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Various approaches to extend bagging ensembles for class imbalanced data are considered. First, we
review known extensions and compare them in a comprehensive experimental study. The results show
that integrating bagging with under-sampling is more powerful than over-sampling. They also allow to
distinguish Roughly Balanced Bagging as the most accurate extension. Then, we point out that complex
and difficult distribution of the minority class can be handled by analyzing the content of a
neighbourhood of examples. In our study we show that taking into account such local characteristics
of the minority class distribution can be useful both for analyzing performance of ensembles with
respect to data difficulty factors and for proposing new generalizations of bagging. We demonstrate it by
proposing Neighbourhood Balanced Bagging, where sampling probabilities of examples are modified
according to the class distribution in their neighbourhood. Two of its versions are considered: the first
one keeping a larger size of bootstrap samples by hybrid over-sampling and the other reducing this size
with stronger under-sampling. Experiments prove that the first version is significantly better than
existing over-sampling bagging extensions while the other version is competitive to Roughly Balanced
Bagging. Finally, we demonstrate that detecting types of minority examples depending on their
neighbourhood may help explain why some ensembles work better for imbalanced data than others.
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1. Introduction

An analysis of challenging real-world classification problems
still reveals difficulties in finding accurate classifiers. One of the
sources of these difficulties is class imbalance in data, where at
least one of the target classes contains a much smaller number of
examples than the other classes. For instance, in medical problems
the number of patients requiring special attention (e.g., therapy or
treatment) is usually much smaller than the number of patients
who do not need it. Similar situations occur in other problems,
such as fraud detection, risk management, technical diagnostics,
image recognition, text categorization or information filtering. In
all those problems, the correct recognition of the minority class is
of key importance. Nevertheless, class imbalance constitutes a
great difficulty for most learning algorithms. Often the resulting
classifiers are biased toward the majority classes and fail to
recognize examples from the minority class. As it turns out, even
ensemble methods, where multiple classifiers are trained to deal
with complex classification tasks are not particularly well suited to
this problem.
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Although the difficulty with learning classifiers from imbal-
anced data has been known earlier from applications, this challen-
ging problem has received a growing research interest in the last
decade and a number of specialized methods have already been
proposed, for their review see, e.g., [11,17,18,40]. In general, they
may be categorized into data level and algorithm level ones.
Methods within the first category try to re-balance the class
distribution inside the training data by either adding examples to
the minority class (over-sampling) or removing examples from the
majority class (under-sampling). They also include informed pre-
processing methods as, e.g., SMOTE [10] or SPIDER [37].

The other category of algorithm level methods involves specific
solutions dedicated to improving a given classifier. They usually
include modifications of the learning algorithm, its classification
strategy or adaptation to the cost sensitive framework. Within the
algorithm level approaches, ensembles are also quite often applied.
However, as the standard techniques for constructing ensembles
are rather too overall accuracy oriented they do not sufficiently
recognize the minority class and new extensions of standard
techniques have been introduced. These new proposed solutions
usually either employ pre-processing methods before learning
component classifiers or embed the cost-sensitive framework in
the ensemble learning process; see their review in [13,29]. Most of
these ensembles are based on known strategies from bagging,
boosting or random forests.
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Although the ensemble classifiers are recognized as a remedy to
imbalanced problems, there is still a lack of a wider study of their
properties. Authors often compare their proposals against the basic
versions of other methods or compare over a too limited collection
of data sets. Up to now, only two quite comprehensive studies were
carried out in different experimental frameworks [13,24]. The first
study [13] covers comparison of 20 different ensembles from
simple modifications of bagging or boosting to complex cost or
hybrid approaches. The main conclusion from this study is that
simple versions of under-sampling or SMOTE re-sampling com-
bined with bagging works better than more complex solutions. In
the second study [24], two best boosting and bagging ensembles
are compared over noisy and imbalanced data. The experimental
results show that bagging significantly outperforms boosting. The
difference is more significant when data are more noisy. The
similar observations on good performance of under-sampling
generalizations of bagging vs. cost like generalization of boosting
have been recently reported in [2]. Furthermore, the most recent
chapter of [29] includes a limited experimental study showing that
new ensembles specialized for class imbalance should work better
than an approach consisting of first pre-processing data and then
using standard ensembles.

Following these related works which show good performance of
bagging extensions for class imbalance vs. other boosting like or
cost sensitive proposals, we have decided to focus our interest in
this paper on studying more deeply bagging ensembles and to look
for possible other directions of their generalizations. First, we want
to study behaviour of bagging extensions more thoroughly than it
was done in [13,24]. In particular, Roughly Balanced Bagging [19]
was missed in [13], although it is appreciated in the literature. On
the other hand, the study presented in [24] was too much oriented
on the noise level and only two versions of random under-
sampling in bagging were considered. Therefore, we will consider
a larger family of known extensions of bagging. Our comparison
will include Exactly Balanced Bagging, Roughly Balanced Bagging,
and more variants of using over-sampling in bagging, in particular,
a new type of integrating SMOTE.

While analyzing existing extensions of bagging one can also
notice that most of them employ the simplest random re-sampling
technique and, what is even more important, they modify boot-
straps to simply balance the cardinalities of minority and majority
classes. So, they represent a kind of a global point of view on
handling the imbalance ratio between classes.

Recent studies on class imbalances have shown that this global
ratio between imbalanced classes is not a problem itself. For some
data sets with high imbalance ratio, the minority class can still be
sufficiently recognized even by standard classifiers. The degradation
of classification performance is often linked to other difficulty factors
related to data distribution, such as decomposition of the minority
class into many rare sub-concepts [23], the effect of too strong
overlapping between the classes [36,16] or the presence of too many
minority examples inside the majority class regions [32]. When
these factors occur together with class imbalance, they seriously
hinder the recognition of the minority class. In earlier research of
Napierala and Stefanowski on single classifiers [33] it has been
shown that these data difficulty factors could be at least partly
approximated by analyzing the local characteristics of learning
examples from the minority class. Depending on the distribution
of examples from the majority class in the local neighbourhood of
the given minority example, we can evaluate whether this example
could be safe or unsafe (difficult) to be learned. This local view on
distributions of imbalanced classes leads us to main aims of
this paper.

The main aim of our paper is to study usefulness of incorporating
the information about the results of analyzing the local neighbour-
hood of minority examples into two directions: proposing new

generalizations of bagging for class imbalance and extending ana-
lysis of classifier performance over different imbalanced data sets.

Following the first direction our aim is to propose extensions of
bagging specialized for imbalanced data, which are based on a
different principle than the existing ones. Our new approach is to
resign from simple integration of pre-processing with unchanged
bootstrap sampling technique. Unlike standard bootstrap sampling,
we want to change probability of drawing different types of
examples. We would like to focus the sampling toward the
minority class and even more to the examples located in the most
difficult sub-regions of the minority class. The probability of each
minority example to be drawn will depend on the class distribution
in the neighbourhood of the example [33]. We plan to consider this
modification of sampling in two versions of generalizing bagging:
(1) over-sampling one, which replicates the minority examples and
filters some majority examples to keep the size of a bootstrap
sample larger, similar to the size of the original data set; (2) under-
sampling one, which is following the idea of explored in Rough
Balanced Bagging, and Exactly Balanced Bagging. The under-
sampling modification constructs a smaller bootstrap with the size
equal to the double the size of the minority class. We plan to
evaluate usefulness of both versions in comparative experiments.

The next aim is to better explain differences in performance of
various generalizations of bagging ensemble. Current, related
studies on this subject are based on a global view on selected
evaluations measures over many imbalanced data sets. We
hypothesize that it could be beneficial to differentiate between
groups of data sets with respect to their underlying data difficulty
factors and to study differences in performance of classifiers within
these groups. We will show that it could be done by analyzing
contents of the neighbourhood of the examples as it leads to an
identification of dominating types of difficulty for minority exam-
ples. Furthermore, we plan to study more thoroughly contents of
bootstrap samples generated by the best performing extensions of
bagging. This examination will also be based on analyzing neigh-
bourhood of the minority examples. We will identify differences
between bootstrap samples and the original data, and we will try
to find a new view on learning of these generalized ensembles.

