Available online at www.sciencedirect.com

sc.suce@p.“cr-

NEUROCOMPUTING

ELSEVIER Neurocomputing 57 (2004) 335 _—
www.elsevier.com/locate/neucom

A general framework for unsupervised processing
of structured data

Barbara Hammer®*!, Alessio Micheli®, Alessandro Sperduti®,
Marc Strickert?

aResearch Group LNM, Department of Mathematics/ Computer Science, University of Osnabriick,
Albrechtstrasse 28, Osnabriick 49069, Germany
b Dipartimento di Informatica, Universita di Pisa, Pisa, Italy
¢ Dipartimento di Matematica Pura ed Applicata, Universita degli Studi di Padova, Padova, Italy

Abstract

Self-organization constitutes an important paradigm in machine learning with successful ap-
plications e.g. in data- and web-mining. Most approaches, however, have been proposed for
processing data contained in a fixed and finite dimensional vector space. In this article, we will
focus on extensions to more general data structures like sequences and tree structures. Various
modifications of the standard self-organizing map (SOM) to sequences or tree structures have
been proposed in the literature some of which are the temporal Kohonen map, the recursive SOM,
and SOM for structured data. These methods enhance the standard SOM by utilizing recursive
connections. We define a general recursive dynamic in this article which provides recursive pro-
cessing of complex data structures by recursive computation of internal representations for the
given context. The above mentioned mechanisms of SOMs for structures are special cases of the
proposed general dynamic. Furthermore, the dynamic covers the supervised case of recurrent and
recursive networks. The general framework offers an uniform notation for training mechanisms
such as Hebbian learning. Moreover, the transfer of computational alternatives such as vector
quantization or the neural gas algorithm to structure processing networks can be easily achieved.
One can formulate general cost functions corresponding to vector quantization, neural gas, and
a modification of SOM. The cost functions can be compared to Hebbian learning which can be
interpreted as an approximation of a stochastic gradient descent. For comparison, we derive the
exact gradients for general cost functions.

(© 2004 Elsevier B.V. All rights reserved.

Keywords: Self-organizing map; Kohonen map; Recurrent networks; SOM for structured data

* Corresponding author. Tel.: +49-541-969-2488; fax: +49-541-969-2770.

E-mail address: hammer@informatik.uni-osnabrueck.de (B. Hammer).

I The research has been done while the author was visiting the University of Pisa. She would like to
thank the groups of Padua, Pisa, and Siena for their warm hospitality during her stay.

0925-2312/$ - see front matter (©) 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.neucom.2004.01.008

mailto:hammer@informatik.uni-osnabrueck.de

4 B. Hammer et al. | Neurocomputing 57 (2004) 3-35
1. Introduction

Neural networks constitute a particularly successful approach in machine learning
which allows to learn an unknown regularity for a given set of training examples.
They can deal with supervised or unsupervised learning tasks; hence outputs or classes
for the data points might be available and the network has to learn how to assign
given input data appropriately to the correct class in the supervised case. Alternatively,
in the unsupervised case, no prior information about a valid separation into classes is
known and the network has to extract useful information and reasonable classes from
data by itself. Naturally, the latter task is more difficult because the notion of ‘useful
information’ depends on the context. Results are often hard to evaluate automatically,
and they must be validated by experts in the respective field. Nevertheless, the task
of unsupervised information processing occurs in many areas of application for which
explicit teacher information is not yet available: data- and Web-mining, bioinformatics,
or text categorization, to name just a few topics. In the context of neural networks, most
approaches for supervised or unsupervised learning deal with finite dimensional vectors
as inputs. For many areas of interest such as time-series prediction, speech processing,
bioinformatics, chemistry, or theorem proving, data are given by sequences, trees, or
graphs. Hence data require appropriate preprocessing in these cases such that important
features are extracted and represented in a simple vector representation. Preprocessing
is usually domain dependent and time consuming. Moreover, loss of information is
often inevitable. Hence, effort has been done to derive neural methods which can deal
with structured data directly.

In the supervised scenario, various successful approaches have been developed: Su-
pervised recurrent neural networks constitute a well-established approach for modeling
sequential data, e.g. for language processing or time series prediction [16,17]. They can
naturally be generalized to so-called recursive networks such that more complex data
structures, tree structures and directed acyclic graphs can be dealt with [14,47]. Since
symbolic terms possess a tree-representation, this generalization has successfully been
applied in various areas where symbolic or hybrid data structures arise such as theorem
proving, chemistry, image processing, or natural language processing [1,4,6,13]. The
training method for recursive networks is a straightforward generalization of standard
backpropagation through time [46,47]. Moreover, important theoretical investigations
from the field of feedforward and recurrent neural networks have been transferred to
recursive networks [13,15,21].

Unsupervised learning as alternative important paradigm for neural networks has
been successfully applied in data mining and visualization (see [31,42]). Since addi-
tional structural information is often available in possible applications of self-organizing
maps (SOMs), a transfer of standard unsupervised learning methods to sequences and
more complex tree structures would be valuable. Several approaches extend SOM
to sequences: SOM constitutes a metric-based approach, therefore it can be applied
directly to structured data if data comparison is defined and a notion of adaptation
within the data space can be found. This has been proposed, e.g. in [18,29,48]. Var-
ious approaches alternatively extend SOM by recurrent dynamics such as leaky inte-
grators or more general recurrent connections which allow the recursive processing

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 5

of sequences. Examples are the temporal Kohonen map (TKM) [5], the recursive
SOM (RecSOM) [50-52], or the approaches proposed in [11,27,28,34]. The SOM
for structured data (SOMSD) [19,20,46] constitutes a recursive mechanism capable
of processing tree structured data, and thus also sequences, in an unsupervised way.
Alternative models for unsupervised time series processing use, for example, hier-
archical network architectures. An overview of important models can be found e.g.
in [2].

We will here focus on models based on recursive dynamics for structured data and we
will derive a generic formulation of recursive self-organizing maps. We will propose a
general framework which transfers the idea of recursive processing of complex data for
supervised recurrent and recursive networks to the unsupervised scenario. This general
framework covers TKM, RecSOM, SOMSD, and the standard SOM. The methods
share the basic recursive dynamic but they differ in the way in which structures are
internally represented by the neural map. TKM, RecSOM, SOMSD, and the standard
SOM can be obtained by an appropriate choice of internal representations in the general
framework. Moreover, the dynamic of supervised recurrent and recursive networks can
be integrated in the general framework as well. The approaches reported in [11,27,34]
can be simulated with slight variations of parts of the framework. Hence we obtain an
uniform formulation which allows a straightforward investigation of possible learning
algorithms and theoretical properties of several important approaches proposed in the
literature for SOMs with recurrence.

The reported models are usually trained with Hebbian learning. The general formu-
lation allows to formalize Hebbian learning in a uniform manner and to immediately
transfer alternatives like the neural gas algorithm [38] or vector quantization to the
existing approaches. For standard vector-based SOM and alternatives like neural gas,
Hebbian learning can be (approximately) interpreted as a stochastic gradient descent
method on an appropriate error function [25,38,42]. One can uniformly formulate anal-
ogous cost functions for the general framework for structural self-organizing maps and
investigate the connection to Hebbian learning. It turns out that Hebbian learning can
be interpreted as an approximation of a gradient mechanism for which contributions
of substructures are discarded. The exact gradient mechanism includes recurrent neural
network training as a special case, and explicit formulae comparable to backpropagation
through time or real time recurrent learning [40] can be derived for the unsupervised
case. This gives some hints to the understanding of the dynamics of unsupervised
network training and constitutes a first step towards a general theory of unsupervised
recurrent and recursive networks.

We will now define the general framework formally and show that SOMs
with recursive dynamics as proposed in the literature can be recovered as special
cases of the general framework. We show how Hebbian learning can be formulated
within this approach. Finally, we relate Hebbian learning to alternative training
methods based on energy functions, such that popular methods in the field
of unsupervised learning can be directly transferred to this general framework
and supervised and unsupervised training methods can be related to each
other.

