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An interval type-2 fuzzy support vector machine (IT2FSVM) is proposed to solve a classification problem
which aims to classify three epileptic seizure phases (seizure-free, pre-seizure and seizure) from the
electroencephalogram (EEG) captured from patients with neurological disorder symptoms. The effec-
tiveness of the IT2FSVM classifier is evaluated based on a set of EEG samples which are collected from 10
patients at Peking university hospital. The EEG samples for the three seizure phases were captured by the
112 2-s 19 channel EEG epochs, where each patient was extracted for each sample. Feature extraction
was used to reduce the feature vector of the EEG samples to 45 elements and the EEG samples with the
reduced features are used for training the IT2FSVM classifier. The classification results obtained by the
IT2FSVM are compared with three traditional classifiers namely Support Vector Machine, k-Nearest
Neighbor and naive Bayes. The experimental results show that the IT2FSVM classifier is able to achieve
superior learning capabilities with respect to the uncontaminated samples when compared with the
three classifiers. In order to validate the level of robustness of the IT2FSVM, the original EEG samples are
contaminated with Gaussian white noise at levels of 0.05, 0.1, 0.2 and 0.5. The simulation results show
that the IT2FSVM classifier outperforms the traditional classifiers under the original dataset and also
shows a high level of robustness when compared to the traditional classifiers with white Gaussian noise
applied to it.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

A classification problem can be best illustrated when an object
or group of objects have to be assigned into a pre-defined group or
class where the assignment is made based on a number of
observed features/attributes pertaining to that particular object.
Classification is a very important field of research due to the
advantageous nature that a classifier with high generalization
ability would benefit the economical, industrial and medical fields
[1]. As a result of this, extensive research has been carried out over
the years and this has resulted in a large number of applications
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such as risk classification of loan clients [2], hand-writing recog-
nition [3], image classification [4] and speech recognition [5].

Literature review shows that classification methods can be
categorized by four types namely logic based approach (e.g.
decision trees) [2], statistical approach (e.g. Bayesian classification)
[6], instance-based approach (e.g. nearest neighbor algorithm [7])
and machine learning (e.g. single layer perceptrons, neural net-
works [8,9] and support vector machine (SVM) [10]).

The decision tree method is carried out by categorizing the
inputs based on the feature values in the input [7]. A drawback of
this method is that once the splitting rule makes a wrong decision,
it is impossible to produce the correct path and this would
therefore generate an accumulation of errors. Bayesian classifier is
based on the assumption that equal prior probabilities exist for all
classes [6]. The main limitation of the Bayesian classifier is that the
posterior probabilities cannot be determined directly [8]. An
example of the instance-based method is the k-Nearest Neighbor
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(kNN) [7] technique which is based on the principle that objects in
a dataset generally exist in the neighborhood of other objects with
similar properties. The technique finds the k nearest objects to the
particular input and determines its class by identifying the most
frequent class label.

The single layer perceptron can be simply described as a
component that computes the sum of weighted inputs and then
feeds to the system outputs. A major limitation of the single layer
perceptron is that it can only learn linearly separable problems
and is therefore incompatible when considering non-linear pro-
blems [9]. This problem is solved by the introduction of the Neural
Network (NN). The Neural Network can be divided into 3 distinct
segments: the input units which have the primary responsibility of
receiving information; the hidden units which contain neurons to
carry out the input–output mapping and the output units which
store the processed results [7]. When the optimal connection
weights and transfer functions are determined, the NN can be used
as a universal approximator [11] which is able to approximate any
continuous functions (e.g., hyperplanes) to any arbitrary precision
in a compact domain.

The Support Vector Machine (SVM) was first proposed by
Vapnik in 1995 [7] as a machine learning model which can be
applied to various supervised and unsupervised learning applica-
tions [12–14]. The SVM approach can be redeveloped as Support
Vector Classification (SVC) which are used for task such as pattern
recognition and Support Vector Regression (SVR) which is mainly
applicable to time-series applications [12]. The SVM uses the
hyperplane to separate two data classes. The SVM attempts to
maximize the margin between the hyperplane and the input
samples which is being separated by it thereby reducing the
generalization error. Data that is difficult to separate on the input
space is mapped into a higher dimensional feature space for the
ease of separation. The higher dimensional feature space compu-
tations are done with the use of a kernel function [7]. This feature
illustrates a very important trait of the SVM which is its ability to
perform well in a high dimensional feature space [15,16].

The SVM performs structural risk minimization (SRM) in order
to find a trade-off between model complexity and generalization
capability [7]. Therefore the SVM can achieve good generalization
ability for classification problems as it can simultaneously mini-
mize the empirical risk [10]. The SRM principle is grounded on the
fact that the generalization error of the model is bounded by the
sum of the empirical error and a confidence interval which is
based on the Vapnik–Chervonenkis (VC) dimension [7], a higher
classification performance is achieved by minimizing this bound.
The SVM also provides a global optimization solution to the pro-
blem at hand and therefore provides a more credible output when
compared to the neural network which provides a local optimi-
zation solution [10]. One of the drawbacks of the SVM method is
its sensitivity to outliers, this stems from the fact that the same
penalty weight is assigned to each sample and an outlier would
significantly distort the representation of the input and therefore
affect the classification performance. Another drawback is that
when the SVM is applied to a classification problem with imbal-
anced dataset (i.e. negative samples significantly outweighs the
positive samples) the optimum separating hyperplane is skewed
towards the positive with the consequence that the SVM could be
very ineffective in identifying targets that should be mapped to
the positive class [12,15].