To sum up, the main contributions of our study are the
following. The first one is to study more closely the best known
extensions of bagging over a representative collection of imbal-
anced data sets. Then, we will present a method for analyzing
contents of the neighbourhood of the examples and to discuss its
consequences. The next methodological contribution is to intro-
duce a new extension of bagging for imbalanced data based on this
analysis of a neighbourhood of each example, which affects the
probability of its selection into a bootstrap sample. The new
proposal will be compared against the best identified extensions.
Finally, we will use the same type of the local analysis to explain
differences in performance of bagging classifier and to answer a
question why contents of bootstrap samples in particular extension
of bagging may lead to its good performance.

2. Related works on ensembles for imbalanced data

Several studies have already investigated the problem of class
imbalance. The reader is referred to the recent book [18] for a
comprehensive overview of several methods and the current state
of the art in the literature. Below we very briefly summarize these
methods only, which are most relevant to our paper.

First, we describe data pre-processing methods as they are often
integrated with many ensembles. The simplest data pre-processing re-
sampling techniques are random over-sampling, which replicates
examples from the minority class, and random under-sampling, which
randomly eliminates examples from the majority classes until a
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required degree of balance between classes is reached. However,
random under-sampling may potentially remove some important
examples and simple over-sampling may also lead to overfitting. Thus,
focused (also called informed) methods, which attempt to take into
account internal characteristics of regions around minority class
examples, were introduced. Popular representatives of such methods
are OSS [25], NCR [27] for filtering difficult examples from the majority
class, as well as SMOTE [10] for introducing additional minority
examples. SMOTE considers each example from the minority class
and generates new synthetic examples along the lines between the
selected example and some of its randomly selected k-nearest neigh-
bours from the minority class. The number of generated examples
depends on the main parameter of this method - an over-sampling
ratio a. Although its usefulness is experimentally confirmed [4], and
SMOTE is the most popular informed pre-processing method, some of
the assumptions behind this technique are questioned and authors still
work on its extensions, see, e.g., [31]. There also exist hybrid informed
methods which integrate over-sampling of selected minority class
examples with removing the most harmful majority class examples,
e.g., SPIDER [37].

The proposed extensions of ensembles for imbalanced data may
be categorized differently. The taxonomy proposed by Galar et al. in
[13] distinguishes between cost-sensitive approaches vs. integrations
with data pre-processing. The first group covers mainly cost-
minimizing techniques combined with boosting ensembles, e.g., like
AdaCost, AdaC or RareBoost. The second group of approaches is
divided into three sub-categories: Boosting-based, Bagging-based or
Hybrid depending on the type of classical ensemble technique which
is integrated into the schema for learning component classifiers and
their aggregation. Liu et al. categorize the ensembles for class
imbalance into bagging-like, boosting-based methods or hybrid
ensembles depending on their relation to standard approaches [29].

As the most of related works [2,7,13,24,29]| indicate good perfor-
mance of bagging extensions versus the other ensembles, below we
focus on the bagging based ensembles and they are further considered
in our study.

Recall that original Breiman's bagging [8] is an ensemble of T base
(component) classifiers induced by the same learning algorithm from
T bootstrap samples drawn from the original training set. The predic-
tions of component classifiers form the final decision as the result of
equal weight majority voting. The key concept is a bootstrap aggrega-
tion, where the training set for each classifier is constructed by
random uniform sampling (with replacement) instances from the
original training set (usually keeping the size of the original set).

As the bootstrap sampling will not change drastically the class
distribution in the final training sample, it will be still biased toward
the majority class. Most of proposals overcome this drawback by
applying pre-processing techniques, which change the balance
between classes in each bootstrap samples - usually leading to the
same, or similar, cardinalities of the minority and majority classes.

In Underbagging approaches the number of the majority class
examples in each bootstrap sample is randomly reduced to the
cardinality of the minority class (Nm;,). In the simplest proposal,
called Exactly Balanced Bagging (EBBag), while constructing train-
ing bootstrap sample, the entire minority class is copied and
combined with randomly chosen subsets of the majority class to
exactly balance cardinalities between classes.

Another proposal Roughly Balanced Bagging (RBBag) results from
the critique of the EBBag and other its variants, which use exactly
the same numbers of majority and minority examples in each
bootstrap [19]. Instead of fixing the constant sample size, it equalizes
the sampling probability of each class. For each of T iterations the
size of the majority class in the bootstrap (Syq;) is set according to
the negative binomial distribution. Then, Ny,;, examples are drawn
from the minority class and S,,,; examples are drawn from the entire
majority class using bootstrap sampling as in the standard bagging

(with or without replacement). The class distribution of the boot-
strap samples may be slightly imbalanced and varies over iterations.
According to [19], this approach is more consistent with the nature
of the original bagging, better uses information about the minority
examples and performs better than EBBag.

There are also other variants of underbagging (see Section 3 in [13]
or Section 4 in [29]), but we focus on the above ones as they have
performed better in related works. Another way to overcome class
imbalance in a bootstrap sample consists in performing over-sampling
the minority class before training a component classifier. In this way;,
the number of minority examples is increased in each sample (e.g., by a
random replication), while the majority class is not reduced as in
underbagging. Note that in overbagging more examples will take part
in at least one bootstrap sample but, due to their replication, the size of
bootstrap samples will be larger than in the standard bagging. This idea
was realized in many ways as authors considered integration with
different over-sampling techniques. Some of these ways are also
focused on increasing diversity of bootstrap samples. We present two
approaches further used in experiments.

OverBagging is the simplest version which applies a simplest
random over-sampling to transform each training bootstrap sam-
ple. Smq;j of minority class examples is sampled with replacement to
exactly balance the cardinality of the minority and the majority
class in each sample. Majority examples are sampled with replace-
ment as in the original bagging.

Another approach is used in SMOTEBagging to increase diversity
of component classifiers [39]. First, SMOTE is used instead of the
random over-sampling of the minority class. Then, SMOTE resam-
pling rate (&) is stepwise changed in each iteration from smaller to
higher values (e.g., from 10% to 100%). The ratio defines the number
of minority examples (a x Ny,;;) to be additionally re-sampled in
each iteration. Quite similar way of varying ratio a to construct
bootstrap samples is also used in “from underbagging to over-
bagging” ensemble also mentioned in [39]. According to [13],
SMOTEBagging gives slightly better results than other good ran-
dom re-sampling ensembles. However, our preliminary experi-
ments in [7] have already shown that it is not as accurate and
works similar to basic OverBagging. Now we want to check it more
precisely in experiment presented in Section 3.

Finally, there exist two other variations of underbagging. The
method proposed by Chan and Stolfo partitions the majority class into
a set of non-overlapping subsets, with each subset having approxi-
mately N,;;; examples [9]. Then, each of these majority subsets and all
examples from the minority class form a bag for building component
classifiers. The predictions of these classifiers were originally com-
bined by stacking although Liu et al. argued for switching to the
majority voting [29]. The other option is to construct Balanced
Random Forests as a extension of classical Random Forests [12]. This
algorithm first draws with replacement a bootstrap sample contain-
ing N, from the minority class and the same number of the majority
class examples. Then, the random tree procedure originating from
CART with random feature subset selection is used at each tree split
(it is the same solution as in the original Random Forest). Liu et al. in
their experiments have noticed that it works not as good as Chan and
Stolfo's method or Balance Cascade [29].

3. Comparison of known bagging extension

In the first experiments we compare known best extensions of
bagging. All their implementations are done' in Java for WEKA
framework. The following bagging variants are considered: Exactly

! We are grateful to our Master students Lukasz Idkowiak and Marcin Szajek for
their help in implementing these algorithms.
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Balanced Bagging (denoted further as EBBag), Roughly Balanced
Bagging (RBBag) as the best representatives of under-sampling
extensions, OverBagging (abbreviated as OvBag) and SMOTEBag-
ging (abbreviated as SmBag) for over-sampling perspectives. In
case of using SMOTE with Bagging, following literature recom-
mendations we choose 5 neighbours and oversampling ratio & was
stepwise changed in each sample starting from 10%. Moreover, we
decide to use SMOTE in yet another way. In the new ensemble,
called BaggingSMOTE (abbreviated BagSm), the bootstrap samples
are drawn in a standard way, and than SMOTE is applied to balance
majority and minority class distribution in each bootstrap sample
(but with the same « ratio). We also include standard bagging
(abbreviated as Bag) as a baseline for the comparison.

Component classifiers in all ensembles are learned with C4.5
tree learning algorithm (J4.8), which uses standard parameters
except disabling pruning (following experiences from earlier
experiments as [37]). For all bagging variants, we test the following
numbers T of component classifiers: 20, 50 and 100. The results for
T=50 are slightly better than for T=20, while increasing T leads to
similar general conclusions but introduces additional computa-
tional costs. Thus is why we present detailed results for T=50 only,
due to space limit.