6 B. Hammer et al. | Neurocomputing 57 (2004) 3-35
2. Structure processing self-organizing maps

We first clarify a notation: the term ‘self-organizing map’ used in the literature refers
to both, the paradigm of a neural system which learns in a self-organizing fashion,
and the specific and very successful self-organizing map which has been proposed
by Kohonen [32]. In order to distinguish between these two meanings, we refer to
the specific architecture proposed by Kohonen by the shorthand notation SOM. If we
speak of self-organization, the general paradigm is referred to. The SOM as proposed by
Kohonen is a biologically motivated neural network which learns via Hebbian learning
a topological representation of a data distribution from examples. Assume data are
taken from the real-vector space R" equipped with the Euclidian metric || - ||. The
SOM is defined as a set of neurons N = {ny,...,ny} together with a neighborhood
structure of the neurons nh : N x N — R. This is often determined by a regular lattice
structure, i.e. neurons n; and n; are direct neighbors with nh(n;,n;) =1 if they are
directly connected in the lattice. For other neurons, mh(n;,n;) reflects the minimum
number of direct connections needed to link »; to n;. A two-dimensional lattice offers
the possibility of easy visualization which is used e.g. in data mining applications [33].
Each neuron »; is equipped with a weight w; € R" which represents the corresponding
region of the data space. Given a set of training patterns 7 = {ay,...,a,;} in R”,
the weights of the neurons are adapted by Hebbian learning including neighborhood
cooperation such that the weights w; represent the training points 7' as accurately as
possible and the topology of the neurons in the lattice matches the topology induced
by the data points. The precise learning rule is very intuitive:

repeat:
choose a; € T at random
compute neuron 7;, with minimum distance ||a; — w;,||? = min;||a; — w;|?
adapt for all j : w; := w; + n(nh(n;,n;)))(a; — w;)

where n(nh(n;,n;)) is a learning rate which is maximum for the winner n; = n;, and
decreasing for neurons n; which are not direct neighbors of the winner n;,. Often, the
form n(nh(n;, n;,)) = exp(—nh(n;,n;,)) is used, possibly adding constant factors to the
term. The incorporation of topology in the learning rule allows to adapt the winner and
all neighbors at each training step. After training, the SOM is used with the following
dynamic: given a pattern a € R”, the map computes the winner, i.e. the neuron with
smallest distance ||@ — w;||* or its weight, respectively. This allows to identify a new
data point with an already learned prototype. Starting from the winning neuron, map
traversal reveals similar known data.

Popular alternative self-organizing algorithms are vector quantization (VQ) and the
neural gas algorithm (NG) [39]. VQ aims at learning a representation of the data points
without topology preservation. Hence no neighborhood structure is given in this case
and the learning rule adapts only the winner at each step:

repeat:
choose a; € T at random
compute neuron 7;, with minimum distance |la; — w;||* = min; ||a; — w;||?
adapt w;, := wj, +n(a; — wj,)

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 7

where n > 0 is a fixed learning rate. In order to avoid inappropriate data representation
caused by topological defects, NG does not pose any topological constraints on the
neural arrangement. Rather, neighborhood is defined posteriorly through training data.
The recursive update reads as

repeat:
choose a; € T at random
compute all distances |la; — w;]|?
adapt for all j : w; :== w; +n(rk(i,j))(a; — w;)

where rk(i,j) denotes the rank of neuron n; according to the distances ||a; — w;||%,
i.e. the number of neurons ny for which [la; — wi||* < |la; — w;||* holds. n(rk(i,j))
is a function with maximum at 0 and decreasing values for larger numbers, e.g.
n(rk(i,j)) = exp(—rk(i,j)) possibly with additional constant factors. This results in
the closest neuron to be adapted most, all other neurons are adapted according to their
distance from the given data point. Hence, the respective order of the neurons with
respect to a given training point determines the current neighborhood. Eventually, those
neurons which are the neurons closest to at least one data point become neighbored.
One can infer a data-adapted though no longer regular lattice after training in this way
which preserves the topology of the data space [38,39,49].

There exist various possibilities of extending self-organizing maps such that they
can deal with alternative data structures instead of simple vectors in R”. An interesting
line of research deals with the adaptation of self-organizing maps to qualitative vari-
ables where the Euclidian metric cannot be used directly [8,9]. In this article, we are
particularly interested in complex discrete structures such as sequences and trees. The
article [3] provides an overview of self-organizing networks which have been proposed
for processing spatio-temporal patterns. Naturally, a very common way of processing
structured data with self-organizing mechanisms relies on adequate preprocessing of
sequences. They are represented through features in a finite dimensional vector space
for which standard pattern recognition methods can be used. A simple way of se-
quence representation is obtained by a truncated and fixed dimensional time-window
of data. Since this method often yields too large dimensions, SOM with the standard
Euclidian metric suffers from the curse of dimensionality, and methods which adapt the
metric as proposed for example in [23,30,45] are advisable. Hierarchical and adaptive
preprocessing methods which involve SOMs at various levels can be found e.g. in
the WEBSOM approach for document retrieval [33]. Since self-organizing algorithms
can immediately be transformed to arbitrary metrical structures instead of the standard
Euclidian metric, one can alternatively define a complex metric adapted to structured
data instead of adopting a complex data preprocessing. SOMs equipped with the edit
distance constitute one example [18]. Data structures might be contained in a discrete
space instead of a real vector space in these approaches. In this case one has to specify
additionally how the weights of neurons are adapted. If the edit distance is dealt with,
one can perform a limited number of operations which transform the actual weight
of the neuron to the given data structure, for example. Thereby, some unification has
to be done since the operations and their order need not be unique. Some methods

8 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

propose the representation of complex data structures in SOM with complex patterns,
e.g. the activation of more than one neuron. Activation patterns arise through recursive
processing with appropriate decaying and blocking of activations like in SARDNET
[28]. Alternative methods within these lines can be found in [2].

We are here interested in approaches which equip the SOM with additional recur-
sive connections which make recursive processing of a given recursive data structure
possible. In particular, no prior metric or preprocessing is chosen but the similarity
of structures evolves through the recursive comparison of the single parts of the data.
Various approaches have been proposed in the literature. Most of them deal with se-
quences of real vectors as input data. One approach has been proposed for more general
tree structures and thus including sequences as a special case. We shortly summarize
important recursive dynamics in the following. Thereby, sequences over R” with entries
ay—a, are denoted by [ay,...,a,]. [] denotes the empty sequence. Trees with labels in
R" are denoted in a prefix notation by a(f,...,#4) where a denotes the label of the
root, #; to ¢ the subtrees. The empty tree is denoted by ¢&.

2.1. Temporal Kohonen map

The temporal Kohonen map proposed by Chappell and Taylor [5] extends the SOM
by recurrent self-connections of the neurons such that the neurons act as leaky inte-
grators. Given a sequence [ay,...,a;], the integrated distance of neuron n; with weight
w; is computed as

t
di(t)= o (1= fla; —wi,
j=1
where o €(0,1) is a constant which determines the integration of context information
when the winner is computed. This formula has the form of a leaky integrator which
integrates previous distances of neuron n; given the entries of the sequence. Hence a
neuron becomes the winner if its weight is close to the given data point and, in addition,
the exponentially weighted distance of previous entries of the sequence from the weight
is small. Obviously, an alternative recursive formalization of the integrated distance
d;(j) of neuron i after the jth time step is given by d;(j)=ol|a;—w;|*+(1—a)d:(j—1)
where d;(0) := 0. Training of the TKM is performed in [5] with Hebbian learning after
each time step, i.e. the weights w; are adapted at each time step with respect to the
current input a; according to the standard SOM update rule. Thereby, the winner is
computed as the neuron with the least integrated distance according to the above leaky
integration formula.