A relatively recent classification method is based on fuzzy logic
[17] which is the theory of fuzzy sets used to handle fuzziness or
imprecision in datasets. The approach attempts to assign each
variable with membership functions with respect to its relative
distance to the class [17,4]. There are two main types namely type-
1 and type-2 fuzzy sets [18–20]. In type-1 fuzzy sets, the mem-
bership values are precise numbers in the range between 0 and
1 whilst the membership grade of a type-2 fuzzy set is a type-1
fuzzy set due to the imprecision in assigning a membership grade.
As a result, type-2 fuzzy sets are effective in modeling higher level
uncertainty in the human decision making process when com-
pared to the type-1 fuzzy set, where the membership grade is
distinct. In fuzzy logic, classification rules are specified by the user
instead of being inherently decided upon by the machine learning
method like in the SVM or NN. Therefore fuzzy logic is not a black-
box method and the decision rules are clearly visible. Incorporat-
ing the mechanisms of fuzzy logic, NN and SVM, two hybrid
machine learning methods namely Neural Fuzzy Network (NFN)
and Fuzzy Support Vector Machine (FSVM) [13] were developed.
The NFN works effectively when the amount of sample data pro-
vided is sufficient but suffers from a significantly reduced gen-
eralization performance when the amount of sample data is not
enough. The FSVM however works effectively even when the
amount of sample data is limited and is proven to provide higher
generalization performance [13]. There are many complex systems
used in industry that are prone to abrupt changes such as the
random failure of components or sudden environmental dis-
turbances. Markov jump systems (MJS) can be used to represent
these systems [21–23]. In Markovian jump systems, each event
governed by a Markov process corresponds to the jump in finite
operation modes of practical systems. This method is used to
estimate the probability of an object moving from one state to
another. This is done by using observations in the historical data to
estimate the probability of transition [24]. In the literature we also
see fuzzy logic being applied Markovian jump systems [3–5].
Interval type-2 fuzzy logic systems can also be applied to deal with
complex non-linear MJS [25].

When considering a real world application of the SVM, it is
important to account for the difficulty in obtaining a precise
measurement of the input data. A main deficiency of the SVM
technique was its sensitivity to outliers and sample noise. This
SVM deficiency is caused by the same penalty cost setting to each
sample. The FSVM attempts to resolve this deficiency by assigning
membership to each sample with respect to the relative impor-
tance of this sample. Hence, it reduces the impact of outliers in the
input dataset [26].

The application being considered in this paper is the classifi-
cation of the phases involved in the onset of an epileptic seizure,
where the epilepsy signals obtained from the Electro-
encephalograph (EEG) using real clinical data is subjected to the
novel classification technique [27,28]. This is a very challenging
classification problem as the EEG has multiple features and is also
contaminated with noise and distortion [29,30]. The classification
technique is designed to differentiate between the 3 seizure
phases namely seizure-free, pre-seizure and seizure. The early
detection of seizure phases is a potentially life-saving application/
research field and this is a major motivation for this research. The
accurate classification/differentiation between the 3 seizure pha-
ses would give doctors and other healthcare professionals ample
time to be able to prepare for the oncoming seizure. Therefore the
main objective of the research carried out in this paper is to pro-
pose an adequate classifier to deal with this problem. As a result of
this, an interval type-2 fuzzy support vector machine (IT2FSVM) is
being proposed to deal with this problem. The IT2FSVM will be
utilized to differentiate between the 3 seizure phases. The
IT2FSVM is proposed due to its superior ability at dealing with
uncertainties and unbalanced data [26]. This therefore provides a
higher level of classification accuracy than the traditional SVM and
forms the basis for the implementation of this classifier. The
classification performance of the IT2FSVM technique will be
compared to some traditional classifiers including the kNN tech-
nique [7], SVM [12] and naive Bayes classifier [6].
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This paper is organized as follows. Section 2 reviews the SVM
theory. Section 3 reviews the interval type-2 fuzzy inference sys-
tem (IT2FIS). Section 5 proposes the IT2FSVM structure with a
detailed schematic to illustrate how it functions. Section 6 intro-
duces epilepsy, data collection and feature extraction. Section 7
presents the classification method to deal with the epilepsy sei-
zure phase classification problem. Section 8 presents and analyzes
the experimental results obtained from the application of the
IT2FSVM method to the epilepsy seizure phase classification pro-
blem with a comparison to other existing methods followed by a
discussion of the results obtained. Section 9 draws a conclusion.
2. Support vector machines

The SVM theory is reviewed in this section, this provides the
theoretical background to the development of IT2FSVM. The main
objective of the SVM is to create a separating hyperplane such that
the distance between the hyperplane and the nearest data point in
each class is maximized.

Given a dataset S containing labelled training points

ðy1; x1Þ;…; ðyN ; xNÞ i¼ 1;2;…;N ð1Þ
where vector xi represents the training point, yi represents the
label and N represents the total number of samples. The vector xi is
assigned to either of the two classes and is represented by the
class label yiAf�1;1g. The hyperplane is ideally placed in the
middle of the margin between the two classes being separated.
The data points that are in close proximity to the margin are the
basis of its definition and are known as support vectors (SVs) [7].
In a non-linear function, searching for the optimum hyperplane in
the input space is difficult. Hence, the input space is mapped onto
a higher dimensional feature space. Let z¼φðxÞ represent the
feature vector where x is an input vector and φðxÞ is a transfor-
mation function. The hyperplane can then be defined as

ω � zþb¼ 0 ð2Þ
where z is the feature space vector, ω is the weight vector and b is
the scalar threshold (bias). The set S is linearly separable if there
exists a combination of ω and b that satisfies the following
inequalities for all elements of the set S:

ω � ziþbZ1; if yi ¼ 1
ω � ziþbr�1; if yi ¼ �1; i¼ 1;2;…;N

(
ð3Þ

where zi ¼φðxiÞ.
As the set S is not linearly separable for all of its elements, a

leeway for some classification violations must be allowed in order
to accommodate the elements of the set that are not linearly
separable. This deficiency can be resolved by introducing non-
negative slack variables ξiZ0 for the samples xi which do not
satisfy (3). Hence, (3) is then modified to

ω � ziþbZ1�ξi; if yi ¼ 1
ω � ziþbr�1�ξi; if yi ¼ �1; i¼ 1;2;…;N

(
ð4Þ

The optimal hyperplane can be obtained as a solution to the
constrained optimization problem

min
1
2
JωJ2þC

XN
i ¼ 1

ξi ð5Þ

subject to

yiðω � ziþbÞZ1�ξi; i¼ 1;2;…;N ð6Þ

ξiZ0 i¼ 1;2;…;N ð7Þ
where (5) is the convex cost function, (6) and (7) are the con-
straints, J � J denotes the l2 norm (i.e. Euclidean norm), and C is
known as the regularization constant which is the only free
parameter in the SVM formulation and can be tuned to find a
balance between margin maximization and classification violation.
The optimal hyperplane can be found by constructing a Lagrangian
multiplier and obtaining the dual formation:

min Q ðαÞ ¼ 1
2

XN
i ¼ 1

XN
j ¼ 1

yiyjαiαjzi � zj�
XN
i ¼ 1

αi ð8Þ

subject to

XN
i ¼ 1

yiαi ¼ 0; 0rαirC; i¼ 1;2;…;N ð9Þ

where α¼ ðα1;…;αNÞ represents the vector of the nonnegative
Lagrange multipliers which satisfy the constraints in (5).