We choose 23 real-world data sets representing different
domains, sizes and imbalance ratios and because they have been
used in most related experimental studies [4,20,24,30]. Most of
them come from the UCI repository [3]. Three data sets abdom-
inal, hsv and scrotal-pain come from our medical
applications. For data sets with more than two classes, we chose
the smallest one as a minority class and combined other classes
into one majority class. The characteristics of data sets are
presented in Table 1, where IR is the imbalance ratio defined as
Nmaj/Nmin. The data sets were ordered from the safest one, at the
top of Table 1, to the most unsafe at the bottom. This ordering
results from the analysis of data set types presented in Section 6.2.

The performance of bagging ensembles is measured using
sensitivity of the minority class (the minority class accuracy), its
specificity (an accuracy of recognizing majority classes), their
aggregation to the geometric mean (G-mean) and F-measure (refer-
ring to the minority class, and used with equal weights 1 assigned
to precision and recall). For their definitions see, e.g., [18,17,22].
These measures are estimated with the stratified 10-fold cross-
validation repeated ten times to reduce the variance. The average
values of G-mean and sensitivity are presented in Tables 2 and 3,
respectively. The differences between classifier average results will
be also analysed using Friedman and Wilcoxon statistical tests. For
their description see, e.g., [22]. In all these tables the last row
contains average ranks calculated as in the Friedman test - the
lower the average rank, the better the classifier.

Let us analyse first values of G-mean presented in Table 2. In the
Friedman test we reject the null hypothesis (p-value in this case is
smaller than 0.00001). Carrying out the Nemenyi post hoc analysis
(critical difference CD=1.61) shows that all extensions, except
SmBag, are significantly better than the standard version. Then
both under-sampling extensions EBBag and RBBag are significantly
better than all over-sampling variants. According to average ranks
RBBag seems to be slightly better than EBBag and this trend is even
more visible for a higher number of component classifiers, and
using bootstrap sampling with replacement. However, according to
the paired Wilcoxon test the null hypothesis on no significant
difference between results of both ensembles cannot be rejected
(p-value=0.24). While using SMOTE to over-sample the minority
class, the new integration BagSm performs better than the pre-
viously known SmBag and OvBag (this is reflected by average
ranks). However according to the Wilcoxon test BagSm is not so
strongly outperforming OvBag (p-value=0.53) but it is significantly
better than SmBag (p-value=0.009).

Table 1
Data characteristics.

Data set # examples  # attributes  Minority class IR
breast-w 699 9 Malignant 1.90
abdominal-pain 723 13 Positive 2.58
acl 140 6 1 25
new-thyroid 215 5 2 5.14
vehicle 846 18 Van 3.25
car 1728 6 Good 24.04
scrotal-pain 201 13 Positive 241
ionosphere 351 34 b 1.79
pima 768 8 1 1.87
credit-g 1000 20 Bad 233
ecoli 336 7 imU 8.60
hepatitis 155 19 1 3.84
haberman 306 4 2 2.78
breast-cancer 286 9 Recurrence-events 2.36
cmc 1473 9 2 3.42
cleveland 303 13 3 7.66
hsv 122 11 4.0 7.71
abalone 4177 8 0-4 16-29 11.47
postoperative 90 8 S 2.75
solar-flareF 1066 12 F 23.79
transfusion 748 4 1 3.20
yeast 1484 8 ME2 28.10
balance-scale 625 4 B 11.76
Table 2
G-mean (%) for known bagging extensions.

Data set Bag EBBag RBBag OvBag SmBag BagSm
breast-w 95.88 96.03 96.37 96.23 95.88 96.77
abdominal-pain 78.95 80.65 80.35 79.44 80.85 79.86
acl 88.18 90.71 89.35 88.35 88.64 87.81
new-thyroid 92.41 96.91 96.58 95.36 95.18 92.89
vehicle 93.91 94.58 95.44 94.61 94.34 94.20
car 84.53 96.73 96.58 95.29 95.26 95.18
scrotal-pain 70.75 73.18 75.65 72.01 70.42 70.68
ionosphere 88.96 90.44 90.67 90.47 90.30 90.26
pima 71.54 74.22 75.64 73.54 72.33 71.38
credit-g 63.98 65.82 67.82 71.75 80.68 66.11
ecoli 68.67 72.24 88.85 51.42 58.38 80.11
hepatitis 62.81 78.93 78.66 72.16 68.47 74.29
haberman 43.11 65.41 63.43 58.11 60.02 62.82
breast-cancer 54.30 58.82 59.37 56.17 52.57 57.25
cmc 52.76 64.61 65.27 59.95 57.74 62.77
cleveland 12.61 72.32 71.02 22.77 25.03 50.96
hsv 0.00 36.27 35.74 2.84 5.37 16.61
abalone 49.58 78.93 79.32 61.95 63.67 69.65
postoperative 1.99 24.97 34.03 15.01 1.57 11.55
solar-flare 13.70 85.39 83.21 58.07 55.04 54.40
transfusion 55.72 66.75 67.32 64.83 63.96 65.76
yeast 51.48 84.55 84.68 59.70 59.41 57.94
balance-scale 0.00 59.07 54.23 1.40 0.00 0.67
Average rank 5.61 1.96 1.61 3.65 4.26 3.91

The similar analysis is carried out for the sensitivity measure,
which are presented in Table 3. The Friedman test allows us to
claim significance of differences between compared classifiers
(again with p-value, which is smaller than 0.00001). Nemenyi post
hoc analysis (with the same critical difference CD=1.61) shows
that both EBBag and RBBag lead to significantly better sensitivity
than all other bagging variants. According to average ranks EBBag
is only very slightly better than RBBag but the paired Wilcoxon test
indicates that differences between these two classifiers are not
significant (p-value=0.24), while they are both significantly better
than all other variants. Again while considering over-sampling
generalization, the new integration BagSm performs better than
the previously known SmBag and OvBag (this is reflected by
average ranks and also the Wilcoxon test BagSm vs OvBag
(p-value=0.023) and BagSm vs SmBag (p-value=0.002).
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Table 3
Sensitivity (%) for known bagging extensions.

Data set Bag EBBag RBBag OvBag SmBag BagSm
breast-w 94.88 96.01 96.98 95.98 95.02 95.17
abdominal-pain 72.05 81.65 79.16 74.22 71.57 76.86
acl 83.33 93.33 89.00 85.00 85.00 85.83
new-thyroid 87.50 95.50 95.71 93.06 92.22 93.89
vehicle 91.29 91.16 97.04  93.46 92.14 94.97
car 73.97 100.00 100.00 92.62 92.54 92.13
scrotal-pain 58.11 73.78 75.59 65.89 58.56 58.56
ionosphere 81.79 85.73 85.24 84.70 83.70 83.76
pima 61.28 76.70 78.54 67.38 65.13 63.38
credit-g 48.89 72.50 68.13 60.83 71.67 63.11
ecoli 56.67 78.20 91.14 66.67 55.00 77.11
hepatitis 49.44 81.00 76.56 62.78 54.44 67.25
haberman 26.38 60.56 55.68  49.86 49.81 66.25
breast-cancer 35.93 56.06 57.41 4491 34.35 50.05
cmc 36.67 66.61 64.50 46.47 40.05 53.10
cleveland 9.72 77.22 69.43 16.11 17.22 36.11
hsv 0.00 55.00 23.48 3.33 5.00 21.67
abalone 25.47 79.98 77.58 40.51 42.98 54.99
postoperative 1.67 27.22 22.08 11.67 11 8.89
solar-flare 7.00 86.00 85.12 4217 37.33 34.40
transfusion 34.62 65.45 66.69 56.54 51.53 68.66
yeast 32.22 90.22 87.65 39.11 39.11 57.94
balance-scale 0.00 49.33 60.00 0.67 0.00 0.67
Average rank 5.76 1.67 1.72 3.85 4.70 3.30

We also analysed sampling with or without replacement.
Conclusions are not univocal. For the best under-sampling variants
like EBBag differences are insignificant while for over-sampling
standard replacement sampling works much better.