The recurrent SOM (RSOM) as defined in [34], for example, uses a similar dy-
namic. However, it integrates the directions of deviations of the weights. Hence the
activation d;(j) which is now an element of R” is recursively computed by d;(0) =0
and d;(j) = ola; — w;) + (1 — a)d;(j — 1). The winner is determined as the neuron
with smallest integrated distance, i.e. smallest ||d;(j)||*. Naturally, this procedure stores
more information than the weighted distance of the TKM. Again, Hebbian learning can
be used at each time step, like in TKM. In [34] an alternative direct training method is
proposed for both, SOM and TKM, which evaluates the condition that at an optimum

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 9

in the weight space the derivative of the quantization error is zero. This quadratic
equation can be solved analytically which yields solutions for optimum weights w;.
Apart from sequence recognition tasks, these models have been successfully applied
for learning motion-directivity sensitive maps as can be found in the visual cortex [12].

2.2. Recursive SOM

The recursive SOM (RecSOM) has been proposed by Voegtlin [50,52] as a mecha-
nism for sequence prediction. The symbols of a given sequence are thereby recursively
processed based on the already computed context. Each neuron is equipped with a
weight w; € R” and, additionally, with a context vector ¢; € RN which stores an acti-
vation profile of the whole map, indicating in which sequential context the vector w;
should arise. Given a sequence [ay,...,a;], the activation of neuron n; at time step j
is defined as d;(0) =0 and

di(j)= o [laj = will> + B - |(exp(=di(j = 1),...,exp(—dn(j — 1)) — ei]®

for j > 0, where o, f > 0 are constants to control mediation between the amount of
pattern match versus context match. Hence the respective symbol is compared with
the weights ;. In addition, the already computed context, i.e. the activation of the
whole map in the previous time step, has to match with the context ¢; of neuron
n; such that the neuron becomes the winner. The comparison of contexts is done by
involving the exponential function exp in order to avoid numerical explosion. If this
exponential transform was not included, the activation d;(j) could become huge because
the distances with respect to all of the N components of the context could accumulate.
The RecSOM has been applied to sequence recognition and prediction of the Mackey—
Glass time series and to recognition of sequences induced by a randomized automaton.
Training has been done with Hebbian learning in these cases for both, the weights w;
of the neurons and their contexts ¢;. Thereby, the parameters (w;,c;) of the recursively
computed winner neuron »; are adapted towards the current input a; and the recursively
computed context; the neighbors of n; are adapted accordingly with a smaller learning
rate. The RecSOM shows a good capability of differentiating input sequences. The
winners represent different sequences which have been used for training [50,52].

2.3. SOM for structured data

The SOM for structured data (SOMSD) has been proposed for the processing of
labeled trees with fixed fan-out & [19,46]. The specific case £k = 1 covers sequences.
It is assumed that the neurons are arranged on a rectangular d-dimensional lattice

structure. Hence neurons can be enumerated by tuples 7= (i,...,iz) in {1,...,N;} X
<o x{l,...,Ng} where N; € N with Ny ----- Ny =N. Each neuron n; is equipped with
a weight w; and k context vectors cf,...,c; in RY. They represent the context of a

processed tree given by the k& subtrees and the indices of their respective winners. The
index /(¢) of the winning neuron given a tree ¢ with root label @ and subtrees #,...,#%

10 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

is recursively defined by
1(&)=(—1,...,—1),
I(a(ty,..., 1))
=argmin; {7~ [la — will> + B [1(t) = T|P + -+ B+ 1) — i]*)-

Hence the respective context of a label in the tree is given by the winners for the &
subtrees. Hereby, the empty tree is represented by an index not contained in the lattice,
(—1,...,—1). The weights of the neurons consist of compact representations of trees
with prototypical labels and prototypical winner indices which represent the subtrees.
Starting at the leaves, the winner is recursively computed for an entire tree. Hebbian
learning is applied for SOMSD. Starting at the leaves, the index 7 of the winner for the
subtrees is computed. The attached weights (wy, c?, ... ,cg) are moved into the direction
(a,1(t1),...,1(t;)) after each recursive processing step, where /(#;) denotes the winning
index of the subtree ¢; of the currently processed part of the tree. The neighborhood is
updated into the same direction with smaller learning rate.

This method has been used for the classification of artificially constructed pictures
represented by tree structured data [19,20]. During learning, a representation of the
pictures in the SOMSD emerges which groups together pictures described by similarly
structured trees with similar labels. In the reported experiments, the pictures generated
by a plex grammar correspond to ships, houses, and policemen with various shapes
and colors. SOMSD is capable of properly arranging objects of these categories, e.g.
houses. Within the clusters a differentiation with respect to the involved features can
be observed like in the standard SOM. Based on this clustering a good classification
accuracy of the objects can be obtained by attaching appropriate classes to the nodes
[20].

3. A general framework for the dynamic

The main idea for a general framework for these models is derived from the obser-
vation that all models share the basic recursive dynamics. They differ in the way how
tree structures or sequences, respectively, are internally represented with respect to the
recursive processing and the weights of neurons. The above models deal with either
sequences over a real-vector space or labeled trees with fan-out k. For convenience, we
shortly introduce these data structures formally. Assume L is a set where the labels are
taken from. In practice, L is often embedded in some real-vector space. Sequences over
L refer to objects [ay,...,a,] where a; € L and ¢t > 0 denotes the length of the sequence.
If t =0, the empty sequence [] is dealt with. Sequences can be considered as trees
with fan-out 1 over L. More generally, trees with fan-out & over L consist either of the
empty tree £, or of a root node labeled with an element a € L and k subtrees t,..., 4
over L some of which might be empty. Such a tree is referred to as t=a(ty,...,#). The
root node of ¢ is referred to as parent for the root nodes of ¢1,...,#, and the root nodes
of t1,...,1, are referred to as children of the root node of ¢. Nodes of the tree which
have only empty subtrees are referred to as leaves. A sequence [sy,...,s;] corresponds

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 11

(3 (2
® (a OO

DO® OO ©O
@@ ©

Fig. 1. Example for two trees. Thereby, empty children are omitted. The left tree has fan-out 3 and
the right one has fan-out 2. Labels are taken from {a,b,c,*,=,+}. Prefix notation of the left tree is
a(b(&,&,8),a(b(E,E,8),c(E,E,8),b(E,E,8)), &) resp. a(b,a(b,c, b)), if empty trees are omitted in the presen-
tation. The right one is represented by =(+(x(a,a), *(b,b)), *(c,c)) (which is a® + b* = ¢*) omitting empty
trees.

to the tree s,(s;—1(...(s1(&)...))) when the last element of the sequence is taken as
root of the tree. Note that terms, logical formulas, and elements of other domains such
as chemistry or games can often naturally be represented as tree structures. Two trees
representing terms are depicted in Fig. 1.

For simplicity, we will here focus on binary trees with labels in some set W, i.e.
each node has at most two children. The generalization to trees with fan-out £, in
particular sequences which are trees with fan-out 1 is obvious. Labels of trees may
origin from an arbitrary set W, e.g. a real vector space or a discrete set of labels. Let
denote by W the set of binary trees with labels in /. We use again a prefix notation
if the single parts of a tree are referred to; a(t),) represents the tree with root label
a and subtrees #; and 7,. As above, the empty tree is denoted by . How can this type
of data be processed in an unsupervised fashion? We here define the basic ingredients
and the basic dynamic or functionality of the map. I.e. given a trained map and a new
input tree, how is the winner for this tree computed? Based on this general dynamic,
which as a special case includes the models described above, i.e., TKM, RecSOM,
and SOMSD, a canonic formulation of Hebbian learning will be derived in the next
section.

The processing dynamic is based on the following main ingredients which define the
general SOM for structured data or GSOMSD, for short:

(1) The set of labels W together with a similarity measure dy : W x W — R (usually,
images are contained in the non-negative real numbers).