Karush–Kuhn–Tucker theorem [31] is important to the devel-
opment of the SVM. The theorem states that the solution αi to (9)
satisfies the following conditions:

αiðyiðω � ziþbÞ�1þξiÞ ¼ 0; i¼ 1;2;…;N ð10Þ

ðC�αiÞξi ¼ 0; i¼ 1;2;…;N ð11Þ
The equalities (10) and (11) suggest that it is only the nonzero

values αi in (8) that satisfy the constraints in (6). The values of xi
that correspond with the solution αi are known as support vectors.
The instance is correctly classified when xi corresponds with αi ¼ 0
and is a significant distance away from the decision margin.

For the construction of the optimal hyperplane ω � zþb, we
would require that

ω¼
XN
i ¼ 1

αiyizi ð12Þ

and the scalar bias b should be determined via the Karush–Kuhn–
Tucker conditions in (10).

The decision function can then be derived from (3) and (12) as

f ðxÞ ¼ sgnðω � zþbÞ ¼ sgn
XN
i ¼ 1

αiyizi � zþb

 !
ð13Þ

where sgnð�Þ represents the sign function which extracts the sign
(positive or negative) of a real number. As we have no knowledge
of the higher dimensional feature space φð�Þ, carrying out the
computation in (8) and (13) would be rendered impossible due to
its complicated nature. An advantageous characteristic of the SVM
is that it is not necessary to determine φð�Þ. The problem is alle-
viated with the aid of a kernel function which has the ability to
compute the dot product of the data points in the feature space of
z. It is however obligatory for these functions to satisfy Mercer's
theorem [32] before they can be used for computing the dot
product [26]:

zi � zj ¼φðxiÞ �φðxjÞ ¼ Kðxi; xjÞ ð14Þ

where Kðxi; xjÞ ¼φðxiÞ �φðxjÞ is the kernel function which is used
for the mapping onto a higher dimensional feature space. The
kernel functions can be linear or nonlinear. The nonlinear separ-
ating hyperplane can be determined by solving the following
equation:

min Q ðαÞ ¼ 1
2

XN
i ¼ 1

XN
j ¼ 1

yiyjαiαjKðxi; xjÞ�
XN
i ¼ 1

αi ð15Þ

subject to

XN
i ¼ 1

yiαi ¼ 0; 0rαirC; i¼ 1;2;…;N: ð16Þ
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The decision function can then be described as follows:

f ðxÞ ¼ sgnðω � zþbÞ ¼ sgn
XN
i ¼ 1

αiyiKðx; xiÞþb

 !
ð17Þ
3. Interval type-2 fuzzy inference system (IT2FIS)

Fuzzy inference systems are mainly used to represent the
relationship between the input and output variables in systems.
Fuzzy inference systems are governed by selecting IF–THEN rules
which utilize linguistic labels for the expression of rules and facts.
A type-2 fuzzy inference system (T2FIS) is a fuzzy logic system
where the uncertainty of the membership functions are incorpo-
rated into fuzzy set theory. In the circumstance where no uncer-
tainty exists, a type-2 fuzzy set would reduce to a type-1 fuzzy set,
this is identical to the concept of probability reducing to the
determinism when the unpredictability is eradicated [33]. In order
to distinguish between a type-1 and type-2 fuzzy set, a tilde
symbol is placed above the symbol for the fuzzy set, in this case, A
represents a type-1 fuzzy set and ~A represents a type-2 fuzzy set
[34]. In the research that is carried out in this paper, the IT2FIS is
used instead of the T2FIS because the mathematics that is required
for the IT2FIS is much simpler than the mathematics that is
required for the T2FIS.

An example of triangular IT2FIS membership function is shown
in Fig. 1. The dashed lines represent the lower membership func-
tion (LMF) and the dotted line represents the upper membership
function (UMF). For the research that is being carried out, different
kinds of membership function can be applied. However, the tri-
angular membership function was used due to the ease of
implementation. The type-1 fuzzy logic is a universal approx-
imator in the sense that it can approximate any non-linear func-
tion in a compact domain to an arbitrary level of accuracy. This
characteristic is extended to the type-2 case so we would expect a
similar level of ability. With this in mind, the IT2FIS should have a
high level of performance irregardless of the shape of the mem-
bership function chosen as the performance is also affected by
other factors such as the number of fuzzy rules chosen. The
membership function can either be predefined by the users or
designed with the aid of optimization methods such as the genetic
algorithm (GA). The membership function for each input is
represented by seven points (p1 to p7) which can be optimized by
the GA. Unlike in the type-1 case where the membership grade is a
crisp value, the membership grade in an IT2FIS is an interval. The
Fig. 1. An example of IT2 membership functions. Dashed line: lower membership
function. Dotted line: Upper membership function. Gray area: footprint of uncertainty.
IT2FIS is then bounded at the two extremes of this interval to give
us the LMF and UMF which are both type-1 fuzzy sets. The area
between the UMF and LMF is known as the footprint of uncer-
tainty (FOU) which is shown as the gray area in Fig. 1.

