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a b s t r a c t

This work presents the Transition-Aware Human Activity Recognition (TAHAR) system architecture for
the recognition of physical activities using smartphones. It targets real-time classification with a
collection of inertial sensors while addressing issues regarding the occurrence of transitions between
activities and unknown activities to the learning algorithm. We propose two implementations of the
architecture which differ in their prediction technique as they deal with transitions either by directly
learning them or by considering them as unknown activities. This is accomplished by combining the
probabilistic output of consecutive activity predictions of a Support Vector Machine (SVM) with a
heuristic filtering approach. The architecture is validated over three case studies that involve data from
people performing a broad spectrum of activities (up to 33), while carrying smartphones or wearable
sensors. Results show that TAHAR outperforms state-of-the-art baseline works and reveal the main
advantages of the architecture.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Human Activity Recognition (HAR) has nowadays become a
prominent research field due to its substantial contributions in
human-centered areas of study aiming to improve people's
quality of life: Ambient Intelligence, Pervasive Computing and
Assistive Technologies [1–3]. These areas make use of HAR
systems as an instrument that provides information about
people's behavior and actions [4]. This is commonly done by
gathering signals from ambient and wearable sensors and pro-
cessing them through machine learning algorithms for classifica-
tion. There are currently many applications where HAR systems
are used, for instance, the continuous monitoring of patients with
motor problems for health diagnosis and medication tailoring [5],
and the automated surveillance of public places for crime pre-
vention [6].

In the past decade, several HAR systems have been proposed
and surveyed [7–9]. They have encompassed multiple activities
from different application domains, including locomotion, daily
living activities, transportation and sports [10,11] (e.g. walking,
cooking, driving, and running). Regarding their duration and

complexity, activities are categorized in three main groups: short
events, Basic Activities (BAs) and complex activities. The former
group is comprised of brief-duration activities (on the order of
seconds) such as postural Transitions (PTs) (e.g. sit-to-stand), and
body gestures [8]. Basic activities are instead characterized by a
longer duration and can be either dynamic or static (e.g. running
and reading) [12]. The latter group, complex activities, is com-
posed of progressions of the aforesaid simpler activities and
involve aspects such as interaction with objects and other indivi-
duals (e.g. playing sports, social activities) [13]. This research
targets the first two categories.

1.1. Wearable sensors and smartphones

Ambient and wearable sensors have been actively exploited for
HAR [1]. Video cameras, microphones, GPSs, and sensors for
measuring proximity, body motion and vital signs are just a few
examples. Current research on ambient sensors has mainly
focused on video cameras due to the ease of retrieving visual
information from the environment. These have also been com-
bined with other sensors (e.g. with accelerometers and micro-
phones [14]) and recently introduced in wearable technologies for
novel ubiquitous applications [15]. However, people's privacy is a
downside of vision-based technologies that limits their use in
every location. In contrast, recent developments in wearable
sensing technologies such as inertial and vital signs sensors are
offering less invasive alternatives for HAR [16].
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The accelerometer is the most commonly used sensor for
reading body motion signals [8]. This body sensor is generally
used either in multi-sensor arrangements (e.g. triaxial acceler-
ometers and Body Sensor Networks (BSN)) or in combination
with others (e.g. gyroscopes, magnetometers, temperature, and
heart rate sensors) [17]. Bao and Intille [12] proposed one of the
earliest HAR systems for the recognition of 20 activities of daily
living using five wearable biaxial accelerometers and well-known
machine learning classifiers. They achieved reasonably good
classification accuracy reaching up to 84% considering the num-
ber of activities involved. One evident drawback was related to
the number and location of the body sensors used which made
the system highly obtrusive. Gyroscopes have also been employed
for HAR and have demonstrated to improve the recognition
performance when used in combination with accelerometers
[18,19].

Smartphones have become an alternative for wearable sensing
due to the diversity of sensors they support. This aspect, along
with the device processing and wireless communication capabil-
ities, makes them a robust tool for performing activity recognition
[20,21]. Smartphones also have advantages over other ambient
sensing approaches, such as multi-modal sensors in a home
environment or surveillance cameras, because they are ubiquitous
and require none or little static infrastructure to operate [1].
Inertial sensors such as accelerometers and gyroscopes are present
in modern smartphones as they can be mass produced at a low
cost. They are an opportunistic sensing resource for retrieving body
motion data [22,23].

First smartphone-based approaches worked offline. In [24],
the Centinela system was presented. It consisted of a chest unit
composed of several sensors to measure acceleration data and
vital signs (e.g. heart rate, breath amplitude, and respiration rate)
and a smartphone wirelessly connected via Bluetooth. Data was
later processed and classified offline using different machine
learning algorithms. Lee and Cho in [25] developed a HAR system
of 5 transportation activities which combines labeled and unla-
beled data from smartphone inertial sensors with a mixture-of-
expert model for classification. Kwapisz et al. [26] developed an
offline HAR system using a smartphone provided with a built-in
triaxial accelerometer carried on the pocket. Their recognition
model allowed the classification of 6 locomotion activities (2
static postures and 4 dynamic activities). Similarly, we proposed
in [27] a HAR system using a waist-mounted smartphone. It used
a modified SVM with fixed-point arithmetic prediction aiming to
obtain a fast implementation more suitable for battery-
constrained devices.

More recently, online smartphone-based HAR systems have
been proposed. A Nokia smartphone was used in [28] for the
online recognition of 6 activities. In [29], Fuentes et al. presented
an online motion recognition system using a smartphone with
embedded accelerometer which classified 4 BAs through a One-vs-
One (OVO) SVM approach. In the same way, the work presented in
[30] used an Android smartphone with an embedded acceler-
ometer for the online classification of 4 activities. It also allowed
the adaptation of the learned model for new users by gathering
activity samples through a predefined activity protocol.