(2) A set of formal representations R for trees together with a similarity measure
dr : R X R — R (again, the image is usually restricted to the non-negative num-
bers). Denote the priorly fixed formal representation of the empty tree & by 7.
The adequate formal representation of any other trees will be computed via the
GSOMSD.

(3) A set of neurons N of the self-organizing map which we assume to be enumerated
with 1,...,N=|N|, for simplicity. A weight function L=(Lo,Li,Ly): N — W xXRXR
attaches a “weight” to each neuron. For each neuron this consists in the map of a
triple consisting of a prototype label and two formal representations.

12 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

(4) A representation mapping rep: RY — R which maps a vector of activations of all
neurons into a formal representation.

The idea behind these ingredients is as follows: a tree can be processed iteratively;
starting at the leaves, it can be compared with the information contained in GSOMSD
until the root is reached. At each step of the comparison the context information
resulting from the processing of the two subtrees should be taken into account. Hence
a neuron weighted with (w,c,c¢;) in the map is a proper representation of the entire
tree a(ty,ty) if the first part of the weight attached to the neuron, w, represents a
properly, and ¢; and ¢, represent correct contexts, i.e. they correspond to #; and #. w
and a can be compared using the similarity measure dy directly. ¢; and ¢, are formal
descriptions of the contexts, which could be some pointers or some reduced description
for the context and which should be compared with #; and ¢#,, respectively. For this
purpose, ¢; and t, can be iteratively processed yielding a context, i.c. an activation of
all neurons in the map. This activation can be transferred to a formal description of
the context via the representation mapping rep. The comparison of the output with ¢;
is then possible using the metric dz on the formal representations.

This so far verbal description can be formalized by the following definition which
allows to compute the recursive similarity or activation d of a node n given a tree

a(t,)
d(a(ti,12),n) = o - dy(a, Lo(n;))
+B - dr(R1,Li(n;)) + p - dr(Ro, La(n;)),
where
R re if t;=¢,
/ rep(c?(t_,—,nl) ,ci(t_]-,nN)) otherwise.

for j =1,2 and o, f > 0 are weighting factors. We will refer to this dynamic as gen-
eralized SOM for structured data or GSOMSD, for short. The choice of o and f
determines the importance of a proper context in comparison to the correct root label
of the representation. The set R enables a precise notation of how trees are internally
stored in the map. The function rep constitutes the interface which maps activity pro-
files to internal representations of trees. The recursive similarity yields the activation
of all neurons for an input tree. Applying rep, we can obtain a formal representation
of the tree. In order to use the resulting map, for example for information storing and
recovering, we can determine a neuron with highest responsibility, i.e. a neuron which
fires, or the winner, given the input tree. This could be the neuron with highest or
lowest recursive similarity, depending on the meaning of d, e.g. depending on the fact
whether dot products or distances are used for the computation of the similarities. A
picture which explains the processing in one recursive step can be found in Fig. 2.
Note the following:

(1) The labels of the input trees might come from a proper subset of W, e.g. if
discrete data are processed, and the representations of the neurons lie in a real
vector space. dy is often the squared standard Euclidian metric or induced by
any other metric; however, at this point, we do not need special properties of d .

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 13

---- (w,r,r)
a 7‘? |a'W|
;p@-rl .refm-f.
rep() rep(t)
] 7 I_JE 4\
/ 1 | L1\
i) i
t t

Fig. 2. One recursive processing step: given a tree a(z,¢’), the distance from a neuron weighted with (w,r, ")
is computed weighting the distances of a from w, and the distances of » and 7/, respectively, from the
representations of 7 and /. These latter representations can be obtained recursively processing the trees and
applying rep to the obtained activity profile of the map.

(2)

3)

The formal representations R should represent trees in a compact way, e.g. in a
finite dimensional vector space. As an example, they could be chosen simply as
the index of the neuron with best recursive similarity if a tree is processed with a
trained self-organizing map. The idea behind is that a connectionistic distributed
representation of a tree emerges from the processing of the tree by the map.
The formal description could be a shorthand notation, a pointer for this activity
profile. Based on this assumption we can compare trees by comparing their formal
descriptions.

The neurons can be considered as prototypes for trees, i.e. their root label and their
subtrees. The latter are represented by their formal representations. Note that we
did not introduce any lattice or topological structure of the neurons at this point.
The definition of a topology of the self-organizing map does not affect the re-
cursive similarity of neurons given a tree. However, a topological structure might
be used for training. In addition, it might prove beneficial for specific applica-
tions: a two-dimensional neighborhood structure, for example, allows appropriate
visualization of a given map.

14 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

(4) The mapping rep maps the recursively processed trees which yields an activity
profile of the neurons into a formal description of trees. It might be simply the
identity or an appropriate compactification, for example. However, it is no longer a
symbolic tree representation but a connectionist description based on the activation
of the GSOMSD.

Obviously, the GSOMSD can be easily defined for trees with fan-out & where £ # 2.
In particular, the case of sequences, i.e. k =1 is therein included. When considering
trees with fan-out k, the weight function is of the form L=(Lo,L,,...,L;): N — W xRk,
i.e. k contexts are attached to the neurons corresponding to the fan-out k. The recursive
processing reads as

d(a(ti,... tx),n;)
=o-dy(a,Lo(n;))+ p-dr(Ri,Li(n;)) + - -+ B - dp(Ri, Li(n;)),

where

re if t;=¢,
R, = . .
! rep(d(tj,ny),...,d(t;,ny)) otherwise.

This abstract definition captures the above approaches of structure processing self-
organizing networks. We prove this fact for the case of binary input trees. The transfer
to sequences is obvious.

Theorem 1. GSOMSD includes the dynamic of SOM, TKM, RecSOM, and SOMSD
via appropriate choices of R.

Proof. SOM: For SOM, we choose R =) and dz = 0. Then no context is available
and hence only the labels of the root of the trees, or elements in W, respectively, are
taken into account.

TKM: For the TKM, the ingredients are as follows:

(1) Define W = R". dy is the squared Euclidian metric.

(2) R = RY explicitly stores the activation of all neurons if a tree is processed, N
denotes the number of neurons. The similarity measure dy is here given by the
dot product. The representation for the empty tree ¢ is the vector 7 = (0,...,0).

(3) The weights of the neurons have a special form: in neuron n; with L(n;)=(w,c1,¢2)
the first parameter may be an arbitrary value in R” obtained by training. The
contexts ¢; = ¢, coincide with the unit vector which is one at position i/ and 0
otherwise. Hence the context represented in the neurons is of a particularly simple
structure. One can think of the context as a focus: the neuron only looks at its
own activation when processing a tree; it does not care about the global activation
produced by the tree. Mathematically, this is implemented by using the dot product
dp of the context with the unit vector stored by the neuron.

(4) rep is simply the identity, no further reduction takes place.

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 15

Then the recursive dynamic reduces to the computation J(a(tl, ty),n;)=a- ||afL0(n,-)||2+
p- a?(tl,ni) +p- d~(t2,n,~) for t1,t, # &. If we choose f =1 — o and consider the case
of sequences, this is just a leaky integrator as defined above. An analogous dynamic
results for tree structures which does not involve global context processing but focuses
on the activation of a single neuron. The winner can be computed as the neuron with
smallest value d.

RecSOM: For RecSOM, we define:

(1) Define W =R". dy is the squared Euclidian metric.

(2) Define R = R where N is the number of neurons in the self-organizing map. dy
is the squared Euclidian metric. Here the formal description of a tree is merely
identical to the activation of the neurons in the self-organizing map. No reduction
with respect to the dimensionality takes place. The representation for the empty
tree ¢ is the origin (0,...,0).

(3) The neurons are organized on a lattice in this approach; however, this arrangement
does not affect the processing dynamics.

(4) Choose rep =rep, where repp(xi,...,xy) = (exp(—x1),...,exp(—xy)). The expo-
nential function is introduced for stability reasons. On the one hand, it prevents
the similarities from blowing up during recursive processing; on the other hand, it
scales the similarities in a nonlinear fashion to make small similarities getting close
to zero. Noise which could disturb the computation due to the large dimensionality
of R is suppressed in this way. However, no information is gained or lost by the
application of the exponential function.