Type-2 fuzzy sets are more prevalent than type-1 fuzzy sets in
rule-based fuzzy logic systems as they have a higher level of non-
linearity and therefore type-2 fuzzy sets have the ability to model
uncertainties better than the type-1 fuzzy sets with less number of
rules. The structure of the IT2FIS detailing the input–output rela-
tionship is shown in Fig. 2. The IT2FIS consists of 5 major com-
ponents [35]: fuzzifier, fuzzy rules, inference engine, type-reducer
and defuzzifier. The crisp input is first transformed into fuzzy sets
in the fuzzifier block as the rule base is activated by fuzzy sets and
not numbers. In the fuzzification stage, when the measurements
are perfect the input is modelled as a crisp dataset, when the
measurements are noisy but stationary it is modelled as an
interval type-2 fuzzy set. After the input is fuzzified, the fuzzy
input set is then mapped onto the fuzzy output set with the aid of
the inference block. This is achieved by quantifying each rule using
fuzzy set theory and then using the mathematics behind fuzzy set
theory to obtain an output for each rule. The output of the fuzzy
inference block would then contain one or more fuzzy output sets.
The fuzzy output sets are then converted into a crisp output with
the aid of the output processing unit. In an IT2FIS the output
processing unit consists of two blocks: the type-reducer and the
defuzzifier blocks. In the first step, the IT2 fuzzy output set is
reduced to an interval-valued type-1 fuzzy set through type-
reduction.

Given an IT2FIS with n inputs xiAXi;…; xnAXn to give a sin-
gular output yAY . The rule base for this IT2FIS consists of K IT2
fuzzy rules expressed in the following form [19]:

Rk : If x1 is ~F
k
1 and⋯and xn is ~F

k
n THEN y is ~G

k ð18Þ

where k¼ 1;…;K , ~F
k
n and ~G

k
represent type-2 fuzzy sets.

The rules are responsible for the mapping of an input domain X
to an output domain Y. Experimentation has shown that the
general T2FIS model has high computational costs and complexity.
This has resulted in the development of the IT2FIS which makes
the computation simplified. The membership grades for interval
fuzzy sets can be portrayed by their lower and upper membership
grades of the FOU. The output of the firing strength for an IT2FISωi

is represented by a lower and upper bound i.e., ωi ¼ ½ωi;ωi�. The
defuzzified output is obtained by type reduction which is imple-
mented using the KM algorithm [35] given in Section 4:
4. KM algorithm

The first step of defuzzification is type reduction, where a type-
2 fuzzy set is reduced to a type-1 fuzzy set. The KM algorithm
which was developed by Karnik and Mendel [35] is an example of
such a method. The KM algorithm is iterative and has fast con-
vergence rates, hence its suitability for the research conducted in
this thesis. The iterative procedure produces an upper and lower
bound of the output. The second step of output processing occurs
after type-reduction. In the case of the KM algorithm being used as
Fuzzifier

Rules

Inference

Inputs
(Crisp) Type Reducer Type Reduction

Set (Type-1)

Defuzzifier
Outputs
(Crisp)

Output Processing

Fuzzy
Inputs

Fuzzy
Outputs

Fig. 2. Block diagram showing the IT2FIS.
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a type-reducer, the type-reduced set is confined to a finite interval
of numbers, the defuzzifier then obtains the defuzzified value
(which is a crisp output) by calculating the average of the upper
and lower bounds of this interval. A detailed description of the KM
algorithm is shown below in Sections 4.1 and 4.2.

4.1. Lower bound
(1) Determine the lower bound of the output xi ði¼ 1;…;nÞ in
ascending order and then assign the same labels to them such
that x1rx2r⋯rxn.

(2) Match the weights ωi with the corresponding xi and reassign
the labels to match with the new xi which are now in
ascending order.

(3) Initialize ωi, i.e.,

ωi ¼
ωiþω i

2
where i¼ 1;…;n ð19Þ

then calculate

y¼
Pn

i ¼ 1 xiωiPn
i ¼ 1ωi

ð20Þ

(4) Determine the pivot point p where ð1rprN�1Þ such that

xpryrxpþ1 ð21Þ

(5) Assign the firing strength as

ω i; irp

ω i; i4p

(
ð22Þ

then calculate

y0 ¼
Pn

i ¼ 1 xiωiPn
i ¼ 1ωi

ð23Þ

(6) Check if y0 ¼ y; If yes, stop and set y ¼ y, if no, go to step 7
(7) Set y¼ y0 and go to step 3

4.2. Upper bound
Fig. 3. Block diagram of IT2FSVM.
(1) Define the upper bound of the output xi ði¼ 1;…;nÞ in
ascending order and then assign the same labels to them such
that x1rx2r⋯rxn.

(2) Match the weights ωi with the corresponding xi and reassign
the labels to match with the new xi which are now in
ascending order.

(3) Initialize ωi i.e.

ωi ¼
ωiþω i

2
where i¼ 1;…;n ð24Þ

then calculate

y¼
Pn

i ¼ 1 xiωiPn
i ¼ 1ωi

ð25Þ

(4) Determine the pivot point p where ð1rprN�1Þ such that

xpryrxpþ1 ð26Þ

(5) Assign the firing strength as

ω i; irp

ω i; i4p

(
ð27Þ
then calculate

y0 ¼
Pn

i ¼ 1 xiωiPn
i ¼ 1ωi

ð28Þ

(6) Check if y0 ¼ y; If yes, stop and set y ¼ y, if no, go to step 7
(7) Set y¼ y0 and go to step 3

The defuzzified output of the IT2FIS is given as:

y¼
yþy

2
ð29Þ
5. Interval type-2 fuzzy support vector machines (IT2FSVMs)

In this section, the mechanism of the IT2FSVM classifier is
discussed. The standard SVM classifier is used for this hybrid
classification mechanism which involves the merging of an IT2FIS
with an SVM to form the IT2FSVM. The IT2FSVM can be char-
acterized as a multiple-input–single-output classifier. The ability
of the IT2FIS to handle uncertainty makes it very complementary
to the SVM in solving difficult non-linear problems.