1.2. Dealing with transitions in HAR systems

In the design of HAR systems there are still some issues that
need to be addressed. In most approaches, transitions between
activities are usually disregarded since their incidence is gener-
ally low and duration is short when compared against other

activities. This is pointed out by Lara et al. in [7], nevertheless, the
validity of this assumption is application-dependent. Even if the
detection of transitions is not required, it is important to notice
them in applications where multiple tasks are performed in a
short period of time. For instance, activity monitoring during
rehabilitation practices, fitness/gymnasium workout activities,
equipment assembly and house cleaning. Fluctuations in the
prediction during transitions affect the performance of the
recognition system if not dealt with properly. A second issue
considers that the activities carried out by people are, in real-life
situations, more than the ones learned by any HAR system [31].
The remaining activities, unknown to the system, are usually
matched as any of the available ones, and this leads to mis-
classifications. Instead, a better approach would allow the system
to tell that it does not predict any of its available classes when its
confidence is below certain level. Dealing with these Unknown
Activities (UAs) allows more functional HAR systems for a variety
of applications.

A number of systems have focused on the detection basic
activities and short events. Khan et al. [32] studied 7 basic
activities and 7 transitions using three Artificial Neural Networks
to separately detect static, dynamic and transitory states. Applica-
tions with a large number of classes such as this can give rise to an
increase in the false negative rate, especially when the main
interest is only on a subset of activities (e.g. basic activities, rather
than transitions). In [33], Zhang et al. proposed an offline HAR
system that combines basic activities with a joint class of various
postural transitions for daily monitoring applications. In [34],
Salarian et al. detected sit-to-stand and stand-to-sit transitions for
better distinguishing between standing and sitting. This was
achieved through a fuzzy logic classifier which required for this
task, past and future transition information.

Only a few works on HAR have targeted how the presence of
transitions between activities impacts system performance. Rednic
et al. in [35] performed posture classification of activities for
ordnance disposal operations using a multi-accelerometer BSN,
while considering the effects of postural transitions in their system
using a weighted voting filter in order to improve the classification
accuracy of postures by 1%. Moreover, erroneous fluctuations of
predicted activities on a classifier can be also dealt in a similar
approach. One example of this is also found in [36] where a
method called statistical-hist was proposed. It processed historical
variations of the classifier BA predictions using a voting strategy
for spurious classification pruning.

In this work, we propose the TAHAR system architecture for the
recognition of human activities using smartphones. It targets the
classification of basic activities in real time and pervasively while
addressing issues regarding transitions and unknown activities. It
offers a flexible and interoperable approach that allows to incor-
porate new elements (e.g. inertial sensors) into the system and
provides an easily exportable output to other ambient intelligent
systems that require activity information. Two implementations of
the architecture are explored. They differ in the way they deal with
transitions that occur in between the activities of interest. In the
first case, transitions are treated as unknown activities. Therefore,
they are not learned by the machine learning algorithm. Instead, in
the second case, transitions are learned by the algorithm as an
extra class [33].

We validate the proposed architecture with three case studies:
for the most part, we exploit the SBHAR dataset that we have
generated from experiments on a group of 30 subjects that
performed six locomotion activities while they were carrying a
smartphone on their waist. This dataset also contains transition
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information which is required for the evaluation of the system.
Additionally, we exploit other two publicly available datasets for
benchmarking: PAMAP2 [37] and REALDISP [38]. The first provides
data from nine subjects carrying out 12 physical activities while
wearing three inertial measuring units (IMUs) and a heart rate
monitor. Conversely, the REALDISP dataset contains recordings
from 17 subjects performing a wide range of fitness activities (33)
and carrying nine wearable IMUs in different body areas. Although
these two dataset are not smartphone-based, they contain equiva-
lent inertial measurements from a larger number of wearable
sensors and study a larger number of activities. This allow us to
verify the efficacy of the proposed TAHAR architecture in different
application domains. This work is, to the best of our knowledge,
the first to evaluate how the occurrence of postural transitions
affect smartphone-based HAR systems. Results show that the
optimal implementation of the architecture is determined by the
application, even so dealing with transitions always helps to
improve the system accuracy.

The following sections are organized as follows: Section 2
describes in detail the proposed TAHAR system architecture with
focus on the prediction layer. Then, Section 3 introduces the three
case studies and Section 4 concentrates on the smartphone
application implemented to test the architecture. Section 5 depicts
the results achieved and, lastly, Section 6 provides concluding
remarks and discusses future research directions.

2. TAHAR system architecture

This section describes the TAHAR system architecture that
allows to perform the recognition of physical activities by combin-
ing measurements from wearable sensors with supervised
machine learning algorithms. The architecture is composed of
four functional layers: Sensing, Feature Mapping, Prediction and
Communication. All these elements are represented in Fig. 1 and
here described along with their main building blocks:

� The Sensing layer collects all the wearable sensors able to
provide activity data into the system. For this study, triaxial
accelerometers and gyroscopes has been selected as they come
embedded in current smartphones and IMUs. These sensors
need to provide measurements at frequencies higher than the
energy spectrum of human body motion which lies within 0 Hz
and 15 Hz [39]. Moreover, other measuring devices such as vital
signs or location sensors could be also integrated into this layer
in order to increase the amount of activity information and
improve the system recognition performance.

� The Feature mapping layer concentrates on the conditioning of
sensor signals coupled with the extraction of relevant features.
Within this layer, the signal processing module deals with raw
sensor data in order to remove noise and isolate relevant
signals (e.g. the extraction of gravity from triaxial acceleration).
Following this, the feature extraction module applies statistical
measures to fixed-width overlapping time windows from the
inertial signals in order to form representative feature vectors.
The feature mapping process is fully described in [21] for one
accelerometer and a gyroscope, however taking into account
that more sensors can be incorporated in the architecture, the
feature mapping process is updated accordingly (Section 5.2).

� The Prediction layer is in charge of reasoning and the main
focus of this paper. It consists of two elements: a machine
learning module, the Probabilistic-SVM (PrSVM), that takes
feature vectors as input for activity prediction using an SVM;
and a filtering module TFilt which deals with transitions and
fluctuations on the PrSVM output. These two modules are
detailed in Section 2.2.

� The Communication layer receives activity predictions and
makes them available either to other mobile applications on
the smartphone or externally to other devices. Activity data can
also be wirelessly transmitted for storage (e.g. to a data server
via Wi-Fi), monitoring, or supply to third-party applications (e.
g. to perform higher-level HAR).