These definitions lead to the recursive formula c?(a(tl,tzg,n,-) =o-|a-— Lo(n~,~)||2 +p-
[Ri — Li(n)||* + B - [|[Ry — La(n)||* where R; = (exp(—d(t,m1)),...,exp(—d(t;,ny)))
for j=1,2 and #,1, # . If we restrict the fan-out to 1, we get the dynamic of Rec-
SOM as introduced above. The winner is again computed as the neuron with smallest
value d.

SOMSD: We choose for SOMSD:

(1) Define W = R",dy is the squared Euclidian metric.

(2) R is the real vector space which contains the set of indices of neurons in the
self-organizing map. If the neurons lie on a d-dimensional lattice, R = R? - dj is
the squared Euclidian distance of the lattice points. In addition, the representation
of the empty tree ¢ is a singular point ¢ outside the lattice, e.g. (—1,...,—1).

(3) The neurons are connected to a topological structure: the d-dimensional lattice. The
weighting attaches appropriate values in W x R x R to all neurons. The weights are
trained by Hebbian learning. Note that the above assumed enumeration 1,...,N of
neurons can be substituted by an enumeration based on this lattice with elements
76{1,...,]\’1} X - X {1,...,Nd}.

(4) We choose rep = repg as follows: the input domain of repg, the set RY where N
denotes the number of neurons, can be identified by RM > *Ni rep. maps a
vector of similarities to the index of the neuron with best similarity: repg(x(1,..,1),- -,

,,,,,

16 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

We assume here that an ordering of the neurons is given. In the case of multiple
optima, we assume implicitly that the first optimum is chosen.

With this definition we obtain the general formula d(a(t,t),n;) = o - ||a — Lo(n;)||* +
B-IIRy — Li(n)|[* + B - |[Ra — La(n;)||* for the recursive similarity for non-empty trees
t; and t, where R, and R, are the indices of the neurons which are the winners for
t; and t,, respectively. The winner of the map can again be computed as the neuron
with smallest d. [

Note that in all of the above examples d corresponds to a distance which has been
computed within the GSOMSD. This is the standard setting which can also be found in
the standard SOM: given an input, the neurons compute an activation which measures
their distance from the respective input. Afterwards, the winner can be determined as
the neuron with smallest distance. Note that this interpretation as distance is common,
but more generally we could interpret the similarity d as the activation of the neu-
rons for an input signal. Then, general supervised recurrent and recursive networks are
included in the above framework, too, as can be seen by the following argument. Var-
ious different dynamics for discrete time recurrent neural networks (RNN) have been
established in the literature [35]. Most of the models can at least be simulated or ap-
proximated within the following simple Elman-dynamic which is proved in Ref. [21].
Assume that sequences with entries in R” are dealt with. The N neurons ny,...,ny
are equipped with weights w' = (wi,w})€ R""N. Denote by tanh the hyperbolic tan-
gent. Then the activation of the neurons D e RY given a sequence [ay,...,a,] can be
computed by

D([])=(0,...,0),
D([ay,...a,]) = (tanh(w} - @, + w} - D([ay,...,a,_1]))),
...,tanh(w) - a, + wY - D([ay,...,a;_1])),

where ‘-’ denotes the dot product of vectors. Often, a linear function is added in order
to obtain the desired output from D.

RNNs can be generalized to so-called recursive neural networks (RecNN) to deal
with tree structures. Here, we introduce the dynamic for binary trees with labels in
R". Neurons are weighted with w = (wj), w},w}) € R"N*N_ The activation D € RV can
recursively be computed by

D(&)=(0,...,0),
D(a(t1,1,)) = (tanh(wg - a + wy - D(t1) + w; - D(1)),
...,tanh(w) - a, +w) - D(t;) + wh - D(1))),

where again often a linear function is added to obtain the final output.

Theorem 2. RecNNs can be formulated within the dynamic of GSOMSD.

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 17

Proof. Choose o= =1 and choose in the recursive computation the following ingre-
dients:

(1) W =R",dy is the dot product.

(2) R=RY stores the input net of all neurons, dg is the dot product, r: = (0,...,0).

(3) the N neurons are equipped with the weights Lo(n') = wj, Li(n') = wi, and
Ly(n') = wh.

(4) rep(xy,...,xy) = (tanh(xy),...,tanh(xy)).

In this way we obtain the so-called input net of the neurons as recursive similarity
d, i.e. tanh(d) = D where tanh denotes component-wise application of the hyperbolic
tangent. Hence, if we substitute the computation of the final winner by the function
tanh with a possibly added further linear function, we obtain the processing dynamic
of recurrent and recursive networks within the GSOMSD dynamic. [J

We could even allow activations of the neurons to be more general than simple
one-dimensional vectors and also not corresponding to distances. A dimensionality /
of the activation vector of the neurons could be chosen, and d € R’ and dy and dy
would be chosen as /-dimensional vectors. In this case, the sum o-dy + f-dr+ f - dg
denotes scalar multiplication and addition of vectors. This setting allows to model
RSOM, for example, which, unlike the TKM, stores the leaky integration of the input
directions instead of the integration of distances. We obtain an analog of RSOM for
binary trees if we choose R = (RY)/, Li(n;) = Ly(n;) = (e;,...,e;), e; denoting the ith
unit vector in RY, dr((rl,....rH), (13,r))=(rl - ¥3,...,r} - 1?), rep as the identity,
and d,.(a;,a2) = a; — ap. Then the recursive dynamic becomes c?(a(tl,tz),ni) =o(a —
Lo(n:)) + Bd(t1,n;) + Pd(t2,n;). For fan-out 1 and f# = (1 — o), this is the recursive
formula of RSOM.

Of course, a computation of the combination of similarities more general than a sim-
ple weighted sum is also possible. In this case the computation ady + Bdg -+ fdg : W? x
R? x R?> — R! would be substituted by a mapping @ : W? x R* x R> — R’ which maps
the inputs given by the actual processed tree and the weights attached to a neuron to the
new activation of this neuron. Such more general mechanism could for example model
the so-called extended Kohonen feature map (EKFM) or the self-organizing temporal
pattern recognizer (SOTPAR) [11,27]. The EKFM equips the SOM with weighted con-
nections w;; from neuron 7 to j which are trained with a variant of temporal Hebbian
learning. Given an input sequence, a neuron n; can only become active, if it is the
neuron with smallest distance from the actual pattern, and, in addition, the weighted
sum of all activations of the previous time step, weighted with the weights wy;, is larger
than a certain threshold 6,. It may happen that no winner is found if the sequence to
be processed is not known. This corresponds to the fact that the neuron with smallest
distance does not become active due to a too small support from the previous time
step. This computation can be modeled within the proposed dynamics, given an appro-
priate choice of @, if d is two-dimensional for each neuron, the first part storing the
current distances, the second part storing the fact whether the neuron finally becomes
active.

18 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

SOTPAR activates at each step the neuron with minimum distance from the currently
processed label, for which all neurons lying in the neighborhood of a recently activated
neuron have a benefit, i.e. they tend to become winner more easily. This is modeled
by storing a bias within each neuron, which is initialized with 0 and which is adapted
if a neighbored neuron or the neuron itself becomes a winner, and which gradually
decreases to 0 over time. This bias is subtracted from the current distance at each time
step, such that the effective winner is the neuron with smallest distance and largest
bias. Again, this dynamic can easily be modeled within the above framework if the
states of the neurons are two-dimensional, storing the respective distance and the actual
bias of each neuron, and if again @ is chosen appropriately.

