∂2JFCCI ðUÞ
∂uCN∂u11

⋯ ∂2JFCCI ðUÞ
∂uCN∂uCN

2
664

3
775¼

TU
u11

⋯ 0
⋮ ⋱ ⋮
0 ⋯ TU

uCN

2
664

3
775 ð32Þ

At Un, uci≥0 and TU is always assigned a positive value. There-
fore the Hessian matrix Δ2JFCCI(Un) is positive definite. We have
proved the first necessary condition ð∂JFCCIðuciÞ=∂uciÞ ¼ 0 and the
second sufficient condition: Δ2JFCCI(Un) is positive definite. There-
fore uci

n updated is indeed a local minima of JFCCI(U) and it never
increases the objective function value.

Theorem 2. For every iteration the updated values of vcj given by Eq.
(11) never increases the objective function. &

Proof. Proof is similar to proof of Theorem 1.

Theorem 3. The following constraint is satisfied by JFCCI in (4):

JFCCI≥TU � N � log
1
C
þ TV � C � log

1
K

Proof. Since the minimum value of uci and vcj is 0, and Dcij≥0, the
first term of JFCCI reduces to

∑
C

c ¼ 1
∑
N

i ¼ 1
∑
K

j ¼ 1
ucivcjDcij≥0 ð33Þ

The second and third terms denote the entropy values
and maximum value of entropy occurs when uci¼1/C and vcj¼1/K.



M. Hanmandlu et al. / Neurocomputing 120 (2013) 235–249248
In view of these the point of minima is

JFCCI≥TU � N � log
1
C
þ TV � C � log

1
K

ð34Þ

Corollary. Theorems 1–2 prove that the updated equations of FCCI
point to a local minima of the Objective function and Theorem 3
indicates the lower limit of JFCCI.

Appendix B

The CIELAB color space is obtained from the RGB color space by
the following transformation:

X

Y

Z

2
64

3
75¼

0:490 0:310 0:200
0:177 0:813 0:011
0:000 0:010 0:990

2
64

3
75

R

G

B

2
64

3
75 ð35Þ

The features of CIELAB are derived from

Ln ¼ 116ðY′Þ1=3−16
903:3Y ′

if Y ′40:008856
otherwise

(
ð36Þ

an ¼ 500½K11=3−K21=3� ð37Þ

bn ¼ 200½K21=3−K31=3� ð38Þ
where

Ki ¼
ϕi

7:787ϕi þ 16
116

ifϕi40:008856
otherwise for i¼ 1;2;3

(
ð39Þ

ϕ1 ¼ X′¼ X
X0

; ϕ2 ¼ Y′¼ Y
Y0

; ϕ3 ¼ Z′¼ Z
Z0

ð40Þ

The X0, Y0 and Z0 are the values of X,Y,Z for the reference white,
respectively. The reference white is defined as {R¼G¼B¼255}.
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