2.1. Implementations

Two different implementations are explored in order to per-
form the recognition of activities. They differ in the way that
transitions and unknown activities are handled in the prediction
layer. Both implementations are described as follows:

� Activity Learning (AL): this implementation only considers basic
activities in the learning algorithm PrSVM. Transitions, on the
other hand, are not learned. We introduce the idea of detecting
unknown activities by assuming that transitions lie between
the clusters of activities in the feature space. For this, we
combine the probabilistic output of the SVM with temporal
activity filtering in order to improve the prediction of activities
without explicitly learning transitions. Instead, we take into
account known relationships between activities to create filters
that avoid fluctuations in the classification. For example: the
correlation and smooth variations of continuous predictions for
each activity, and that the studied activities do no occur
simultaneously.

Fig. 1. TAHAR system architecture.
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� Activity and Transition Learning (ATL): this implementation
includes basic activities and transitions altogether in the
learning module. Transitions are therefore considered as an
additional class. The filtering treatment given to the output of
this machine learning module varies slightly with respect to
the previous implementation (AL). Filters are adapted to deal
with transitions by taking into account statistical measures
about activities such as their average duration, which is
shorter on PTs than other BAs, and occurrence between
activity pairs.

2.2. TAHAR prediction layer modules

In this section, the prediction layer modules of the TAHAR
architecture are detailed: PrSVM is an SVM [40] that instead of
providing a single predicted output, provides a probability vector
that represents how likely is an input sample to belong to a
particular class. TFilt collects consecutive activity predictions from
PrSVM in order to improve the recognition of basic activities and
transitions through heuristic filters that exploit knowledge about
the studied activities.

2.2.1. PrSVM: the multiclass SVM with probability estimates
The machine learning algorithm employed is a multiclass linear

SVM. It consists of a set of One-vs-All (OVA) binary SVMs which
characterize each of the one studied activities. This is comprehen-
sively described in [41]. Here we describe the SVM binary model
and then extend it to the multiclass approach.

Consider a dataset composed of n patterns of ordered pairs
xi; yi
� �

iA 1;…;nf g; xiARd and yi ¼ f71g. A binary SVM can be
formulated as a Convex Constrained Quadratic Programming

(CCQP) minimization problem in the following way:

min
w;b;ξ

1
2
‖w‖2þC

Xn
i ¼ 1

ξi ð1Þ

s:t: yi w
Txiþb

� �
Z1�ξi; ξiZ0; iA 1;…;nf g;

where the C hyperparameter is the regularization term andPn
i ¼ 1 ξi represents the upper bound of the number of misclassi-

fications using the hinge loss function.
This formulation is the primal SVM problem. However, its

solution can be simplified by reformulating it as its dual form
which uses the Lagrange multipliers:

min
α

1
2
αTQα�1Tα ð2Þ

s:t: 0rαrC; yTα¼ 0;

where Q is the symmetric positive semidefinite kernel matrix of
size n� n and qij ¼ yiyjxTi � xj.

The prediction of new patterns can be achieved with the SVM
Feed Forward Phase (FFP) which is given by

f xð Þ ¼
Xn
i ¼ 1

yiαixTi xjþb: ð3Þ

where the bias term b is obtained with the method proposed in
[42]. The FFP can be expressed in terms of the weights w and b as
f xð Þ ¼wTxþb, where w¼ Pn

i ¼ 1
αiyixi.

It is possible to generalize binary machine learning models to
solve problems with more than two classes. In this work we use

Fig. 2. Misclassification examples during postural transitions and static postures. (Top) Acceleration signals show the transition between the two postures. (Middle) The
output of the SVM shows how likely each activity is for each window sample. (Bottom) The prediction of the activities using the MAP approach is compared against the
expected output with the AL and ATL implementations.
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the OVA approach [43] and take advantage of it because its output
directly represents each class.

The output sign of the FFP shows that if a new sample is
classified either as a given class or not. The magnitude of the
output, however, does provide a comparable quantity against the
other SVMs. Therefore, an output normalization method is
required. We compute probability estimates pc ðxÞwhich represent
how probable is for a new sample pattern to be classified as a
given class.

The selected probability estimation method was proposed by
Platt in [44] and it uses the predicted FFP output of the training set
and its ground-truth label to fit a sigmoid function of the following
form:

p xð Þ ¼ 1

1þe Γf xð ÞþΔð Þ; ð4Þ

where Γ and Δ are function parameters whose optimal values can
be found using the f xið Þ values and the targets of the training
samples (modified as ti ¼ ðyiþ1Þ=2) in the following error mini-
mization function:

arg min
Γ;Δ

�
Xn
i ¼ 1

ti log p xið Þð Þþ 1�tið Þlog 1�p xið Þð Þ: ð5Þ

Generally, for a given number of classes m and a test sample x,
the probability output of each SVM ðpc ðxÞ 8 cA 1;…;m½ �Þ is
compared against the others to find the class cn with the
Maximum A Posteriori Probability (MAP). For example, assuming
that all the classes have the same a priori distribution then

cn ¼ arg max
c

pc xð Þ: ð6Þ

However, the classification approach presented above only
produces a discrete output that indicates the class that best
represents a test sample given the assumption that data are
independently identically distributed (i.i.d.). Rather than utilizing
just one discrete prediction from the SVM, we use the probability
estimates more extensively. We provide as the PrSVM module
output, the vector p xð ÞARm, that contains the probabilities
belonging to each class of an input sample.

Regarding the AL and ATL implementations, this module only
varies in the number of classes learned. ATL includes an additional
class which joins all the available transitions into a single one.

2.2.2. TFilt: temporal activity filtering
The temporal activity filtering (TFilt) module exploits neighbor-

ing information from input samples to improve the system
recognition performance. It is composed of an activity buffer
P A Rs�m that is created by appending the probability vectors of
s consecutive PrSVM predictions at different times fpt�1;…;

pt� sþ1g. This buffer can be interpreted as a collection of m activity
probability signals in the time domain. This assumption provides
an advantage as we can exploit signal filtering techniques to make
activity classification more robust. We also assume that only one
activity happens at a time and that changes in contiguous activity
predictions of a single activity are smooth. The statistical evalua-
tion of the duration of transitions against static and dynamic
activities is also taken into account in the design of the filters.

We propose two sets of filters to improve the PrSVM output:
probability filtering that handles the probability signals and discrete
filtering that refines the activity output after the discretization of
probabilities into activities.