In the following, we will focus on the dynamics of GSOMSD, i.e. the states of the
neurons are one-dimensional and correspond to distances or similarity values, and @ has
the specific form as defined above. We will discuss Hebbian learning and learning based
on an energy function for GSOMSD. Moreover, we will describe the concrete setting
for SOMSD and RecSOM adapted for binary trees. These two methods both rely on
reasonable contexts, the winner, or the exponentially transformed activation of the entire
map, respectively. SOMSD and RecSOM can be seen as two prototypical mechanisms
with a different degree of information compression: SOMSD only stores the winner
whereas RecSOM stores an activity profile which, due to the exponential transform,
focuses on the winners, too. We will not describe the concrete setting for TKM, because
this mechanism is restricted with respect to its capability of tree recognition: it can be
proved that local contexts as used in TKM are not sufficient for the task of storing
trees of arbitrary depth [22].

4. Hebbian learning

In order to find a good neural map, we assume that a finite set of training data 7 =
{T,....Ts} C w# is given. We would like to find a neural map such that the training
data is represented as accurately as possible by the neural map. In the following,
we discuss training methods which adapt the weights of the neurons, i.e. the triples
(x,r1,r,) attached to the neurons. This means that we assume that only the function L
can be changed during training, for simplicity. Naturally, other parts could be adaptive
as well, such as the weighting terms o and f3, the computation of formal representations
rep, or even the similarities dy and dg. Note that some of the learning algorithms
discussed in the following can be immediately transferred to the adaptation of additional
parameters involved in e.g. rep.

There are various ways of learning in self-organizing maps. One of the simplest
and most intuitive learning paradigms is Hebbian learning. It has got the advantage of
producing simple update formulas and it does not require any further properties of, e.g.
the functions involved in d. Alternatives can be found if an objective of the learning
process is explicitly formulated in terms of a cost function which must be optimized.
Then gradient descent methods or other optimization techniques, such as a genetic
algorithm, can be applied. A gradient descent requires that the involved functions
are differentiable and that W and R are real-vector spaces. Actually, most unsuper-

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 19

vised Hebbian learning algorithms for simple vectors, although designed as a heuristic
method, can be interpreted as a stochastic gradient descent on an appropriate cost func-
tion. Hence the two paradigms often yield to the same learning rules for simple vectors.
We investigate the situation for structured data in the following.

Here we will first discuss Hebbian learning for structured data and adapt several cost
functions for self-organizing maps to our approach, afterwards.

We would like to find a proper representation of all trees 7; of the training set 7' and
all its subtrees in the neural map. Since the computation of the recursive similarities
for a tree 7; uses the representation of all its subtrees, it can be expected that an
adequate representation of 7; can only be found in the neural map if all subtrees of
T; are properly processed, too. Therefore, we assume that for each tree contained in
T all its subtrees are contained in 7, too. This property of 7 is essential for efficient
Hebbian learning. It can be expected that this property is beneficial for learning based
on a cost function as well. Therefore we implicitly assume in the following that the
training set 7' is enlarged to contain all subtrees of each 7; € T. Hebbian learning
characterizes the idea of iteratively making the weights of the neuron which fires in
response to a specific input more similar to the input. For this purpose some notation of
‘moving into the direction of” is required. We assume the following two functions to be
given:

o A function mvy : W X W x R — W,(wy,wa,1) — mvuy(wi,wp,1) which allows an
adaptation of the weights wy stored in the first position of a neuron into the direction
of the input w, by degree 5. If W is a real vector space, this function is usually
just given by the addition of vectors: mvy (wy, wa,n) = w; + n(w, — wy). If discrete
weights not embedded in a real vector space are dealt with, adaptation can be based
on a discrete decision:

a if n<0.5,
va(asby ’1) =

b otherwise.

If a and b are compared using the edit distance, for example, a specific number of
operations which transform « into b could be applied depending on the value of 7,
as proposed in [18] for the standard SOM.

e A function mvg:R X R x R — R,(r1,r,n) — mug(ry,ry,n) which allows us to
adapt the formal representations in the same way. If the formal representations are
contained in a real vector space as in SOMSD or the recursive SOM, for example,
this is given by the addition of vectors, too. Alternatively, we can use discrete
transformations if R consists of a discrete set.

Note that we can also handle discrete formal representations in this way. We first
formulate Hebbian training for the analogy of SOM-training for the GSOMSD. Here,
an additional ingredient, the neighborhood structure or topology is used: assume there
is given a neighborhood function

nh:N x N — R,

20 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

which measures the distance of two neurons with respect to the topology. Often, a
lattice structure is fixed a priori and this lattice of neurons is spread over the data during
training. It might consist of a two-dimensional lattice and the neurons enumerated by
(1,1),(1,2),...,(Ny,N2) accordingly. For this two-dimensional lattice nh(n;, ;,), 1, j,))
could be the distance of the indices |iy — ix| + |j1 — j2|, for example. However, the
lattice structure could be more complex such as a hexagonal grid structure or a grid
with exponentially increasing number of neighbors [41]. In this case, an algorithm can
be written as follows:

initialize the weights at random
repeat.
choose some training pattern T
for all subtrees t =a(t,t;) in T in inverse topological order:
compute c?(a(tl,tz),n,») for all neurons n;
compute the neuron n;, with greatest similarity
adapt the weights of all neurons n; simultaneously:
Lo(n;) := mow(Lo(n;), a, n(nh(n;, n;,)))
Li(n;) := mop(Ly(n;), Ry, n(nh(ni, ni;)))
La(n;) := mor(La(n;), Ry, n(nh(n;, ny))))
where

(%) Rj:{

rep(c?(tj,nl), .- ,c?(tj,nN)) otherwise

for j€{1,2}; n : R — R is a monotonically decreasing function. Often, n(x) =
o exp(—x/a?) where 7y > 0 is a learning rate which is decreased at each step in
order to ensure convergence; ¢ > 0 is a term which determines the size of the neigh-
borhood which is taken into account. Usually, ¢ is decreased during training, too. The
dependence (x) requires the recomputation of the recursive similarity for all subtrees
of (#1,t;) after changing the weights. This is, of course, very costly. Therefore, the
recursive similarity d is usually computed only once for each subtree of a tree, and
the values are uniformly used for the update. This approximation does not change
training much for small learning rates. Hebbian learning has been successfully applied
for both, SOMSD and RecSOM. See for example the literature for the classification of
time series or images [19,20,46,50,52].

We would like to point out that the scaling term n(nh(n;,n;,)) might be substituted
by a more general function # which depends not only on the winner but on the whole
lattice, i.e. it gets as input the distances d(a(t1,t,),n;) of all neurons n;. This more
general setting covers updates based on the soft-min function or the ranking of all
neurons, for example, such as the k-means algorithm.

Two alternatives to SOM proposed in the neural networks literature are vector quan-
tization (VQ) and neural gas (NG) as introduced in Section 2. We obtain an analogy
for VQ in the case of structured data if we choose as neighborhood structure:

1 ifi=],

0 otherwise.

n(nh(n;,n;)) = {

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 21

This yields a learning algorithm that can handle both, sequences and trees, because of
the respective context; however, no topology preservation takes place. A lattice struc-
ture is not accounted for by the VQ algorithm. VQ would constitute an alternative
to SOM training for the RecSOM. For SOMSD, the metric dp of the internal rep-
resentations R in SOMSD would yield random values for VQ which depend on the
initialization of the map and the order of presentation of the examples. As a conse-
quence of this argumentation, adaptation of the representations is necessary to apply
VQ in this case. Assume the neurons being enumerated by 1,...,N. Then the alter-
native rep,(xy,...,xx) = (0,...,0,1,0,...,0) as the vector with entry 1 at place 7 iff
x; < x; for all j # i instead of repy has the effect of decoupling the indices. Note that
we can easily apply a form of Hebbian learning to this representation. A fast computa-
tion can look like this: choose the similarity measure dy as the dot product and restrict
R={reRY|>" r;=1}. We can store the formal representations attached to a neuron in
the form (ry,...,7v)/c where ¢ is a global scaling factor for the components for each
representation. Given a tree a(f;,t,) such that neuron ng is the winner for a(¢,%,) and
the neurons n; and n, are the winners for #; and #,, respectively, we adapt the weights
Li(ng) and L,(ng) in the following way with Hebbian learning: the component repre-
senting n; and n,, respectively, is increased by a fixed constant ¢, the global scaling
factors ¢ for the two representations are increased by ¢. As a consequence, we obtain
implicit normalization of the formal representations.