We skipped the presentation of F-measure due to space limits. The
results are quite similar to analyzing the sensitivity, i.e. the ranking of
the methods is nearly the same (the only difference is that RBBag is
now better than EBBag). In this case, RBBag with replacement is
better than EBBag in the Wilcoxon test (p-value=0.038). Again,
underbagging generalizations are better than all overbagging (for
instance, according to the Wilcoxon test EBBag is better than BagSm
with p-value=0.04).

To sum up these experiments we can conclude that under-
sampling bagging extensions such as EBBag and RBBag have out-
performed all over-sampling ensembles. The difference between
them and the best oversampling bagging is much higher than we
could expect from the literature survey. Moreover, a new over-
sampling bagging variant, where SMOTE is applied with the same
over-sampling ratio, works better than the previously promoted
SmBag applying different ratios [39].

If one should choose between under-sampling variants EBBag
and RBBag, we will rather promote Roughly Balanced Bagging as its
experimental evaluation is slightly better (in particular for the
most important measure in our study - G-mean) and its metho-
dological principle are more consistent with the bagging sampling
paradigm. This is why, we will choose it for further experiments
in Section 6.

4. Studying local characteristics of minority examples

The further proposed extensions of bagging and method for
analyzing distributions of minority examples in data sets descend
from results of studying sources of difficulties in learning classifiers
from imbalanced data. Notice first that although many authors
have experimentally shown that standard classifiers met difficul-
ties while recognizing the minority class, it has also been observed
that in some problems characterized by strong class imbalance
(e.g., new—thyroid data set from [3]) standard classifiers are
capable to be sufficiently accurate. Therefore, the discussion of data

difficulty in imbalanced data still goes on, for its current review
see, e.g., [30,35,38].

Several researchers have already hypothesized that the class
imbalance ratio (i.e. cardinality of the majority class referred to the
total number of minority class examples) is not necessarily the
only, or even the main, problem causing the decrease of classifica-
tion performance and focusing only on this ratio may be insuffi-
cient for improving classification performance. In other words,
besides the imbalanced ratio other data difficulty factors may cause
a severe deterioration of classification performance.

The experimental studies by Japkowicz et al. on large collection
of artificial data sets have clearly demonstrated that degradation of
classification performance is linked to the decomposition of the
minority class into many sub-parts containing very few examples
[21,23]. They have shown that the minority class does not form a
homogeneous, compact distribution of the target concept but it is
scattered into many smaller sub-clusters surrounded by majority
examples. In other words, minority examples form, the so-called,
small disjuncts, which are harder to learn and cause more classi-
fication errors than larger sub-concepts.

Other data factors related to the class distribution are linked to
the effect of too strong overlapping between minority and majority
classes. Strong overlapping occurs frequently together with class
rarity. In [36], authors have generated many artificial, numerical,
data sets and based on them they have shown that increasing
overlapping has been more influential than changing the class
imbalance ratio. An analogous experiment, but concerning six
classifiers compared with more evaluation measures, has been
carried out in [16] leading to similar conclusions. However, these
authors have also noticed that the local imbalance inside overlapping
area is more influential than changing the global imbalance ratio.
Finally, few researchers have claimed that another data factor, which
influences degradation of classifiers performance on imbalanced
data, is noisy examples [1]. Experiments presented in [32] have
shown that single minority examples located inside the majority
class regions cannot be treated as noise since their proper treatment
by informed pre-processing may improve classifiers. In most of
these experiments researchers focused on studying a single data
difficulty factor only. Studies as [38] emphasize that several data
factors usually occur together for imbalanced data sets.

Although all of these studies give an insight into the important
aspects of imbalanced data distribution and sources of difficulties
in learning classifiers in this setting, their conclusions might not be
easy to apply in the real-world settings. The main problem is that it
is not easy to identify different data factors in the real-world
data sets.

In our opinion one of the main conclusions from the studies is
that the global information about the data sets (mainly the global
imbalance ratio) is not so important as considering local character-
istics of the class distribution. Local characteristics of learning
examples could be modeled in different ways. Here, we follow
earlier works on specialized informed pre-processing methods
[25,27,37] and on other studies on the nature of imbalanced data
[32,35]. We link data factors to different types of examples forming
the minority class distribution. What follows is a differentiation
between safe and unsafe examples.

Safe examples are ones located in the homogeneous regions
populated by examples from one class only. Other examples are unsafe
and more difficult for learning. Unsafe examples are categorized into
borderline (placed close to the decision boundary between classes), rare
cases (isolated groups of few examples located deeper inside the
opposite class), or outliers. As the minority class can be highly under-
represented in the data, we claim that the rare examples or outliers
could represent a very small but valid sub-concepts of which no other
representatives could be collected for training. Therefore they cannot
be considered as noise examples which typically are then removed or
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re-labeled. A similar opinion was also expressed in [25], where authors
suggested that minority examples should not be removed as they are
too rare to be wasted while majority examples could be removed.
Moreover, earlier works of Napierala with graphical visualizations of
real-world imbalanced data sets [33,35] have confirmed usefulness of
such a classification of example types.

The next question is how to automatically and possibly simply
identify these types of examples. We keep the hypotheses [33] on
role of the mutual positions of the learning examples in the
attribute space and the idea of assessing the type of example by
analyzing class labels of the other examples in its local neighbour-
hood. Such a local neighbourhood of the minority class example
could be modeled in different ways. In further considerations we
will use an analysis of the class labels among k-nearest neighbours
following positive experiences with single classifiers and pre-
processing methods [33,35]. Depending on the number of exam-
ples from the majority class in the local neighbourhood of the
given minority class example, we can evaluate whether this
example could be safe or unsafe (difficult) to be learned. If its all,
or nearly all, neighbours belong the minority class, this example is
treated as the safe example. On the other hand, a minority example
with all neighbours from the majority class is clearly an outlier.
Then, when the numbers of neighbours from both classes are
approximately the same, we assume that this example could be
located close to the decision boundary between the classes. Finally,
an example having one minority neighbour and other majority
ones is a candidate for a rare case.

In general, constructing this type of the neighbourhood is
related with choosing the value of k and the distance function. In
further considerations we follow results of analyzing different
distance metrics [35] in the method considered here and also
more general experimental comparisons of several heterogeneous
distances applied to k-NN classifier [28]. Following these recom-
mendations we choose the HVDM metric (Heterogeneous Value
Difference Metric) [41]. It aggregates normalized distances for
qualitative and quantitative attributes. Compared to other metrics
it provides more appropriate handling of qualitative attributes.
Instead of simple value matching, HVDM makes use of the class
information to compute attribute value conditional probabilities by
using a Stanfil and Valtz value difference metric for nominal
attributes [41]. For numeric attributes, it uses a standardized
Euclidean distance.

Considering the value of k, different values could be used with
respect to particular data set characteristics. We will check several
values during further experiments to see their impact on the types
of minority examples and Neighbourhood Balanced Bagging
ensemble. However, as the distribution of the minority class is
“difficult”, this class is often decomposed into smaller sub-parts,
and as our assumptions focus on quite local neighbourhood for
minority class example we claim that it is reasonable to choose
rather small values of k. Moreover one can refer to some related
experimental studies as, e.g., [5,14] containing systematic exam-
inations of different values k over many UCI imbalanced data sets,
which concluded that for difficult data distributions and using
HVDM, more local classifiers (with smaller k values from 5 till 11)
were recommended. Finally, following earlier experimental studies
of Napierala [35] we will start modeling the neighbourhood with
k=5, and additionally examine higher values as 7 and 9.

Finally, we will repeat our hypothesis that the appropriate
treatment of these types of minority examples within new propo-
sal of classifiers should lead to improving classification perfor-
mance. Recall that it has been earlier observed by Stefanowski for
the informed pre-processing method SPIDER [37] and in BRACID a
novel rule induction algorithm [34] specialized for imbalanced
data. Now, we want to introduce this way of thinking on the local
characteristics into designing new extensions of bagging ensemble.