Probability filtering: Ideally, the output of the PrSVM module
p xð Þ produces a high probability in one of its elements and tends
towards zero in the rest. However, this is not always the case and

there are evident variations that occur within the available classes
(e.g. multiple classes having high probability simultaneously or
fluctuating values between consecutive samples). Moreover, by
looking at the studied activities, we can have some idea about the
behavior of the inertial signals associated with them. Static
activities are more likely to produce a stable probability output
due to their steady nature, in contrast, dynamic activities can
produce a more irregular output. Transitions’ behavior is also
dynamic but time constrained and always occurs in between other
activities. The use of heuristic filters specifically designed to work
for these three activity groups is here explored. They make
allowances for conditions regarding duration, frequency, combina-
tion with other activities and restrictions of occurrence. Two
different heuristic filters are employed:

� The Fluctuation filter remove peaks and transients of dynamic
activities. During transitions, the probability output of the SVM
can exhibit spiky behavior in dynamic activities. These events
usually take a short time, therefore the filter measures the
length of the signal activation (increase in probability) of these
signals for a number of overlapping windows and decides
whether to preserve the signal or not. The filter is also
conditioned with the simultaneous activation of static activities
because a high probability in these indicates it is unlikely that
dynamic activities are also occurring. In the ATL implementa-
tion, the transition output of the SVM is not filtered due to its
short duration but it is used for conditioning the filtering of
dynamic activities when it is active (exceeds a threshold).

� The Smoothing filter targets the probability signals of basic
activities. It helps to stabilize signal variations when their
probability values are greater than a threshold in the activity
buffer. Oscillations are smoothed using a linear interpolation.
This is aimed to work when static activity signals have high
probabilities and it is desired to make evident small differences
between them (e.g. activities with high interclass misclassifica-
tion such as standing and sitting).

Discrete filtering: The next step after the probability signals
have been filtered is to define the most likely activity for each
window sample cn. This is done by finding the MAP over the
probability vector ðp0 ¼ P0

s�1;:ð ÞÞ extracted from the filtered activity
buffer P. From this, one of the classes is selected as the predicted
activity. This value is appended to the buffer of activities z that
contains the last 3 predicted activities in order to carry out the
filtering. It removes sporadic activities that appear for a short time
and are unlikely to happen for only a window sample.

Under some circumstances, the entire probability vector con-
tains only low values. This indicates that none of the learned
activities represents a particular input. For these cases, a minimum
activity threshold is defined and used to label samples as
unknown activity. This is particularly useful during transitions in
the AL implementation as these are not learned by the PrSVM
module. In general, this approach can be exploited in real life
situations when the HAR system is used while other activities
outside the studied set occur. The filter allows to relabel unknown
activities as their neighbors when they are detected and its
contiguous activities belong to the same class.

3. Case studies

This section focuses on the datasets employed in the evaluation
of the TAHAR architecture. All of them contain inertial data from
accelerometers and gyroscopes gathered from groups of subjects
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performing a set of daily activities. These are SBHAR, PAMAP2 and
REALDISP. Table 1 collects their key features while a description of
their main characteristics is presented as follows:

3.1. SBHAR: smartphone-based HAR dataset with postural
transitions

In [21], we presented a publicly available HAR dataset for the
classification of activities using data gathered from the smart-
phone inertial sensors. The 30 participants of the experiment
were instructed to follow a protocol of six basic activities while
carrying attached to their belts a smartphone. They generated
around 5 h of experimental data. The dataset collected signals
from the device's embedded triaxial accelerometer and gyro-
scope at a constant rate of 50 Hz. This dataset has been updated
for this work to include the six postural transitions that occur
between the available static activities: stand-to-sit, sit-to-stand,
sit-to-lie, lie-to-sit, stand-to-lie, and lie-to-stand. Their labels were
defined between the end and the start of consecutive static
postures. Data are fully available in [45].

The experimental data also provided relevant information
regarding the activity groups. First of all, 8% of the recorded
experimental data time corresponds to postural transitions.
Regarding activity duration, we found that PTs have a limited
duration which is in average 3.73 s 71.2 s. This is shorter than in
BAs (17.3 s75.7). It was also observed that the duration of the
available PTs is slightly different among them. Table 2 shows the
average duration of the six PTs and their standard deviation. Some
PTs, such as stand-to-lie which has the longest average duration

(4.9 s) , are actually a sequence of other two transitions (stand-to-
sit and sit-to-lie) as it can be observed from the experiment videos.
These findings were useful for defining conditions that allow the
filtering of transitions in the prediction layer of the TAHAR
architecture.

3.2. PAMAP2: physical activity monitoring dataset

The PAMAP2 dataset was presented by Reiss and Stricker in
[37]. It collected data from four sensor units: three IMUs and one
heart-rate monitor. The inertial units were composed of two
accelerometers with different scales ð76 g and716 gÞ; one gyro-
scope and one magnetometer with a sampling rate of 100 Hz. They
were located on the chest, dominant wrist and ankle. Sensors were

Table 1
Classification of activities by duration and complexity.

Dataset Sensors NP NA Activities

Static Dynamic Transitions

SBHAR [21] 2 acc 30 12 standing walking stand-to-sit
1 gyro sitting walking-upstairs sit-to-stand

lying down walking-downstairs sit-to-lie
lie-to-sit
stand-to-lie
lie-to-stand

PAMAP2 [37] 3 IMUs: 9 12 standing walking
2 acc sitting running
1 gyro lying down cycling
1 mag ironing nordic-walking

1 heart-rate walking-upstairs
walking-downstairs
vacuum-cleaning
rope-jumping

REALDISP [38] 9 IMUs 17 33 trunk-twist-arms walking
1 acc trunk-twist-elbows jogging
1 gyro waist-bends-forward running
1 mag waist-rotation jump-up

waist-bends jump-front-back
reach-heels-backwards jump-sideways
lateral-bend jump-leg-arms-open-closed
lateral-bend-arm-up jump-rope
repetitive-forward-stretching knees-alternatively-breast
upper-and-lower-body-twist heels-alternatively-backside
arms-lateral-elevation knees-bending-crouching
arms-frontal-elevation knees-alternate-bend
frontal-hand-claps rowing
arms-frontal-crossing elliptic-bike
shoulders-high-rotation cycling
shoulders-low-rotation
arms-inner-rotation

NP, number of participants; NA: number of activities.

Table 2
Average duration 7 standard deviation of SBHAR
dataset postural transitions.