The neural gas algorithm as explained in Section 2 determines the respective
neighborhood from the given training example and its distances to all neurons. Hence
the update in the above algorithm given a tree #; becomes

Lo(l’l,‘) : :mUW(LO(ni)’a5 W(Vk(J,l)))»
Ll(ni) : :mUR(Ll(ni):Rl: W(Vk(]al)))a
La(n;) : =mug(La(n;), Ra, n(rk(j,1))),

where rk(j,i) denotes the rank of the neuron n; ordered according to the current dis-
tance from the input, i.e. if the tree #; is currently processed, rk(j,i) denotes the
number of neurons #7; such that J(tj,ni) < a?(tj,nk). n(x) can for example possess the
form 19 exp(—x/c?). This update makes sure that neurons which have similar activa-
tion adapt the respective weights into the same direction. Finally, those neurons are
neighbors according to this data driven implicit lattice, which constitute the first and
second winner for at least one data point. Naturally, the resulting neighborhood struc-
ture is less regular. It need not be in accordance with the lattice, and it proposes an
alternative to SOM with data oriented lattice. This method is proposed as an alternative
lattice for RecSOM in [51]. Like in the case of vector quantization, the representation
R in SOMSD requires adaptation. The distance between indices should be dynamically
computed during the training algorithm according to the ranking with respect to the
given data point. This behavior can be obtained if we choose R as RY, dy as the
squared Euclidian metric, and if we choose the representation function rep,, where the
ith component of repy(xi,...,x,) is the number of x; such that x; <x;, i.e.

repy(xi,...,x,) = (rk(xy),...,rk(xy)).

Hereby, rk(x;) denotes the number of x; with x; < x;.

22 B. Hammer et al. | Neurocomputing 57 (2004) 3-35
5. Learning as cost minimization

For SOM, NG, and VQ efforts have been made to derive the Hebbian learning
rules alternatively as stochastic gradient methods with appropriate cost functions for
simple vector data. Assume that a given differentiable cost function £ can be written in
the form Za[E(a;), a; denoting a training pattern; a stochastic gradient descent with
respect to weights w has the form

initialize the weights at random

repeat : choose a training pattern a;
OE(a;)

update w : =w —n B

where 17 > 0 is the learning rate. Note that Hebbian learning is similar to this update.
It is desirable to prove that Hebbian learning also obeys a stochastic gradient descent
with appropriate choice of #. This holds for simple vectors, for example. As a con-
sequence, a prior mathematic objective can be identified and alternative optimization
methods, in particular global optimization methods like simulated annealing can be used
as an alternative. Moreover, there exist well-known guarantees for the convergence of
a stochastic gradient descent if the learning rate # (which may vary over time) fulfills
certain properties, see e.g. [36,37].

However, a simple computation shows that the learning for structured data as intro-
duced above cannot be interpreted as an exact gradient descent method. The update
formula for Hebbian learning for the GSOMSD has the form:

Lo(l’l,‘) : :mUW(LO(ni)’ a, n(”h(]’ l)))’
Li(n;) : =mvgr(Ly(n;), R1, n(nh(j,1))),
Lz(l’l,‘) : :mUR(LQ(ni)s Rz, 77(”"(]: l)))’

where nh(j,i) depends on the neighborhood which is a priorly given lattice, a data
driven ranking, or the characteristic function of the winner neuron in the respective
cases. For the squared Euclidian metric, the term muvg(Li(n;), Ry, n(nh(j,i))) is chosen
as Ly(n;) — n(nh(j,i)) - (Ly(n;) — Ry) for k € {1,2}. For general metric dg, it might be
chosen as Ly(n;) — n(nh(j,i)) - 0dr(Li(n;), Ry)/ 0Ly (n;). If this formula is interpreted as
a stochastic gradient descent, the theorem of Schwartz must hold, i.e.

O(n(nh(j,i)) - 0d p(Ly(n;), Ry)/ OLk(n;))
aLl(nm)

_0(n(nh(j,m)) - 0dr(Li(nm),R;)/OLi(ny))
B 0Ly (n;)

is valid for all weights L;(n,,). The partial derivatives separate into two summands. The
first one depends on the derivative of the respective neighborhood n(nh(j,m)). Thereby
only the borders of receptive fields usually contribute and depending on the respective
choice of the neighborhood, an equality of the terms on the left- and right-hand side can

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 23

be established like in the case of simple vector data. The second summand of the above
derivative yields the terms n(nh(j,i))-0*dg(Li(n;), Ry)/0Ly(n;)OL;(n,,) for the left-hand
side and for the right-hand side we obtain n(nh(j, m))-0>dr(Li(1y), R;)/OL (1)0Lk(1;).
Note that R; depends on Li(n;) and R, depends on L;(n,). Hence the two terms do
usually not coincide: R; and Ry are entirely different functions for the weights. For
VQ, for example, the term #(nh(j,i)) is nonvanishing only for i = j, in which case
the above second derivative yields a non-vanishing contribution, whereas the product
vanishes for all choices i # j. Hence Hebbian learning for structured data does not in
general correspond to gradient descent.

We would like to investigate which learning rules result for appropriate cost functions
and how they relate to Hebbian learning. We first have a look at SOM, VQ, and NG
for simple vectors. Denote the simple labels or vectors used for training by «;. The
weights of the map are denoted by w;. The cost function of VQ for the case of simple
vectors has the form:

1
Ey =3 DO aanwp)la —will,
j

i

where y(a;, w;) denotes the characteristic function of the receptive field of wj, i.e. it is
1 if n; is the winner for g; and 0 otherwise. Taking the derivatives with respect to the
weights w; yields the learning rule of VQ. Note that the derivatives of y are computed
using the J-function. We ignore this point for simple vectors and provide a detailed
derivation of the formulas including the borders of y for the structured case. The cost
function of NG is (up to constants) of the form [39]

1 ..
Ev =530 > n(ekGo i)l —wilP,
i

where rk(i,j) denotes the rank of neuron n; if the neurons are sorted according to
their distance from the given data point. SOM itself does not possess a cost function
which could be transferred to the continuous case, i.e. if a data distribution instead of
a finite training set is considered [10]. For the discrete case (i.e. a finite data set), an
energy function can be constructed [42,43]. The article [25] proposes a cost function
for a slightly modified version of SOM: even for the continuous case

1 .
Es =5 > us(i)) Y nluh(ngn)|a; — we?
i k
where ys(i,j) denotes the characteristic function of the receptive field of the winner,
and a slightly modified definition of the winner is used:
LAf > n(mh(ngne))a; — will,
k

xs(i,j) = < Z n(mh(n;r,ny))||a; — wy||* for all j,
k

0 otherwise.

24 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

Hence the winner in the above cost function as well as the modified learning rule of
SOM is not the neuron with smallest distance but the neuron with smallest averaged
distance with respect to the local neighborhood.

Obviously, all of the above cost functions have the form:

E=Y" f(lai—wil*.... lai = wy[*)

with a function f chosen according to the specific setting, e.g. the function equals
flai=wil,... llai —wy|*) =12 >, raiwy)lla; — w;||* for VQ. This general scheme
allows an immediate transfer of the above cost functions to the structured case: the
term |la; — w;||* is substituted by the respective recursive similarity of the neurons for
a given tree structure. Given a neural map for structured data with neurons n; and a
training set 7 = {T},...,T,} which is complete with respect to subtrees, the general
cost function has the form

E=> f((T,N)),

tET

where aNI(T,-,N) denotes the vector (ci(ﬂ,nl),...,c?(l},n]v)). If f is chosen correspond-
ing to the above cost functions of VQ, NG, or SOM, this measure can be taken as
an objective for the structured case. Taking the derivatives we obtain formulas for a
stochastic gradient descent in the structured case. It will be shown that Hebbian learn-
ing as introduced above constitutes an approximation of a stochastic gradient descent
for the cost functions of NG, VQ, or SOM which disregards the contributions in the
error function due to substructures.