The overall IT2FSVM architecture is shown in Fig. 3. The feature
vector input is obtained after feature extraction has been carried
out on the EEG input data to extract the relevant features. Details
of this feature extraction method can be found in Section 6.1. As
the hyperplane can only separate 2 classes, multiple SVMs are
required as there are more than 2 classes in a classification pro-
blem. For the application in this chapter which is to differentiate
between the epileptic seizure stages, multiple SVMs are required
as there are three classes (seizure-free, pre-seizure and seizure).
There are three IT2 SVM blocks in the diagram which are used to
individually separate between the seizure phases. IT2 SVM
1 separates between the seizure-free and pre-seizure phases with
the label “�1” indicating the input data belongs to the seizure-
free class and label “1” indicating the input data belongs to the
pre-seizure class. IT2 SVM 2 separates between the seizure-free
and seizure phase with the label “�1” indicating the input data
belongs to the seizure-free class and label “1” indicating the input
data belongs to the seizure class. Finally, IT2 SVM 3 separates
between the pre-seizure and seizure phase with the label “�1”
indicating the input data belongs to the pre-seizure class and label
“1” indicating the input data belongs to the seizure class. The
output labels of the three IT2 SVM blocks are presented in Output1
to Output3 which are then subjected to a rule-based class deter-
miner in order to determine what the final classification would be.

The rule based class determiner system for selecting the final
classification output for the IT2FSVM is shown in Table 1. The final
class is a whole number between 1 and 3 where “1” represents the
seizure-free phase, “2” represents the pre-seizure phase and “3”
represents the seizure phase.

The IT2FSVM block consists of a feature vector input, 3 fuzzy
rules each consisting of two SVMs associated with the lower and



Table 1
Table showing the if–then rules used by the rule based class determiner system.
Table showing the if–then rules. Class 1: seizure-free, class 2: pre-seizure, class 3:
seizure.

Case Output1 Output2 Output3 Final class (Output)

1 �1 �1 �1 or 1 1
2 1 �1 or 1 �1 2
3 �1 or 1 1 1 3
4 1 �1 1 3
5 �1 1 �1 3

U. Ekong et al. / Neurocomputing 199 (2016) 66–76 71
upper membership functions and a defuzzification block which is
used to produce the final crisp output. The original EEG input data
had a 19�100 vector input and feature extraction is used to
reduce it to a 45-input feature vector which is used as the input of
the IT2SVM.

The final output of the SVM block is obtained by combining the
outputs of the SVMs with the aid of a membership function where
membership grades or weights are assigned to each output to
depict the impact that it would have on the final output. The
number of fuzzy rules can be defined by any integer value but an
increase in the number of fuzzy rules would lead to a slower
convergence of training and also a higher computational cost of
the system. In this chapter, there are 3 fuzzy rules employed to
implement the IT2FSVM. The membership grade is obtained from
the membership function which is defined by the user and the
shape of the membership function is a triangle as shown in Fig. 1.
The shape of the membership function is represented by the
points p1 to p7 which are optimized by the GA.

Referring to Fig. 3, we have three IT2 SVMs. Each IT2 SVM is
governed by the following rules:

Rj : If JxJ is ~F
j
THEN y is ~G

j
; j¼ 1;2;3 ð30Þ

where JxJ is the normalized input which is described further in

Section 7. ~F
j
is defined as an IT2 triangular membership function

as shown in Fig. 1 and ~G
j
is a singleton with SVMjk as LMF and

SVMjk as UMF, k¼1, 2, 3, denoting the number of IT2FSVMs in
Fig. 2. SVMjk and SVMjk are two SVMs with the output Out jk and

Out jk defined by the following hyperplanes:

Out jk ¼ sgnðωjk � zþbjkÞ ¼ sgn
XN
i ¼ 1

αijkyiKðxi; xÞþbjk

 !
ð31Þ

Out jk ¼ sgnðωjk � zþbjkÞ ¼ sgn
XN
i ¼ 1

αijkyiKðxi; xÞþbjk

 !
ð32Þ

where j¼1, 2, 3 denotes the j-th (lower or upper) SVM in Fig. 2 and
k¼1, 2, 3 denotes the k-th IT2 SVM in Fig. 2. The Outputk of the IT2
SVM k can then be obtained by the defuzzification process out-
lined in Section 4. The rule-based class determiner would then
make the final class decision.
6. Absence epilepsy

Epilepsy, which is characterized with its ability to instantiate
recurrent seizures (an interruption of normal brain functions)
which are unforeseen in nature is a very common and significant
neurological disorder caused by a sudden discharge of cortical
neurons [27,28]. Epileptic seizures are classified as either partial
(involving focal brain regions) or generalized (where it involves a
widespread region of the brain across both hemispheres) [36]. The
length of time for the seizure occurrence varies from a few sec-
onds up to a minute with some of the effects including momentary
lapse of consciousness for the sufferer of the seizure [36]. A
complete loss of consciousness occurs when the epileptic activity
involves both the cortical and subcortical structures of the brain
and this occurrence is known as an absence seizure.

The unexpected nature of these seizures has proven to have an
adverse effect on the quality of life for those who are suffering
from them. The impact is most prevalent in the formative stages of
a child's life as we see an increase in the requirements for special
education and also a higher incidence of below-average school
performance [28,37]. It also proves life-threatening in situations
where the sufferer is isolated at the time of its occurrence and
there is no experienced or medical help on hand to alleviate the
situation. Therefore having an accurate understanding or pre-
dictive model for the pre-seizure phase (the transition towards an
absence seizure occurrence) is a very vital task as it would provide
the sufferers and their carers enough notice of the upcoming sei-
zure so they could prepare themselves and dampen the impact of
the seizure occurrence.

Absence seizures can be best characterized by the spike-and-
wave discharges (SWDs) which are as a result of synchronized
oscillations in the thalamocortical networks of the brain [38,39].
The classification process of EEG signals consists of two main parts
which are feature extraction and classification. In the literature,
there are a wide range of available feature extraction methods
which range from the traditional methods to the non-linear
methods. Traditional methods include the Fourier transform and
also spectral analysis whilst the non-linear methods include Lya-
punov exponents [28,40], correlation dimension [28] and simi-
larity [41]. After feature extraction has been implemented to the
raw data, the extracted features are then used and applied to the
pre-determined classification technique. There are a wide range of
classification techniques for EEG classification in the literature,
examples of these include the artificial neural network [42,43] and
also the neuro-fuzzy systems [44–46].