SBHAR dataset

Transition Duration (s)

stand-to-sit 3:4170:8
sit-to-stand 2:5770:5
sit-to-lie 4:1270:8
lie-to-sit 3:6970:7
stand-to-lie 4:9571:4
lie-to-stand 3:7270:8
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synchronized with a pocket computer for data logging. In their
experiment, they included a set of 12 activities which were carried
out by nine subjects. Some participants also performed later six
optional activities although we only concentrate in the initial
group of activities. Over 10 h of data were gathered from all the
dataset activities.

3.3. REALDISP: realistic sensor displacement benchmark dataset

The REALDISP dataset was developed by Banos et al. with the
idea of evaluating how sensor positioning affects activity recogni-
tion systems [38]. For example, when sensors are located either by
the experiment instructor in an ideal location, by the participant
(self-placement) or by purposely locating them in non-ideal
locations. The experiment considered a large set of 33 fitness
activities with 17 subjects wearing nine IMUs distributed in
different body parts (trunk, upper and lower extremities). Each
sensor unit measured acceleration, angular velocity, magnetic field
and orientation sampled at 50 Hz.

The ideal-location sensor data were considered for this study as
they share similarities with SBHAR. Moreover, self-placement
sensor setup data was not included because it contained some
anomalous sensors and a few subjects did not perform the entire
protocol. The whole dataset collects around 39 h of data, however
the ideal-setting recordings sum up to 15 h. Regarding activity
groups, we categorized the activities as either dynamic or static by
looking at the hip movements: whether the hip translates from its
original position or not.

4. Software implementation

In this section, we describe the smartphone application that
was implemented to test the TAHAR architecture and provide
details regarding the error estimation approach used to evaluate
the available datasets.

4.1. HARApp

We developed HARApp, a smartphone-based application for
real-time activity recognition. This application was built to test the
proposed TAHAR architecture using SBHAR data. The application
was implemented on a Samsung Galaxy SII device with the
Android Operating system (Jelly Bean 4.2.2). The user interface
was written in Java and the most resource-consuming tasks such
as signal processing, machine learning algorithm and activity
filtering were written in C. A screenshot of the app's main window
is shown in Fig. 3. It contains a graphic representation of the
current and last performed activities.

The app structure is depicted in Algorithm 1. Two separate
threads process the main functions: ProcessInertialSignals() com-
municates with inertial sensors and periodically receives their
signals for conditioning. In parallel, the OnlinePrediction() function
controls the extraction of features and prediction of activities.

ProcessInertialSignals() represents the sensors and signal proces-
sing modules of the TAHAR architecture. In the first stage, it
connects with the accelerometer and gyroscope to retrieve the
raw triaxial linear acceleration arðtÞ and angular velocity ωrðtÞ
time signals. These are read at a constant frequency of 50 Hz in
order to capture human body motion [39]. Signal conditioning
includes noise reduction, whose transfer function is represented
by H1ðÞ, with a third-order median filter and a third-order low-
pass Butterworth filter (cutoff frequency ¼ 20 Hz). This produces

the signals: triaxial acceleration atðtÞ and angular velocity ωðtÞ.
The acceleration signal is further processed as it combines effect of
the gravitational force and the acceleration due to body motion.
Assuming that the gravitational component is sensed as a low-
frequency harmonic in the signal, the body motion acceleration
aðtÞ can be separated through high-pass filtering ðH2ðÞÞ the accel-
eration atðtÞ with a cutoff frequency of 0.3 Hz. Finally, the gravity
gðtÞ can be found by subtracting aðtÞ from atðtÞ. The signal con-
ditioning process is continuously executed over the inertial signals
and its outcome is stored in a circular buffer.

OnlinePrediction() is triggered by scheduled interruptions every
1.28 s which correspond to the duration of half window sample. Its
periodicity satisfies the sliding-windows criteria: a time span of
2.56 s and 50% window overlap. Similar sampling approaches have
confirmed to be successful in other HAR works such as in
[46,47,41]. Window samples A;G; and Ω are collected from the
buffered inertial data and become the input of the feature extrac-
tion module which provides a feature vector x¼ϕðA;G;ΩÞ com-
posed of measures in the time and frequency domain. They
provide a collection of 561 informative features which has been
selected based on previous works [21,12,48,49]. They include:
Signal Magnitude Area, arithmetic mean, Standard Deviation,
autoregression coefficients, interquartile range, signal entropy,
signal-pair correlation, amongst others. They are listed in Table 3.

The estimated feature vectors become the input of the predic-
tion module PrSVM. The SVM FFP is applied using model para-
meters ðwc and bcÞ and output normalization constants
ðΓc and ΔcÞ to obtain the activity probability vector pðxÞ. These
parameters are learned offline for both TAHAR implementations
(AL and ATL). The vector is appended to the activity buffer P in the
TFilt module.

The implemented probability filters are applied over the
activity buffer ðP0 ¼Φ Pð ÞÞ based on the activity groups (static/
dynamic activity or transitions) as described in Section 2.2.2. A
class is considered active when pc4τ¼ 0:2. The length of P; s, was
selected based on the available information from the dataset
regarding to the activities and transitions duration as described
in Section 3.1. In this application s¼ 5 which is equivalent to a
prediction latency of 5.12 s. From P0, the filtered probability vector
p0 is extracted. This is discretized with MAP in order to obtain an
activity prediction cn. This value is appended to the buffer of
activities z that contains the last 3 predicted activities for discrete
filtering and the final activity estimation ðĉ ¼Ψ zð ÞÞ.

The HAR output of the system can be visualized on screen,
accessed by other applications on the smartphone through
broadcasting and stored in a log file for subsequent analysis.
Moreover, a communications interface allows access to live
prediction data from external devices through wireless connec-
tions(e.g. Wi-Fi and 3G).

Fig. 3. HARApp smartphone user interface.
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4.2. System error estimation

In order to provide a clear idea of how the recognition system
works, Fig. 2 shows an example of an activity sequence. It includes
acceleration signals along with the probability estimates obtained
from the PrSVM module. It is noticeable that the probability of each
class increases or decreases depending on the activity performed at
different times. Even though there is some noise in the forecasted
probabilities, it is possible to visualize how the algorithm behaves in
the presence of basic activities and transitions. The figure also shows
two common misclassification examples. The first error type occurs

during basic activities (BA error) and is due to similarities between
two static postures (e.g. standing and sitting) which usually present
high interclass error. The second type (PT Error) occurs during
postural transitions. This misclassification is generally characterized
by incorrectly predicting postural transitions as dynamic activities
(walking upstairs in the example). The expected correct predictions
of the AL and ATL implementations are also depicted (below the
MAP prediction). They both remove the two types of errors and
provide a solution to the classification problem.