5. Neighbourhood balanced bagging for imbalanced data
5.1. Motivations

Our aim is to show that the analysis of class distribution in the
neighbourhood of examples can be applied to propose a new kind
of generalizing bagging ensembles for imbalanced data. Recall that
existing approaches to generalize bagging treat all learning exam-
ples in the same way while constructing bootstrap samples. It
results from the fact that these generalizations do not change the
standard bootstrap sampling technique. They rather offer different
ways to integrate bootstrap sampling with various pre-processing
techniques applied on constructed bootstraps. For instance, over-
sampling extensions rely on coping randomly selected examples
from the minority class. In such a case, due to the global imbalance
ratio, the amount of replication of minority examples may be quite
large. One can ask whether each minority example is equally
important. Moreover, one can ask whether drawing of minority
examples should be done in a blind way or whether it should be
directed depending on the difficulty type of example. Earlier
related works on pre-processing methods for single classifiers
have already showed that plain random sampling is less efficient
than informed methods as, e.g., NCR [27], SMOTE [10] or SPIDER
[37]. Moreover focusing transformations around more unsafe
examples has been usually more beneficial than amplifying safe
minority examples, see, e.g., the discussion in [17] or recent
extensions of SMOTE [15]. Similar experiences with differentiated
role of learning examples have been reported as to edited k-nearest
neighbour classifier, and specialized methods integrating rule and
instances representations for class imbalanced as, e.g., BRACID [34].

Following these motivations, we present new generalizations of
bagging. In these propositions, we resign from treating all minority
examples in the same way. We focus bootstrap sampling toward
more difficult sub-regions of the minority class. Our hypothesis is
that by increasing probabilities of drawing less safe types of the
minority class examples and by decreasing, at the same time,
probabilities of drawing majority class examples, we can modify
the local characteristics of examples in resulting bootstrap samples.
This modification should lead to bootstrap samples with more safe
distribution of minority class examples as compared to original
learning set. As a result, we expect component classifiers in
constructed bagging ensembles to be more likely to better learn
the minority class.

Referring to experimental studies on the characteristics of often
tested UCI imbalanced data sets, see, e.g., [35], and also some
results presented in Section 6.2, one may notice that the minority
class distributions are generally quite unsafe with many borderline
examples or even outliers. Therefore, we think that treating all
minority examples in the same way and using only the global
between class ratio to simply balance class cardinalities inside
bootstrap samples is less realistic and more limited than applying
local approaches presented in the previous section. We plan to
consider both options of modifying bagging which follows either
increasing the cardinality of the minority class or reducing the
number of majority examples in the bootstraps.

The first option is more similar to over-sampling minority class
inside the bootstraps, however, since it also decreases chance for
sampling majority examples it can also be seen as a kind of hybrid
approach. Within this proposal we would like to keep the final size
of the bootstrap similar to the cardinality of the original data set.
We expect that this generalization could be more accurate than
existing over-sampling extensions of bagging ensemble.

Considering the other option comes mainly from experimental
studies, as presented in Section 3 or [24], which show that
generalizations with under-sampling of majority classes are more
accurate than over-sampling based bagging ensembles. This is why
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we would like to construct the bootstraps with the size equal to
double cardinality of the minority class inside the original data.
However, we think that for such bootstraps, being much smaller
than in other generalizations of bagging, it is particularly interest-
ing to check which minority examples should be sampled. Recall
that EBBag just copies all the content of the minority class inside
each bootstrap and even RBBag selects around 66% examples from
this class and randomly amplifies some of these examples. Here we
want to put a question on the usefulness of a more informed
sampling process which takes into account the local characteristics
of these examples.

5.2. Modification of sampling technique

The idea behind a new extension called Neighbourhood Balanced
Bagging (NBBag) is to focus sampling of bootstraps toward these
minority examples, which are hard to learn (i.e. unsafe ones) while
decreasing probabilities of selecting examples from the majority
class at the same time. The idea of changing sampling probabilities
has been considered in our previous work with applying bagging to
noisy data and improving the overall accuracy [6]. Here, we
postulate another strategy to change bootstrap samples, which is
carried through a conjunction of modifications at two levels: global
level (the whole data set level) and local level (the example
neighbourhood level).

At the first, global level, we attempt at increasing the chance of
drawing the minority examples with respect to the imbalance ratio in
the original data set. We implement it by changing the probability of
sampling of majority examples. More precisely, probability of sampling
is, in our setting, proportional to the weight that we associate with
each learning example. First we set weight pl;, for each minority
example to 1. Then, we downscale weight pp, associated with
sampling of each majority example to Nyyin /Npgj, where Nipin and Npg;
are numbers of examples in the minority and majority classes in the
original data, respectively. Intuitively, it could refer to the situation,
where minority and majority classes contain examples of the same
type, e.g., safe ones, and the class distributions are not affected by other
data difficulty factors. Thus, this modification of probabilities exploits
information about the global between-class imbalance.

Recall that such a global balancing of bootstraps is not the
sufficient technique according to the experimental studies as
[7,13,24]. Moreover, most studied imbalance data sets contain
many unsafe minority examples while the majority classes com-
prise rather safe ones, see, e.g., [32]. This leads us to consider an
additional local level of modifying probabilities, which is based on
the analysis of the local characteristics of examples.

This local level of modifying probabilities is intended to shift
sampling of minority examples to these unsafe examples that are
harder to learn. The extent to which a minority example is unsafe
may be quantified by analyzing its k-nearest neighbours (using
HVDM distance metric as described in Section 4). We have decided
to take a rather simple approach and to only count the number of
majority examples in the neighbourhood. Then, partly inspired by
earlier successful experiences with informed pre-processing meth-
ods, we use a simple rule: the more the unsafe example, the more
should be amplified probability of its drawing. We also decide that
the probability should be monotonic with respect to the number
of majority examples in the neighbourhood. This leads to the
following formula L2, which defined as below, is either linear or
exponential:

(Nmg)”
2= U

where Nj, is the number of examples in the neighbourhood,
which belong to the majority class; y is a scaling factor, which in

case of a linear amplification is set to 1. Although this factor
introduces a problem of parametrization, our intuition is that it can
be optimized depending on results of analyzing characteristics of
particular data set (see further analysis presented in Section 6.2).
So, the value y may be increased, resulting in an exponential
amplification, if one wants to strengthen the role of rare cases and
outliers in bootstraps. We claim that this exponential amplification
may be beneficial for such data sets where the analysis of types of
examples indicates that the minority class distribution is scattered
into many rare cases or outliers, and the number of safe examples
is significantly limited. In Fig. 1 we present an illustration of
different profiles representing amplifications of probability of
selecting the minority class with respect to a few selected values
of y, which will be further considered in experimental studies.
The formula [%;, requires re-scaling as it may lead to the
probability equal to O for completely safe examples, i.e., for

4

maj = 0. We propose to re-formulate it as

B x Lin+1) )

where /3 is a technical coefficient referring to drawing a completely
safe example. Intuitively, safe examples from both minority and
majority classes should have the same probability of being select-
ing to bootstraps. Setting /3 to 0.5 keeps this intuition. Adding the
1 corresponds to a normalization of sampling probabilities inside
the conjunctive combination, if one expects that for linear ampli-
fication pp, €0, 11 (Pmin is the weight of minority examples - see
definition (3)).

Then, we hypothesize that examples from majority class are, by
default, not exactly balanced on the second, local level, which is
reflected by L7 = 0. The intuition behind this hypothesis is that
examples from majority class are more likely to be safe (see the
results of such analysis further presented in Section 6.2). Even
when the hypothesis is false for some data, it is still quite apparent
that amplifying majority rare or outlying examples, at this level,
would interact with the amplification of minority examples and
increase difficulties of learning classifiers from the minority
classes.

Finally, local and global levels are combined by multiplication.
This leads us to the final formulation of weights associated with
probability of selecting examples from minority and majority
classes, respectively, as

Pmin = pr]m'n X ﬂ(ernin +1)

1 2 2
=DPmin X 0.5(Lin+1)=0.5(L;,;, + 1), 3)
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Fig. 1. L2, weights depending on y.
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maj

resulting from Lf,wj =0, and default /3 set to 0.5. Such a formulation

may be interpreted as amplification of chances to select minority
examples according to parameterized local factor L2, in combina-
tion with lowering chances to select majority examples according
to imbalance rate in the whole data set.

Finally, we present the general schema of using these modifica-
tions of probability sampling in both types of Neighbourhood
Balanced Bagging, i.e., following the ideas of under-sampling the
majority class and the other, similar to over-sampling the minority
class (see Algorithm 1).

6. Experimental evaluation of NBBag

The first part of experiments is focused on an evaluation of
classification performance of Neighbourhood Balanced Bagging
(NBBag), and its comparison to known extensions of bagging. The
second part concerns an analysis of local characteristics of different
types of minority class examples in the bootstrap samples pro-
duced by these extensions.