For this particular problem of accurately classifying and thereby
predicting the onset of an epileptic seizure, the extracted features
are applied to various classifiers (kNN, naive Bayes, SVM and
FSVM) with the main aim of being able to recognize and distin-
guish between the 3 seizure phases (seizure-free, pre-seizure and
seizure phase). The raw data obtained for the simulations being
carried out were obtained from the Peking University by the aid of
10 patients who were suffering from absence epilepsy, their ages
ranging from 6 to 21 years old. The study has been approved by
the ethics committee of Peking University People's Hospital and
the patients all signed documents in consent of their clinical data
being used for research purposes. The EEG data (which was sam-
pled at a frequency of 256 Hz with the aid of a 16-bit analogue-to-
digital converter and then filtered within a frequency band of 0.5–
35 Hz) was recorded by the Neurofile NT digital video EEG system
using a standard international 10-20 electrode placement (Fp1,
Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz
and Pz).

There are 3 sets of EEG signals which are extracted from the
3 seizure phases (seizure-free, pre-seizure and seizure) to obtain
112 2-s 19-channel EEG epochs from 10 patients for each dataset.
The timing of the onset and offset in the SWDs was identified by a
neurologist and these SWDs were identified to be large amplitude
3–4 Hz discharges with a spike-wave morphology typically lasting
above a second in duration. The criteria for determining the dif-
ferent seizure phases are that there is an interval between the
seizure-free phase and beginning of the seizure phase which is
greater than 15 s, the interval is between 0 and 2 s before the
occurrence of the seizure and that the interval occurs during the
first 2 s of the absence seizure. A more detailed description of the
procedure for data collection can be found in [47,48].



Fig. 4. Membership functions for SVM Block 1. Dotted line: membership function
for rule 1, straight line: membership function for rule 2, dashed line: membership
function for rule 3.

Fig. 5. Membership functions for SVM Block 2. Dotted line: membership function
for rule 1, straight line: membership function for rule 2, dashed line: membership
function for rule 3.
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6.1. Feature extraction

The feature extraction procedure is very vital in the classifica-
tion process as it obtains the relevant characteristics and infor-
mation from a large dataset (EEG signals in this instance). This
procedure has the knock-on effect of simplifying the dataset and
also reducing the effect of redundant data points that have little or
no effect in the classification of the dataset. This procedure is
important in improving the performance of the classifier as clas-
sification is more effective when the classifier is subject to fewer
data points.

For the EEG case being undertaken, there are 19 columns (19
channels) of signal output. The 19 columns represent signals that
were drawn from 19 EEG sensors with each column containing
100 samples. The purpose of the feature extraction being carried
out here is to extract the relevant features from the 19�100
dataset and thereby reducing the dimensionality.

Research into the existing literature provides evidence to sug-
gest that the 19 channels of the EEG data vary in importance with
regard to classification. It was observed that some of the channels
have a lesser impact on the classification of the EEG and the
exclusion of these channels has been investigated in [29,30]. Both
studies have discovered that some of the channels (F3, Fz, F4, C3
and Cz) are the most significant ones for the classification between
the seizure-free and seizure patients and the remaining electrodes
are found to have relevant information for the classification
between the different seizure phases.

In the research carried out in this paper, the most relevant
channels were selected by considering different combinations. The
research showed that the 1st, 2nd, 3rd, 4th, 5th, 6th, 11th, 12th,
13th, 14th channels out of the 19 channels contain the most sig-
nificant information for classification, which is in agreement with
the results in [29,30] that channels F3, Fz, F4, C3 and Cz contain
the most important information. For each of the channels, a fea-
ture vector containing the time-domain and frequency-domain
components of the dataset is created [43]. The first part of the
feature vector composed of computations in the time-domain such
as the standard deviation, second order norm, third order norm,
fourth order norm, absolute sum, maximum value and minimum
value of the 100 sample points from each channel. The second part
is composed of computations in the frequency domain such as the
mean frequency, maximum frequency, minimum frequency, stan-
dard deviation of frequency, windowing filtered mean frequency
and windowing filtered maximum frequency of each chosen
channel will form the second part of the feature vector.

Since the computations would result in a large vector which
would be difficult to classify, the principal component analysis
(PCA) is used to reduce the number of dimensions in the feature
vector. Given that each channel has its own particular character-
istics, we choose different principal components for each channel.
After the number of dimensions is reduced, we finally have 45
points which form the feature vector. This feature vector is then
applied to the pre-determined classifiers.
7. Method

A classifier based on the proposed IT2FSVM structure has been
implemented for the classification of the 3 seizure phases with the
aid of the feature vectors obtained from the feature extraction
method as shown in Section 6.1. The structure of the IT2FSVM
consists of 3 IT2 SVM blocks that are used to distinguish between
the 3 seizure phases. Fig. 3 shows the overall structure of the FSVM
classifier which consists of 18 45-input–single-output SVMs (6 for
each of the IT2 SVM blocks). The 3 sets of SVMs attempt to
distinguish between 3 classes of data stems from the fact that the
SVM can only separate between 2 classes at any given time.

There are 3 fuzzy rules for each of the IT2 SVM blocks. The
parameters of the triangular membership functions, i.e., p1 to p7,
as shown in Fig. 1 are optimized by the GA in order to influence
the shape of the membership functions. The GA optimization is
performed to maximize the classification accuracy using 70% of
dataset as the training samples. The rest 30% of dataset are used as
the test samples. The lower and upper membership functions for
SVM Blocks 1–3 after training are shown in Figs. 4–6. The mem-
bership grade is represented on the y-axis and the normalized
inputs are represented on the x-axis. The normalized input
denoted as xnorm is calculated as follows:

xnorm ¼ x21þx22þ⋯þx2N ð33Þ
where

xi ¼
xi

maxðxÞ�minðxÞ; i¼ 1;2;…;N; ð34Þ

xi is the i-th element of the vector x, minðxÞ and maxðxÞ denote the
minimum and maximum value of the elements in x, respectively.