The method for the evaluation of the online system error
requires some modifications given that postural transitions and

Algorithm 1. TAHAR architecture algorithm.
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unknown activities are taken into account. Table 4 explains
graphically our error assessment method given the different
conditions that can appear. From these conditions we have
developed an error metric to evaluate the system performance
which has the following formulation:

e αtð Þ ¼ 0 if

gt ¼ αt3
gt ¼ PT4gt�1agtþ14 αt ¼ gt�13αt ¼ gtþ1

� �� �
3

gt ¼ PT4αt ¼UA
� �

8><
>:

1 otherwise;

8>>>><
>>>>:

ð7Þ

where gt is the ground-truth label for any test sample at time
t and αt is the predicted activity.

Notice that the error function penalizes the detection of either
unknown activity or postural transition during the occurrence of
basic activities as we expect them to occur only during transitions.
It shows that any aim to reduce the error during transitions can
reduce the overall performance as it can have unfavorable effects
in the predictions of the other activities. This error metric is used
for the proposed AL and ATL implementations.

5. Results

In this section, we present the experimental results obtained in
the case studies of the TAHAR architecture: SBHAR, PAMAP2 and
REALDISP. This evaluation provides a general overview of the
architecture performance with different setups taking into account
the AL and ATL implementations.

The performance was measured in terms of system error at
different locations of the architecture pipeline. In particular, the
outputs of the PrSVM, TFilt probabilistic and TFilt discrete modules.
This approach allowed to see how the modules were progressively
affecting the classification performance. For error estimation, we
used a leave-one-subject-out approach on which every subject
was selected as a test case and the remaining subjects were used
for model training. The error was then obtained by averaging over
subject errors.

5.1. SBHAR evaluation

The HAR system presented in [21] was used as a reference
point for the evaluation. Its classification approach was also SVM-
based but it did not include filtering. The basic activities studied
were the same as SBHAR but postural transitions were not
included. The output of this approach is equivalent to the output
of the PrSVM module output on the AL implementation. The error
achieved by the reference system was 3.59%.

Table 5 shows the error measurements of the TAHAR architec-
ture on the SBHAR dataset for the two implementations (AL and
ATL). It also separates the error according to the activity groups,
whether it is a basic activity or a postural transition. The overall
error is a weighted estimation that considers the contributions of
the dataset activities (e.g. PTs are the 8% of the data).

We obtained a system error of 7.41% on the PrSVM output for
the AL implementation. This shows an increase of the error by
3.82% percentage points against the reference HAR system. This
occurred mainly due to the misclassifications that occurred during
postural transitions (39.93%). This shows one of the disadvantages
of not dealing with transitory events in a real-time classification
system, for instance by filtering or learning them. The error on BAs
instead remains much lower (4.52%). We can also observe that
TFilt improves the classification of PTs by greatly reducing the
error down to 7.82%. The final error of the AL implementation is
3.64% which outperforms by a small amount the one achieved in
[21] that did not even considered PTs.

On the other hand, the ATL implementation presents a different
behavior. Since postural transitions are learned in the PrSVMmodule,
its recognition error is much lower than in the AL implementation.
Even before filtering the error is quite low (0.98%). This is a noticeable
advantage against the previous implementation. The TFilt is still
contributing to reduce the final error on PTs and BAs but in smaller
proportion than in AL. The final error achieved in ATL is 3.22% which
outperforms AL by 0.42%. Table 6 shows the performance of the two
proposed implementations by means of confusion matrices on the
leave-one-subject-out test data.

In terms of computational speed of the smartphone application
HARApp, the duration of a complete prediction cycle takes in
average about 152 ms for the AL method and 162 ms for the ATL

Table 3
List of measures for computing feature vectors.

Function Description Formulation

mean ðsÞ Arithmetic mean s ¼ 1
N

PN
i ¼ 1 si

std ðsÞ Standard deviation
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
i ¼ 1 si�sð Þ2

q
mad ðsÞ Median absolute deviation mediani si�medianjðsjÞ

�� ��� �
max sð Þ Largest values in array maxi sið Þ
min sð Þ Smallest value in array mini sið Þ
skewness sð Þ Frequency signal skewness

E s� s
σ

� �3
� 	

kurtosis sð Þ Frequency signal kurtosis
E s�sð Þ4
h i

=E s�sð Þ2
h i2

maxFreqInd sð Þ Largest frequency component arg maxi sið Þ
energy sð Þ Average sum of the squares 1

N

PN
i ¼ 1 s

2
i

sma s1; s2; s3ð Þ Signal magnitude area 1
3

P3
i ¼ 1

PN
j ¼ 1 si;j

�� ��
entropy sð Þ Signal Entropy PN

i ¼ 1 cilog cið Þð Þ; ci ¼ si=
PN

j ¼ 1 sj
iqr sð Þ Interquartile range Q3 sð Þ�Q1 sð Þ
autoregression sð Þ 4th order Burg autoregression coefficients a¼ arburg s;4ð Þ;aAR4

correlation s1 ; s2ð Þ Pearson correlation coefficient C1;2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1;1C2;2

p
;C ¼ cov s1 ; s2ð Þ

meanFreq sð Þ Frequency signal weighted average PN
i ¼ 1 isið Þ=PN

j ¼ 1 sj
energyBand s; a; bð Þ Spectral energy of a frequency band a; b


 �
1

a�bþ1

Pb
i ¼ a s

2
i

angle s1 ; s2 ; s3 ; vð Þ Angle between signal mean and vector tan �1 ‖ s1 ; s2 ; s3½ � � v‖; s1 ; s2; s3½ � � vð Þ

N, signal vector length; Q, quartile.
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using a SGSII smartphone. These times are similar as they share
the same feature extraction process which is nearly 92% of the
processing time. The remaining time is dedicated to the prediction
layer (PrSVM and TFilt), which only varies in proportion to the
number of predicted classes per implementation. The app con-
sumes around 6 MB of memory and 4.2% of the CPU available time.