6.1. Evaluation of bagging extensions

We compare performance of NBBag with the best previously
proposed extensions of bagging. Following our earlier study [7],
we choose Rough Balanced Bagging (RBBag) as the best under-
sampling extension. Since NBBag is considered in two variants,
under-sampling and more following over-sampling, we also

include Overbagging (OvBag) and SMOTEBagging (SmBag) in the
comparison. All experiments have been performed in the same
setting as the ones presented in Section 3.

We tested different sizes of neighbourhood for NBBag: k=5, 7,
9 and 11. Their best performance depends on data set. However in
general, we have noticed that good performance can be achieved
for small neighbourhoods for under-sampling, and for over-sam-
pling, regardless of the amount of amplification applied to the
weights of minority class examples (i.e., value of y scaling para-
meter). Thus, we present results only for k=5 - which is also
consistent with a discussion from Section 4.

We also checked the values of scaling factor y responsible for
amplification of weights of minority class examples in NBBag bootstrap
sampling. More precisely, we applied y=0.5, 1, 1.5, 2, 4. The best value
depends on data set. However, on the average the best results for over-
sampling were achieved for =2, and the best result for under-
sampling was achieved for, considerably lighter amplification, y=0.5.

This is why due to space limits we present only results of the
best performing over-sampling NBBag: oNBBag? (k=5, w=2), and
the best performing under-sampling NBBag: uNBBag®® (k=5,
w=0.5).

The results of G-mean, sensitivity, and F-measure are presented
in Tables 4, 5, and 6, respectively. Note that, as it was already done
in Section 3, data sets in the analysed tables are ordered from the
safest one to the most unsafe one. In general, RBBag and uNBBag®>
stand out as the best classifiers in comparison on each of the
presented measures. However, comparison on F-measure does not
show significant difference between compared classifiers (p-value
in Friedman test in this case is 0.21). On the other hand, compar-
ison on G-mean and sensitivity leads to significant differences
discovered by Friedman test (p-values in both cases smaller than
0.00001). In further analysis we focus more on G-mean (as this

Algorithm 1. Neighbourhood Balanced Bagging Algorithm.

Input: LS training set; TS testing set; CLA base classifier learning algorithm; m number of bootstrap samples; Npin, Npmqj Size of
minority and majority class (respectively); L2, minority class local balancing weights;

Output: C* ensemble classifier

1 Learning phase;

2 if under-sampling then

3 | n=2xNppn;

4 else

5 L n=Nmin+Nmaj:

6 foreach xcLS do

7 If x e minority class then

8 | W(X) = Pmin = 0'5(L§1in +1);

9 else

10 L WX) = Ppgj = [[:Il';:; % 0.5

11 for i:=1 to m do

12 S; = bootstrap sample of n examples from LS sampled
according to weights w;

13 Ci:=CLA(S;) {generate a base classifier};

14 Classification phase;

15 foreach x in TSdo

16 C*(xp=majority vote of Ci(x), where
x is a combination of suggestions of component
classifiers C;};

i=1,...,m {the suggestion of the classifier for object
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measure takes into account classifier performance on both minor-
ity and majority classes, i.e., an increase of recognition of the
minority examples cannot be achieved at cost of a deterioration of
the majority class), and on sensitivity — which, on the other hand, is
the accuracy of minority class. In the following, we present some
more detailed observations from the experimental comparison.
For G-mean, uNBBag®” is the best classifier according to average
ranks (see Table 4). It is also significantly better than all other
classifiers except RBBag according to Nemenyi post hoc test
(CD=1.33). This result is confirmed by Wilcoxon test (with p-
values smaller than 0.01 in each case except comparison between
uNBBag®> and RBBag). RBBag is better than OvBag and SmBag
according to Nemenyi, and better than OvBag, SmBag and oNBBag?

Table 6

F-measure (%) of NBBag and other compared bagging ensembles.

Table 4

G-mean (%) of NBBag and other compared bagging ensembles.
Data set RBBag OvBag SmBag oNBBag? uNBBag®?®
breast-w 96.37 96.23 95.88 96.14 96.32
abdominal-pain 80.35 79.44 80.85 80.82 81.11
acl 89.35 88.35 88.64 88.20 89.37
new-thyroid 96.58 95.36 95.18 97.02 96.49
vehicle 95.44 94.61 94.34 95.91 95.53
car 96.58 95.29 95.26 96.98 96.47
scrotal-pain 75.65 72.01 70.42 71.42 74.26
ionosphere 90.67 90.47 90.30 89.95 90.71
pima 75.64 73.54 72.33 72.30 74.80
credit-g 67.82 64.30 62.48 66.94 67.68
ecoli 88.85 71.75 80.68 86.74 88.44
hepatitis 78.66 72.16 68.47 75.33 79.81
haberman 63.43 58.11 60.02 48.65 64.28
breast-cancer 59.37 56.17 52.57 56.53 59.99
cmc 65.27 59.95 57.74 64.33 65.54
cleveland 71.02 22.77 25.03 65.75 74.29
hsv 35.74 2.84 537 3043 43.62
abalone 79.32 61.95 63.67 76.25 79.59
postoperative 34.03 15.01 1.57 41.43 40.22
solar-flare 83.21 58.07 55.04 7113 83.32
transfusion 67.32 64.83 63.96 39.56 66.60
yeast 84.68 59.70 59.41 74.86 84.57
balance-scale 54.23 1.40 0.00 61.07 32.76
Average rank 1.87 4.00 439 3.09 1.65

Table 5

Sensitivity (%) of NBBag and other compared bagging ensembles.
Data set RBBag OvBag SmBag oNBBag? uNBBag®®
breast-w 96.68 95.98 95.02 96.35 96.72
abdominal-pain 79.16 74.22 71.57 80.99 82.08
acl 89.00 85.00 85.00 89.00 90.25
new-thyroid 95.71 93.06 92.22 96.00 95.43
vehicle 97.04 93.46 92.14 96.48 97.29
car 100.00 92.62 92.54 95.80 100.00
scrotal-pain 75.59 65.89 58.56 71.86 76.10
ionosphere 85.24 84.70 83.70 87.94 86.03
pima 78.54 67.38 65.13 85.07 81.53
credit-g 68.13 52.89 45.89 73.93 72.67
ecoli 91.14 60.83 71.67 84.29 91.71
hepatitis 76.56 62.78 54.44 69.38 79.06
haberman 55.68 49.86 49.81 87.28 62.22
breast-cancer 57.41 4491 34.35 66.71 65.53
cmc 64.50 46.47 40.05 66.61 68.35
cleveland 69.43 16.11 17.22 54.57 76.29
hsv 23.48 3.33 5.00 13.57 39.29
abalone 77.58 40.51 42.98 65.70 79.76
postoperative 22.08 11.67 1.1 42.92 35.83
solar-flare 85.12 4217 37.33 58.84 86.51
transfusion 66.69 56.54 51.53 92.08 74.33
yeast 87.65 39.11 39.11 59.22 88.63
balance-scale 60.00 0.67 0.00 72.45 98.78
Average rank 243 4.22 4.78 2.15 1.41

Data set RBBag OvBag SmBag oNBBag? uNBBag®?®
breast-w 94.72 94.83 94.56 9443 94.60
abdominal-pain 69.83 70.20 74.23 70.16 70.38
acl 82.92 84.04 84.62 80.75 82.45
new-thyroid 91.70 92.03 92.71 93.26 91.82
vehicle 89.44 90.38 90.84 91.19 89.49
car 55.32 80.60 81.28 79.91 54.58
scrotal-pain 64.64 62.16 62.68 59.49 62.83
ionosphere 89.00 88.84 88.95 86.99 88.79
pima 68.54 66.24 64.75 66.21 67.93
credit-g 55.87 52.07 51.06 55.62 56.14
ecoli 59.56 56.64 64.70 60.96 57.64
hepatitis 61.24 59.19 56.52 57.98 62.33
haberman 47.86 42.51 4495 44.82 48.72
breast-cancer 46.17 43.75 41.54 46.02 48.17
cmc 45.96 41.90 41.05 44.97 46.25
cleveland 36.66 15.21 17.35 34.79 39.33
hsv 11.13 1.33 3.89 7.61 14.70
abalone 39.34 42.34 43,55 4415 38.37
postoperative 17.49 10.96 11 27.81 24.92
solar-flare 27.10 21.34 20.68 23.89 26.37
transfusion 49.54 47.81 47.89 40.24 48.99
yeast 25.08 38.70 37.06 38.24 24.25
balance-scale 15.80 0.51 0.00 19.52 15.86
Average 2.61 343 3.30 3.09 2.57

in paired Wilcoxon test (p-values smaller than 0.001 in this case).
OvBag, SmBag, and oNBBag? are not significantly different with
respect to Nemenyi test but Wilcoxon test shows significant
difference in pairs between oNBBag? and OvBag, as well as SmBag.
The worst classifier is SmBag, which is consistent with conclusions
from experiments in Section 3. Some of the results on G-mean
require distinguishing since they are much better than the results
achieved by the other compared classifiers. These are oNBBag? on
postoperative,and balance-scale, and uNBBag®’ on
cleveland, and hsv. It is also worth noting that higher
differences between classifiers are more visible for more difficult
(unsafe) data sets. This effect is observable as one moves from the
top of the tables to the bottom, since, as it was mentioned earlier,
data sets are ordered according to their difficulty (which is
explained in more detail in Section 6.2).