The simulations that have been conducted with MATLAB. The
control parameters of the GA are shown in Table 2. Different
combinations of kernel functions are utilized in the SVMs. The
optimal combination was chosen based on its ability to maximize
the classification accuracy of the classifier. The value for the reg-
ularization constant C was chosen via trial and error. Different
values were implemented and the value for C which produced the
best results was retained. The parameters used for the SVM are as
follows: in the IT2 SVM1, there are 6 SVMs used, with all utilizing



Fig. 6. Membership functions for SVM Block 3. Dotted line: membership function
for rule 1, straight line: membership function for rule 2, dashed line: membership
function for rule 3.

Table 2
GA parameters.

Parameter Value

Number of
iterations

10

Population size 20
Selection Stochastic uniform selection function
Elitism Yes (Best two chromosomes are passed onto the next

generation)
Crossover Scattered crossover
Crossover fraction 0.8
Mutation Gaussian mutation
Stopping criterion It stops when the weighted average relative change in

the best fitness function value over 100 generations is
less than or equal to 10�6

Table 3
Summary of training samples classification performance for EEG signal with ori-
ginal dataset. Classifier 1: FSVM classifier, classifier 2: traditional SVM classifier,
classifier 3: k-Nearest Neighbor classifier, 4: naive Bayes classifier.

Classifier Classification accuracy (%)

Average Class 1 Class 2 Class 3

1 99.0510 100.000 97.1400 100.0000
2 86.6667 100.0000 90.0000 70.0000
3 100.0000 100.0000 100.0000 100.0000
4 77.1400 90.0000 41.4333 100.0000

Table 4
Summary of testing samples classification performance for EEG signal with original
dataset. Classifier 1: FSVM classifier, classifier 2: traditional SVM classifier, classifier
3: k-Nearest Neighbor classifier, 4: naive Bayes classifier.

Classifier Classification accuracy (%)

Average Class 1 Class 2 Class 3

1 87.7800 100.000 70.0000 93.3300
2 71.1100 90.0000 70.0000 53.333
3 56.6667 96.6700 23.3333 50.0000
4 77.7778 100.0000 33.3333 100.0000
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the RBF kernel function with the width of the RBFs for all 6 of
them set to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=200

p
, and the regularization constant C¼500; in

IT2 SVM2 6 SVMs are used, with the polynomial kernel function
applied in all cases and the degree of polynomial set to 2, and
C¼5000; in IT2 SVM3 the kernel function utilized for all SVMs is
the quadratic kernel function with C¼500.

In order to obtain an appreciation of the robustness of the
proposed classifier, white Gaussian noise with the levels of 0.05,
0.1, 0.2 and 0.5 have been added to the original test dataset. Under
these noisy conditions, the simulations were carried out 10 times
for each of the noise levels and four statistical factors namely
worst, average, best and standard deviation of classification
accuracy were calculated. We take these four statistical factors into
account since the noisy data is random in nature and drawing
conclusions from a single simulation would not accurately evalu-
ate the robustness of the classifier to noise.
8. Experimental results/discussion

The proposed IT2FSVM classifier is used to classify between the
3 epilepsy seizure phases using the feature vector that has been
obtained by the method detailed in Section 6.1. For comparison
purposes, 3 traditional classifiers (kNN, naive Bayes and SVM
classifiers) are considered. When traditional SVM classifier is
considered, they are connected in the classifier structure as shown
in Fig. 2, i.e., replacing the IT2SVM with the traditional SVM. For
the design of the hyperplane, all three traditional SVMs take the
RBF kernel with the width of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=1400

p
and regularization con-

stant C¼500. The computational process for the classifiers used is
identical to the standard algorithms in the literature. Readers are
referred to SVM [49], IT2FIS [50], GA [51], naive Bayes [52] and
kNN [53] for further examples, information and tutorials.

The classification accuracy with respect to the training dataset
for all classifiers is given in Tables 3 and 4. The tables show the
training and testing classification accuracy from the best per-
formed classifiers during the design. They tabulate the worst
(among the three classes), best (among the three classes), average
(over the three classes) and individual class classification accuracy
for both training and testing dataset.

It can be seen from Table 3 that the kNN classifier performs the
best in terms of average classification accuracy of 100%. The
IT2FSVM classifier comes in the second place with 99.0510% (less
than 1% compared with the kNN classifier). This however is not an
indication of the kNN being a superior classifier as we see that it
suffers from a significant reduction in its average classification
performance when exposed to unseen test data with and without
noise as seen in column 3 of Table 4 and column 2 of Tables 5–7.
The 100% average training accuracy seen in Table 3 is reduced to
56.6667% in Table 4 when the classifier is subjected to the test
data. Another significant impact of this is that the kNN has an
individual testing classification accuracy of 23.3333% as seen in the
5th column of Table 4 when classifying the pre-seizure phase
(class 2), this is significant because the accurate classification of
the pre-seizure phase is a core objective in addressing the problem
of epilepsy seizure phase classification. This would give the
patients the advance warning and therefore sufficient time to
prepare for the onset of the seizure. The SVM and naive Bayes are
ranked third and fourth. Table 4 shows that the IT2FSVM classifier
outperforms other classifiers in terms of average classification
accuracy for testing dataset. It also shows that the IT2FSVM
demonstrates an outstanding generalization ability dealing with
unseen data. Compared with other classifiers, the average testing
classification accuracies are 10–21% higher. The results show that
the naive Bayes classifier performs the worst to the testing data
and its generalization capability is the poorest. Referring to the
worst individual class testing classification accuracy, IT2FSVM can
still achieve 70% while other degrade around 23–50%.

Tables 5–7 show the testing classification accuracy for the
testing data subject to Gaussian noise with the levels of 0.05, 0.1,
0.2 and 0.5. The experiments were repeated 10 times for each
classifiers. The “Worst” and the “Best” columns show the worst



Table 5
Summary of testing classification performance for EEG signal under dataset subject to noise level of 0.05. Classifier 1: FSVM classifier, classifier 2: traditional SVM classifier,
classifier 3: k-Nearest Neighbor classifier, 4: naive Bayes classifier.