5.2. PAMAP2 evaluation

In [37], PAMAP2 was introduced and also used for benchmark-
ing four classification problems. The all activity recognition task

was the most complex because it included the study of the 12
activities. In particular, the subject independent study (leave-one-
subject-out 9-fold cross validation). They explored five machine
learning algorithms and found a maximum recognition error of
10.76% with a k-nearest neighbors (kNN) classifier. That study is
the reference point for the evaluation of the PAMAP2 dataset in
the TAHAR architecture.

For the purposes of this research we only took into account
from each IMU one of the accelerometers ð76 gÞ and the gyro-
scope. Other sensors were disregarded as this simplified the
comparison between datasets. Moreover, as the number of sensors
is larger than in SBHAR, the feature mapping process was updated
by increasing the feature vector length by the number of inertial
units u. For each accelerometer–gyroscope pair, the same features
were extracted. In contrast with SBHAR, wearable sensors were
used for data gathering instead of a single smartphone. However,
this data was straightforwardly adapted to the proposed architec-
ture. The evaluation of this dataset was performed on a PC
(3.4 GHz CPU Intel i5 CPU with 8 GB of RAM) using code imple-
mented in Matlab.

The sampling rate of the PAMAP2 dataset was 100 Hz. We
subsampled the sensor signals in order to match the frequency of
the other two datasets (50 Hz), still sufficient for sensing body
motion. Moreover, the length of the window samples was 5.12 s
with an overlap between windows of one second. We maintained
these values for an objective comparison against the reference point.

The PAMAP2 dataset did not include transition data so only the
AL implementation of the architecture was tested. Table 7 shows
the obtained classification results. It includes an initial error of
6.96% achieved at the PrSVM output and then this is improved by
the filtering modules until reaching 5.67%. This value is nearly 50%
lower than the one obtained in [37]. Moreover, Table 8 contains
the confusion matrix of the 12 studied activities which allows to
easily identify misclassifications, in particular between similar
activities (e.g. ironing and standing, or walking and vacuum
cleaning).

5.3. REALDISP evaluation

The REALDISP data used here for evaluation only comprise the
experiments performed in the ideal location setting. Other settings
that involve sensor displacement are out of the scope of this work.
In [38], Bano et al. performed a classification exercise of the
PAMAP2 dataset using three machine learning algorithms. kNN
also showed the best classification performance (96%) against
decision tree and nearest class center classifiers. For feature

Table 6
SBHAR dataset confusion matrices. Top: AL implementation, Bottom: ATL implementation.

A1 A2 A3 A4 A5 A6 A7 A8

A1 1833 65 0 2 3 0 0 6
A2 11 1762 32 7 3 0 0 1
A3 0 0 1677 0 3 0 0 2
A4 0 3 0 1897 73 4 0 1
A5 0 6 0 124 2030 0 0 1
A6 0 0 0 1 0 2150 0 0
A7 0 37 0 46 2 0 954 0

A1 A2 A3 A4 A5 A6 A7 A8
A1 1834 64 5 3 2 0 1 0
A2 10 1743 51 5 5 0 16 0
A3 0 2 1671 1 7 0 1 0
A4 0 0 0 1875 94 6 3 0
A5 0 2 0 109 2049 0 1 0
A6 0 0 0 1 0 2148 2 0
A7 0 1 2 0 0 0 1036 0

A1, walking; A2, walking-upstairs; A3, walking-downstairs; A4, sitting; A5, standing;
A6, lying-down; A7, postural transition; A8, unknown activity.

Table 5
SHBAR system error based on filtering stage and type of activity.

SBHAR

Output Error

BAs PTs Overall

AL implementation
PrSVM 4:52%74:8 39:93%78:3 7:41%74:8
TFilt probability 3:41%74:5 17:26%76:5 4:54%74:4
TFilt discrete 3:26%74:4 7:82%78:6 3:64%74:4
ATL implementation
PrSVM 4:49%74:5 0:98%72:0 4:20%74:2
TFilt probability 3:56%74:6 0:40%70:9 3:30%74:2
TFilt discrete 3:50%74:7 0:24%70:7 3:22%74:3

Table 4
Classification error assessment conditions for BAs and PTs.

Ground-truth Prediction Error evaluation

Basic activities
A1 – A1 – A1 A1 – A1 – A1 Correct
A1 – A1 – A1 A1 – A2 – A1 Incorrect
A1 – A1 – A1 A1 – UA – A1 Incorrect
A1 – A1 – A1 A1 – PT – A1 Incorrecta

Transitions
A1 – PT – A2 A1 – A1 3 A2 – A2 Correct
A1 – PT – A2 A1 – A3 – A2 Incorrect
A1 – PT – A2 A1 – UA – A2 Correct
A1 – PT – A2 A1 – PT – A2 Correcta

A, activity; U, unknown.
a Only applicable to the ATL implementation.
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mapping, they only used basic statistical measures (e.g. mean and
standard deviation) of their four available inertial signals from the
nine IMUs. This suggests that better results could have been
achieved with the introduction of novel features.

Similarly to the previous dataset PAMAP2, we employed the
same approach regarding the use of multiple IMU sensors and
feature mapping. This dataset allowed to evaluate the proposed
TAHAR architecture in a more complex setup due to its large
number of activities and sensors. The window sampling performed
in [38] did not considered window overlapping, however, this is
required in the architecture as we assume connected consecutive
windows in the filtering module. Instead, we use a 50% window
overlap for the evaluation.

TAHAR classifies the 33 fitness activities contained in the
dataset and, since no postural transitions are included on this
dataset, only the AL implementation is tested. This includes 17
static activities and 15 dynamic ones as seen in Table 1.

Results of the classification are depicted in Table 9. They are an
improvement of the REALDISP dataset classification with respect
to the reference experiment in [38] (from 96% to 99.52%). More-
over, even though the error is close to zero, it is possible to see a
small improvement of the PrSVM output with the use of the
temporal filter module (TFilt) . Table 10 contains the confusion
matrix of the test data. Most of the instances lie on the diagonal
except for a few cases (e.g. misclassifications between activities 14
and 28: reach-heels-backwards and knees-bending-crouching).

6. Conclusions

In this work, we presented the TAHAR architecture for the
recognition of physical activities. It combines inertial sensors for
body motion capture, a machine learning algorithm for activity
prediction and a filter of consecutive predictions for output

refinement. We demonstrated its successful use on three human
activity datasets with diverse groups of activities, number of
sensors and number of participants; and showed that its recogni-
tion performance outperforms previous related works.