Analyzing the recognition of the minority examples, i.e., the
sensitivity measure in Table 5, the best performing with respect to
the average ranks is again uNBBag®>. Post hoc Nemenyi test divides
classifiers into two groups: RBBag, oNBBag?, and uNBBag®’ are
better than OvBag and SmBag. uNBBag®” is significantly better than
all classifiers except oNBBag? in paired Wilcoxon test (p-values lower
than 0.001). It is also worth noting that all the best results on
sensitivity are achieved by either oNBBag? or uNBBag®® (with one
shared best result between RBBag and uNBBag®® for car).

For F-measure results, we can observe that also in this case, the
best average rank is achieved by uNBBag®®>. However, we need to
take into account that the observed differences in average ranks
between classifiers are not significant according to Friedman test.
We also failed to find significant differences between pairs of
classifiers with respect to Wilcoxon test.

Looking more precisely at results in Tables 4 and 5, one can notice
that some classifiers showing high improvements of the sensitivity also
show strong deterioration on G-mean (it means that the recognition of
the majority class is much worse). Such effect is visible for oNBBag® on
pima, haberman, breast-cancer, and transfusion.
Similar effect, but less evident, is visible in case of yeast for
uNBBag®°. Performance on balance—-scale, which is the most
difficult data set in our comparison, illustrates perfectly the effect of
high sensitivity on G-mean. In this case, the second best result on
sensitivity achieved by oNBBag? leads to the best result on G-mean. At
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the same time, the best result on sensitivity achieved by uNBBag®>
leads to a result on G-mean which is not only worse than oNBBag? but
also worse than RBBag. On the other hand, we can also show data sets,
for which the best result on sensitivity translates into the best result on
G-mean. These are postoperative for oNBBag?, and cleve-—
land, as well as hsv for uNBBag®®.

Finally, we can observe that simple use of the imbalance ratio in
global balancing of classes in bootstraps is not sufficient. It is
apparent when we consider results of OvBag. Taking into account
information about the neighbourhood of minority examples
improves classification performance with respect to G-mean, and
sensitivity evaluation measures. This hypothesis is supported by
results of both oNBBag? and uNBBag®®. To conclude, the introduc-
tion of local modifications of sampling probabilities inside the
combination rule of NBBag may be the crucial element leading to
the significantly better performance than all over-sampling var-
iants as well as for making it competitive to RBBag.

When we analyse which parameters lead to the best G-mean, we
have noticed that, in most of the cases, neighbourhood composed of
k=5 examples is sufficient. Larger neighbourhood may lead to
slightly better results in under-sampling NBBag for only small
fraction of the data sets, which are averagely difficult to more
difficult: credit-g, ecoli, haberman, breast-
cancer, and solar—f lare. This is an important observation
from the effectiveness of learning point of view. Larger neighbour-
hoods may lead to more computational effort during learning. When
we look for the best values of vy, the choice clearly depends on
whether over-sampling NBBag or under-sampling NBBag is applied.
For over-sampling higher yw=2 is often the best choice for unsafe
data sets but also lower values are desirable for more safe data sets.
In under-sampling NBBag the best value of y is almost always 0.5,
higher value 1 leads to small improvement for safe data sets. In both
cases, over-sampling and under-sampling NBBag, y higher than
2 may lead to slightly better result in the safest data sets (only
breast—w in our comparison) it is, however, followed with high
deterioration of results on other types of data sets.

6.2. Analyzing data characteristics and bootstrap samples

The aim of this part of experiments is to learn more about the
nature of the best bagging extensions. First, we want to identify
proportion of different types of examples in the minority class of
considered data sets (recall their distinction in Section 3). Follow-
ing the method introduced in [33], we propose to assign types of
examples using information about class labels in their k-nearest
local neighbourhood.

In this analysis we will again use k=5 mainly because k=3 may
poorly distinguish the nature of examples, and in earlier experi-
ments [35], as well as in the current ones, examining higher values
as k=7 has led to quite similar decisions as to identification of
types examples in the data sets. This choice is also similar to the
size of neighbourhood used in NBBag and in main pre-processing
methods such as SMOTE or SPIDER.

For the considered example x and k=5, the proportion of the
number of neighbours from the same class as x against neighbours
from the opposite class can range from 5:0 (all neighbours are from
the same class as the analysed example x) to 0:5 (all neighbours
belong to the opposite class). Depending on this proportion, we
assign the type labels to the example x in the following way [33]:
Proportions 5:0 or 4:1 inside the neighbourhood - the example x is
labeled as a safe example (as it is surrounded mainly by examples
from the same class); 3:2 or 2:3 - it is a borderline example (the
explanation is that the number of neighbours from both classes is
approximately the same, so it refers to class overlapping near the
decision boundary. Notice that within this interpretation the
examples with the proportion 3:2 although still correctly classified

by its neighbours, this example could be located close to the
decision boundary between the classes); 1:4 - it is interpreted as
a rare case (as explained in Section 4); 0:5 - it is an outlier. For
higher values of k such proportions could be interpreted in a
similar way - see their definitions in [35].

Although this categorization could be seen as based on intuitive
thresholding, its results are consistent with a more probabilistic
analysis of the neighbourhood, modeled with kernel functions, as it
is shown in [35]. Knowing also that higher values k have led to
identification of similar distributions of minority class examples in
considered UCI data sets we will stay with presenting results for k=5.

The results of such labeling of the minority class examples are
presented in Table 7. The first observation is that many data sets
contain rather a small number of safe minority examples. The
exceptions are three data sets composed of almost only safe
examples: breast—-w, car. On the other hand, there are data
sets such as cleveland, balance-scale or solar-
flare, which do not contain any safe examples. We carried out
the similar neighbourhood analysis for the majority classes and
make a contrary observation - nearly all data sets contain mainly
safe majority examples (e.g., yeast: 98.5%, ecoli: 91.7%) and
sometimes a limited number of borderline examples (e.g.,
balance-scale: 84.5% safe and 15.6% borderline examples).
What is even more important, nearly all data sets do not contain
any majority outliers and at most 2% of rare examples. Thus, we can
repeat similar conclusions to [33], saying that in most data sets the
minority class includes mainly difficult unsafe examples.

Then, one can observe that for safe data sets nearly all bagging
extensions achieve similar high performance (see Tables 4 and 5 for
breast-w, new—thyroid). A quite similar observation concerns
data sets with still high number of safe examples, limited borderline
ones and noj/or nearly no rare cases or outliers - see, e.g., vehicle.
One the other hand, the strong differences between classifiers occur for
the most difficult data distributions with a limited number of safe
minority examples. Furthermore, the best improvements of all evalua-
tion measures for RBBag and NBBag are observed for the unsafe data
sets. For instance, consider cleveland (no safe examples, nearly
50% of outliers) where uNBBag® has 74.3% G-mean compared to
OvBag with 22.7%. Similar highest improvements occur for

Table 7
Labeling minority class examples expressed as a percentage of each type of
examples occurring in this class.