Classifier Classification accuracy (%)

Worst Mean Best Std Class 1 Class 2 Class 3

1 62.2200 66.1100 68.8900 0.0211 8.3000 93.0000 97.0000
2 61.1100 66.2200 68.8900 0.0235 11.1333 96.0000 97.3333
3 56.6700 57.8900 58.8900 0.0176 96.0000 25.0000 52.6700
4 77.7778 78.3333 80.0000 0.7857 99.0000 37.8900 100.0000

Table 6
Summary of testing classification performance for EEG signal under dataset subject to noise level of 0.1. Classifier 1: FSVM classifier, classifier 2: traditional SVM classifier,
classifier 3: k-Nearest Neighbor classifier, 4: naive Bayes classifier.

Classifier Classification accuracy (%)

Worst Mean Best Std Class 1 Class 2 Class 3

1 74.4400 79.4400 85.5600 0.0034 55.3333 66.3333 99.0000
2 66.6700 68.6700 70.0000 0.0126 15.0000 89.0000 98.3333
3 54.4400 56.2200 57.8800 0.0228 92.6700 22.0000 54.0000
4 76.6667 78.8889 82.2222 1.8251 100.0000 33.6667 100.0000

Table 7
Summary of testing classification performance for EEG signal under dataset subject to noise level of 0.5. Classifier 1: FSVM classifier, classifier 2: traditional SVM classifier,
classifier 3: k-Nearest Neighbor classifier, 4: naive Bayes classifier.

Classifier Classification accuracy (%)

Worst Mean Best Std Class 1 Class 2 Class 3

1 73.3300 78.0000 83.3300 0.0384 94.0000 40.6667 99.3300
2 72.2200 74.6700 80.0000 0.0250 27.6667 79.3333 99.3333
3 50.0000 53.3333 55.7800 0.0207 91.6667 21.6667 54.0000
4 76.6667 79.0000 82.2222 1.8898 99.3333 34.3333 100.0000

Table 8
Summary of testing samples classification performance for EEG signal under dataset subject to noise level of 0.2. Classifier 1: FSVM classifier, classifier 2: traditional SVM
classifier, classifier 3: k-Nearest Neighbor classifier, 4: naive Bayes classifier.

Classifier Classification accuracy (%)

Worst Mean Best Std Class 1 Class 2 Class 3

1 73.3300 78.0000 82.2200 0.0295 86.0000 48.0000 100.0000
2 67.7800 68.6700 70.0000 0.0126 36.3333 76.3333 98.3333
3 54.4444 56.6700 58.8900 0.0236 92.6700 23.0000 54.3333
4 75.5556 78.2222 80.0000 1.5585 99.6667 33.6667 100.0000
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and best testing individual class classification accuracies among
the 10 experiments. The “Mean” and “Std” columns show the
mean and standard deviation of the average testing accuracies of
the three classes of the 10 experiments. The columns for “Class 1”,
“Class 2” and “Class 3” show average testing classification accuracy
for classes 1 to 3, respectively, of the 10 experiments (Table 8).

In general, the classification accuracies decrease for all classi-
fiers when the noise level increases. In most of the cases, the
average testing classification of IT2FSVM and naive Bayes classi-
fiers achieve the best result. However, when it is down to the
individual class classification accuracy, especially for higher noise
levels (0.1, 0.2 and 0.5), the IT2FSVM performs more robustly with
the lowest class classification accuracy of 40% while other classi-
fiers obtain lower class classification accuracies ranging from 15%
to 36%. Similar to the comment concerning the kNN and its poor
performance in accurately classifying the pre-seizure phase (Class
2), it is important to also note that the naive Bayes classifier
exhibits a relatively poor ability to classify the pre-seizure phase as
we see that the SVM and IT2FSVM provide superior class
classification for the pre-seizure phase in the training, noise-free
testing and noise testing of both classifiers. This is a critical dif-
ference between these classifiers. The IT2FSVM however achieves
a superior overall/average classification accuracy when compared
to the SVM and this result shows the superiority and suitability of
the IT2FSVM for classifying the three epilepsy seizure phases.
9. Conclusion

In this paper, a novel classification method, IT2FSVM, was
proposed to use EEG to classify the epileptic seizure from patients
with neurological disorder symptoms, where the three epileptic
seizure phases seizure-free, pre-seizure and seizure were taken
into account. The IT2FSVM merges the SVM and IT2FIS to create a
hybrid classifier which attempts to achieve more accurate classi-
fication when compared to the traditional classifiers. The simula-
tion results show that the IT2FSVM can achieve more accurate
classifications than the traditional kNN, naive Bayes and SVM
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method do when the classifier is subjected to the original and
uncontaminated input data. The input data was then con-
taminated with noise in order to evaluate the robustness of the
proposed IT2FSVM. The validation results show that the proposed
IT2FSVM achieves a more significant level of robustness to noisy
data when compared to other classification methods.

9.1. Future work

In this section, some ideas are discussed with the purpose of
utilizing them for future work on the research carried out in this
paper.

� Investigating different parameters for the IT2FSVM classifier to
evaluate their effect on performance. This refers to the IT2FIS
(e.g. membership function shape, type-reduction method),
genetic algorithm (GA) parameters (e.g. mutation, crossover),
and also using the GA to optimize the SVM parameters (e.g.
kernel method, regularization constant).

� Expose the IT2FSVM proposed in this paper to a wider range of
problems including non-classification problems like time-series
prediction in order to test its viability.

� For the epilepsy seizure phase classification, we notice that the
greatest difficulty is in being able to differentiate between the
seizure-free and pre-seizure classes. Research could be con-
ducted in other signal processing and feature extraction tech-
niques that could be better suited to extracting the distinct
features in both classes.

� Further application of fuzzy logic into the SVM by proposing a
fuzzy kernel method and applying to a classification or time-
series problem.

Future research direction will aim to optimize the membership
function and the IT2FSVM architectures in order to further
improve the overall classification accuracy.
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