Results also showed the improvements that can be made to the
system when fluctuations in the prediction of activities and
transitions are taken into consideration. Specifically, this was done
in the activity filtering module TFilt that improves (up to 3.77
percentage points) the output of the machine learning algorithm
(PrSVM) by considering the correlation between contiguous
events, the non-simultaneous occurrence of activities and the
studied activity groups. Moreover, the incorporation of the
unknown activity class allowed the system to better deal with
activities not learned by the algorithm. For example, by handling
PTs as unknown events in the AL implementation of the SBHAR
dataset. This concept is also valid in real-life situations (such as
activity monitoring) where there are high chances to perform
activities that are not known in advance. It is preferable a system
that notifies that an activity is unknown rather than classifying it
as one of the learned activities.

Both implementations of the architecture are suitable options
for HAR. However, here we provide some considerations in order
to guide their selection based on their target application:

� The ATL implementation is required when the detection of
transitions is required. The AL implementation instead avoids
learning these events but still prevents problems that could
arise in the presence of transitions during classification.

� AL is easier to implement because learning does not include
transitions. In applications with a large number of activities, the
recording and labeling of transitions between basic activities
becomes more complex as the number of possible transitions is
given by υðυ�1Þ, where υ is the number of studied basic
activities.

Table 8
PAMAP2 dataset confusion matrix. AL implementation.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

A1 1749 5 11 0 0 0 0 4 0 24 18 0
A2 16 1612 52 2 0 18 0 4 5 17 15 1
A3 14 114 1505 2 8 0 1 15 16 13 97 0
A4 0 0 4 2214 1 1 7 8 12 0 7 1
A5 1 3 10 2 748 5 0 3 17 120 6 0
A6 1 3 1 0 0 1504 0 11 0 15 12 0
A7 0 6 1 16 2 0 1737 1 1 1 9 1
A8 0 4 8 2 0 1 0 1014 7 1 10 0
A9 2 17 11 2 7 2 0 15 850 7 12 2
A10 0 4 11 4 0 0 0 1 2 1586 42 0
A11 0 0 56 2 7 1 0 1 5 23 2156 6
A12 1 22 0 3 0 0 2 2 29 1 8 379

A1, lying; A2, sitting; A3, standing; A4, walking; A5, running; A6, cycling; A7, nordic-walking; A8, ascending-stairs; A9, descending-stairs; A10, vacuum-cleaning;
A11, ironing; A12, rope-jumping.

Table 7
PAMAP2 system error based on filtering stage and type of activity.

PAMAP2 – AL implementation

Output Error

PrSVM 6:96% 72:5
TFilt probability 6:24% 72:7
TFilt discrete 5:67% 72:7
Reference system [37] 10.76 %

Table 9
REALDISP system error based on filtering stage and type of activity.

REALDISP – AL implementation

Output Error

PrSVM 0:63% 70:9
TFilt probability 0:53% 70:9
TFilt discrete 0:48% 70:9
Reference system [38] 4:00%
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Table 10
REALDISP dataset confusion matrix. AL implementation.

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

A1 837 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A2 3 675 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A3 0 1 635 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A4 0 2 0 100 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A5 0 3 0 0 198 1 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 3 0 211 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 229 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 4 0 0 0 107 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A9 0 0 0 0 0 0 0 0 439 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A10 0 0 0 0 0 0 0 0 0 363 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A11 0 0 0 0 0 0 0 0 0 0 369 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A12 0 0 0 0 0 0 0 0 0 0 0 303 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A13 0 0 0 0 0 0 0 0 0 0 0 0 340 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A14 0 0 0 0 0 0 0 0 0 0 0 0 0 264 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 0 0 0 0
A15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 221 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 216 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 148 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 177 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0
A20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 247 0 0 0 0 0 0 0 0 0 0 0 0 0
A21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 226 0 0 0 0 0 0 0 0 0 0 0 0
A22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 261 0 0 0 0 0 0 0 0 0 0 0
A23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 210 4 0 0 0 0 0 0 0 0 0
A24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 132 0 0 0 0 0 0 0 0 0
A25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 0 0 0 0 0 0 0 0
A26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 3 0 0 0 0 0 0
A27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 78 0 0 0 0 0 0
A28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 318 0 0 0 0 0
A29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 390 0 0 0 0
A30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0
A31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 414 0 0
A32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 613 0
A33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 627

A1, walking; A2, jogging; A3, running; A4, jump-up; A5, jump-front-back; A6, jump-sideways; A7, jump-leg-arms-open-closed; A8, jump-rope; A9, trunk-twist-arms; A10, trunk-twist-elbows; A11, waist-bends-forward; A12, waist-
rotation; A13, waist-bends; A14, reach-heels-backwards; A15, lateral-bend; A16, lateral-bend-arm-up; A17, repetitive-forward-stretching; A18, upper-trunk-and-lower-body-opposite-twist; A19, arms-lateral-elevation; A20, arms-
frontal-elevation; A21, frontal-hand-claps; A22, arms-frontal-crossing; A23, shoulders-high-amplitude-rotation; A24, shoulders-low-amplitude-rotation; A25, arms-inner-rotation; A26, knees-alternatively-breast; A27, heels-
alternatively-backside; A28, knees-bending-crouching; A29, knees-alternatively-bend-forward; A30, rotation-on-the-knees; A31, rowing; A32, elliptic-bike; A33, cycling.
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� The selection of the implementation can be also guided by
recurrence of transitions with respect other activities. If they do
not occur too often or if the time between transitions is rather
large, learning transitions is then not fully required and the AL
implementation is sufficient.

� When information regarding transitions is not available (e.g. if their
labels are not included in the dataset), the AL implementation is
the only approach that can be employed for developing a HAR
system.

From this research, some ideas arise as future work. They
include the exploration of novel approaches to make more robust
HAR after activity prediction on the PrSVM module. For example,
by applying probabilistic models such as Markov chains [50]
composed of connected nodes, each one representing an activity,
and using activity probability estimates as observations. Further-
more, the study of the repeated detection of unknown activities as
an indication that the system is not working correctly. For
instance, if the sensor is not well located or if the activities
performed by a new user seem not to be properly recognized.
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