Data set Safe (%) Border (%) Rare (%) Outlier (%)
breast-w 91.29 7.88 0.00 0.83
abdominal-pain 61.39 23.76 6.93 7.92
acl 67.5 30.00 0.00 25
new-thyroid 68.57 31.43 0.00 0.00
vehicle 74.37 24.62 0.00 1.01
car 47.83 47.83 0.00 435
scrotal-pain 50.85 33.90 10.17 5.08
ionosphere 44.44 30.95 11.90 12.70
pima 29.85 56.34 522 8.58
credit-g 15.67 61.33 12.33 10.67
ecoli 28.57 54.29 2.86 14.29
hepatitis 18.75 62.50 6.25 12.50
haberman 4.94 61.73 18.52 14.81
breast-cancer 21.18 38.82 27.06 12.94
cmc 13.81 53.15 14.41 18.62
cleveland 0.00 45.71 8.57 45.71
hsv 0.00 0.00 28.57 71.43
abalone 8.36 20.6 20.6 50.45
postoperative 0.00 41.67 29.17 29.17
solar-flare 2.33 41.86 16.28 39.53
transfusion 18.54 47.19 11.24 23.03
yeast 5.88 47.06 7.84 39.22
balance-scale 0.00 0.00 8.16 91.84
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Recall that extensions of bagging known from the literature are
based on the simple idea of balancing distributions in bootstrap
samples. Our results indicate that transforming distributions of
examples into safer ones can be more influential. In case of RBBag
it could be connected with strong filtering majority class examples
in each bootstrap sample. Notice that many data sets contain
nearly 1000 examples with around 50 minority ones. For instance,
the number of all examples in solar—-flare is 1066 while the
minority class contains 43 examples only. The new created boot-
strap samples include only 43 safe majority examples and as a
result most of the majority class examples (also reflecting their
original distribution) disappear. It can be interpreted as a kind of
cleaning around the minority class examples, so they become safer
in their local neighbourhood. Having such a transformed distribu-
tion in each sample can help construct base classifiers, which are
more biased toward the minority class. On the other hand, the size
of the learning set can be dramatically reduced. As a result, some
bootstrap samples may lead to weak classifiers, and this type of
ensemble may need more component classifiers than over-
sampling NBBag, which uses larger bootstrap samples.

Now, when we compare the change in distribution of examples
in bootstrap samples produced by different parameters of NBBag to
the classification performance resulting from learning on these
samples it is quite apparent that the favourable type of change is
dependent on the data set. This allows us to draw a conclusion that
one should look for the best parameters with respect to a particular
data set.

7. Discussion and final remarks

Our paper is devoted to various extensions of bagging ensem-
bles dedicated to improve classification of imbalanced data. We
have focused our attention on the most studied approaches, which
integrate pre-processing methods specialized for class imbalance
within bootstrap construction. The first contribution of our paper is
a comprehensive experimental comparison of the well known
bagging extensions over a large collection of diversified imbal-
anced data sets. Results of these experiments have clearly shown
that all under-sampling extensions of bagging have achieved much
better classification performance than all over-sampling variants.
Definitely, for all considered evaluation measures both Exactly
Balanced Bagging (EBBag) and Roughly Balanced Bagging (RBBag)
produce the best results. Still, the difference between them and the
best over-sampling bagging is much higher than we have expected
and what has been previously shown in [13]. The superiority
of using underbagging is also consistent with some of opinions
from [19,24], although these experiments were done in other
frameworks.

What is also worth noting is that, according to our results,
SMOTEBagging is not as accurate as it has been postulated by its
authors in [39]. Quite often it is the worst classifier and it is also
worse than much simpler random over-sampling. Moreover, a new
over-sampling bagging variant, where SMOTE is applied with the
same oversampling ratio, works better than this previously pro-
moted more diversified SMOTEBagging.

Although EBBag and RBBag performs similar to each other with
respect to the sensitivity and G-mean, RBBag seems to be slightly
better than EBBag for F-measure, in particular when sampling is
done with replacement. Similar performance of these both classi-
fiers was also observed in [24], however their experiments were
carried out in another framework with artificially modified noisy
data. However, authors of RBBag have already shown its slightly
better performance over EBBag [19] but over 9 data sets only (4 of
them was also used in our experiments). Yet another novel
observation is that sampling with replacement may be profitable

for RBBag unlike EBBag, where our results show no differences
between sampling with or without replacement. If one expects a
single strong recommendation from these parts of experiments, we
will suggest to use Roughly Balanced Bagging as the most efficient,
simplest to use (tune only the number of component classifiers)
and the most consistent with the original Breiman's idea of boot-
strap aggregation.

Analyzing known extensions of bagging one can also notice that
they usually use the simplest random re-sampling since more
complex SMOTE inside overbagging does not work. This a contra-
dictory situation to single classifiers, where SMOTE usually is one
of the best options see, e.g., [4]. However, considering future
research, one could still ask a question how BorderlineSMOTE,
LN-SMOTE and other SMOTE extensions [31] work in this setting.
Yet another future issue could be studying diversity in a more
advanced way than presented in [39]. We would also consider
looking for new diversity measures more specialized for class
imbalance than the previous ones, which are oriented at total
accuracy [26].

Our next methodological contributions result from the hypoth-
esis saying that the difficulty of learning classifiers from imbal-
anced data comes from complex distributions of the minority class
[33]. Besides the unequal class cardinalities, the minority class is
decomposed into smaller sub-parts, affected by strong over-lap-
ping, rare cases and/or outliers. In our study we attempt to capture
these data characteristics by analyzing the neighbourhood of
minority class examples. The main message of our study is that
such a kind of local information can be useful both for proposing a
new direction of generalizing bagging and for analyzing more
deeply data conditions which may provide explanation why some
ensembles work better than others.

We have proposed a new type of bagging, called Neighbour-
hood Balanced Bagging (NBBag), which is based on a different
principle than all known bagging extensions for class imbalance.
First, instead of integrating bagging with pre-processing, we keep
the standard bagging idea but we change, sometimes radically,
probabilities of sampling examples to bootstraps by increasing the
chance of drawing minority examples. Furthermore, we amplify
the role of difficult minority examples with respect to the type of
their neighbourhood. The strength of amplification can be para-
meterized in our setting. We have given some indications how the
choice of values of this parameter affects learning. We have also
identified the values of the parameter that work the best on the
average. The experiments have proven that the choice of parameter
values that lead to satisfactory results is rather limited.

We have shown that our proposition can be applied in both
types of bagging generalizations: over-sampling and under-
sampling. In the first type of generalization, our proposition is
similar to over-sampling minority class examples into bootstraps,
however, at the same time, the probabilities of drawing majority
class examples are decreased. The size of bootstrap is kept the
same as the size of the original learning set. The second type is
inspired by under-sampling generalizations, which are proven to
work better than over-sampling generalizations. We construct
bootstraps of double size of the minority class. The probabilities
of drawing minority class examples are increased, while probabil-
ities of drawing majority class examples are decreased. The
experimental results show that under-sampling Neighbourhood
Balanced Bagging is at least competitive to Roughly Balanced
Bagging, which is considered as the best known bagging general-
ization. They also show that our proposal is significantly better
than existing over-sampling extensions of bagging regardless
whether over-sampling variant or under-sampling one is consid-
ered. The strongest differences between classifiers performance
have been noticed for data sets containing the most unsafe
minority examples. Indeed, both NBBag and RBBag ensembles
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have strongly outperformed all over-sampling bagging variants for
such data.

We have also shown that the source of this difference in perfor-
mance can be linked to the change of distribution of unsafe (difficult
to learn) minority class examples into safe ones introduced directly by
NBBag and indirectly by RBBag. The analysis of types of minority
examples inside bootstrap samples has clearly shown that NBBag and
RBBag strongly changed data characteristics compared to the original
data sets. This analysis follows the earlier research by Stefanowski and
Napierala [33], however, its application in the context of ensembles
uncovers new interesting characteristics of studied ensembles. Many
examples from the minority class labeled as unsafe in the original
learning set (in particular as rare cases or outliers) have been
transformed to more safe ones. We have demonstrated that over-
sampling NBBag, in the best performing variant, learns, in most of the
cases, from almost safe type bootstrap samples. Under-sampling
NBBag, in the best performing variant, is relatively less altering the
distribution in this direction. RBBag is closer to the under-sampling
variant of NBBag but it is less adapting to the type of distribution of
minority class examples in the data set. This change of the local
characteristics of learning examples may be more influential for
improving the classification performance than the simple global class
balancing, which has previously been considered in the literature and
applied in many of known approaches to extend bagging. It introduces
additional computational cost associated with detection of how safe
(or unsafe) learning examples are. This cost is, however, introduced
only for minority class examples. Moreover, our experimental evalua-
tion shows that relatively small neighbourhoods are sufficient to
achieve satisfactory performance. This is confirmed by our observation
that even though under-sampling Neighbourhood Balanced Bagging is
computationally more costly than Roughly Balanced Bagging, the
differences in cost of learning are not significant.
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