We start computing the derivatives of the above general function with respect to the
weights of the neurons. For this purpose, we assume that ' and R are contained in a
real vector space, and we assume that all involved functions including f', rep, dg, and
dy are differentiable. (They are not e.g. for SOMSD, we will discuss this point later.)
The derivative with respect to a weight L;(n;) for 7 €{0,1,2} and J € {1,...,N} yields

N

0f(d(Ti,N)) _ 3 0f(d(T;,N)) 2d(Ty,n;)
0L (ny) 3d(T;,n)) 0L(ny)

j=1

The first part depends on the respective cost function, i.e. the choice of f. It
often involves the use of o-functions for computing the derivatives because f is
built of characteristic functions. The second component can be computed as follows:

Define 0;f(xy,...,x,) : =0f(x1,...,x,)/0x; for i <n as a shorthand notation.
If f=(f1,...,fw) 1s a vector of functions, then the term 0;f(xy,...,x,) denotes
the vector (0; f1(x1,...,Xn)s--s Oi frn(X1,...,X,)). If x; is a vector (x;1,...,Xm), we de-

fine 0; f(x1,...,x,)=(0f (x1,...,%,)/0xi1,..., 0 f(X1,...,X,)/0xim). As above, we use the
abbreviation

}"5 lf fj = é,
R; = . ~
! rep(d(tj,ny),...,d(t;,ny)) otherwise

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 25

for j€{1,2} and we denote the corresponding derivative with respect to a variable x
by
0 if t;=2¢,
R =1 & . . .
> direp(d(t,m).....d(tj,ny)) - 3d(t;,n))/dx otherwise
I=1

for j€{1,2}. Then we have

dd(a(t1, 12),n)/0Lo(ny) = 0, 02w (a, Lo(n;)) (1.1)
+ BO1dr(R1,Li(n})) - OR1 1o(n)) (1.2)
+ BO1dr(Ra, La(n})) - OR2, 14(n)) (1.3)
for the first components of the weights where d;; € {0, 1} is the Kronecker symbol with
0jj=1<i=j. ° denotes the dot product. For the formal representations attached to
a neuron we find
od(a(tr, 12),n;)/OLi(ny) = ;s 02dR(R1, Li(n))) 2.1)
+ BO1dr(Ry,L1(n;)) - OR1 1,(n)) (2.2)
+ BO1dr(Ra, La(n})) - OR2,1,(n)) (2.3)
and
dd(a(ti,t2),n))/0La(ny) = d,s82dr(Ra, La(n))) (3.1
+ BO1dr(Ry,Li(n)) - ORY 1,(ny) (3.2)
+ BO1dr(R2, Lo(nj)) - OR2 1, (n))- (3.3)

Hence the derivatives can be computed recursively over the depth of the tree. Starting
at the leaves, we obtain formulas for the derivatives of the respective activation with
respect to the weights of the neurons. The complexity of this method is of order
NTWR, N denoting the number of neurons, 7' the number of labels of the tree, W the
dimensionality of the weights of each neuron, and R the dimensionality of R.

Note that the first summands of the derivatives yield terms which occur in Hebbian
learning, too: 0,dg(a,b) and 0,dg(a,b) coincide for the squared Euclidian metric with
the terms —2(a — b) or 2(a — b), respectively. Hence we get the original Hebbian
learning rules if we only consider the first summands and involve the respective terms
arising from f for NG, VQ, and SOM. Hebbian learning disregards the contribution of
the subtrees because it drops the latter two summands in the above recursive formulas
for the derivatives. Hence unlike the simple vector case where Hebbian learning and a
stochastic gradient descent coincide, structured data causes differences for the methods.
However, the factor f§ is usually smaller than 1; i.e. the weighting factor for the two
additional terms in the above gradient formulas vanishes exponentially with the depth
since it is multiplied in each recursive step by the small factor f. Therefore, Hebbian

26 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

learning can be seen as an efficient approximation of the precise stochastic gradient
descent.

Nevertheless, the formulation as cost minimization allows to also formulate super-
vised learning tasks within this framework. Assume a desired output y; is given for
each tree 7;. Then we can train a GSOMSD which approximately yields the output
yi given T; if we minimize), (y; — d(T;,N))* with a stochastic gradient descent.
We have already shown that supervised recursive networks can be simulated within
the GSOMSD dynamic. The introduction of the above error function introduces train-
ing methods for these cases, too. The respective formulas are in this case essentially
equivalent to the well-known real time recurrent learning and its structured counter-
part [40]. Here a Hebbian approximation would yield training with so-called truncated
gradient. Note that the well-known problem of long-term dependencies, i.e. the diffi-
culty to latch information through several recursive layers, arises in this context [3,26].
This problem of long-term dependencies is obviously avoided in Hebbian learning be-
cause the map is always trained for all substructures of each structure in the given
data set. This allows us to drop the terms of the gradients which include vanishing
gradients.

The reference to RTRL proposes to also formulate gradient descent on the above
error functions in termini of another standard algorithm of recurrent and recursive
network training, backpropagation through time or structure, respectively (BPTT and
BTTS) [13,40]. BPTT has a lower complexity with respect to the number of neurons.
The idea of BPTT is to use bottlenecks of the computation, i.e. a parameterization
of the cost function including few variables which can substitute the contribution of
the activation of all neurons to the respective activation of the neurons in later time
steps. Then using the chain rule, the error signals can be backpropagated efficiently.
We assume that the representation function rep is R-dimensional with components
repy,...,repg. Consider a tree 7. For simplicity, we refer to the nodes in T by their
labels a; and we identify the subtree with root a; and the root label in the notation.
The two subtrees of a node @; are denoted by left(a;) and right(a;), its parent node in
T is denoted by parent(a;). We denote the formal representation of a tree a; by R(a;)
and its components by R;(a;). Each weight L;(n;) of the GSOMSD is used multiple
times in a recursive computation. We assume a corresponding number of identical
copies L;(n;)(ax) is given, where L;(n;)(ay) refers to the copy which is used in the
last recursive step for computing d(ay,N). The part of the cost function which comes
from labels in the tree T is denoted by E(T):Zak er | (c?(ak,N)). The derivative with
respect to L;(n;) can be computed as the sum of all derivatives with respect to one
copy Li(n;)(ax). A bottleneck for the computation of these derivatives corresponds to
the inputs net of BPTT and, in the case of RNNS, yields the respective BPTT formula:
we use the similarities given as output of dp and dj in the computation as bottleneck.
Define

dy(a;, Lo(n;)) if 1=0,
Di(aj,n;) = ¢ dr(R(left(a;)),Li(n;)) if I=1,
dr(R(right(a;)),Ly(n;)) if T=2.

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 27

We find for one copy L;(n;(ax):
. . Oadw(ag, Lo(n;)), i=0,
E(T) RE(T) N
Lin) 0dRapny) | U@ L), =
O2dr(R(right(ay)), L2(n;)), i=2,

where
o - Oodw(ax, Lo(n;)) if i=0,

B - 02dr(R(left(a)), Li(nj)) if i=1,

B - 02dr(R(right(ay)),Lo(n;)) if i=2.
The derivative of £(T) with respect to D;(ax,n;) can be computed via backpropagation
by

aci(ak, nj)
OLi(nj)ar)

OE(T) _ 3f(d(aN))
0Do(ak,n;) dd(ay,n;)
and for i€ {1,2}:
CE(T) _ 3f(d(ai,N)) 0E(T)
0D;(ay,n;) B ac?(ak,nj) Pt Z 0Dy(parent(ay.),n)

x Bordr(R(ax), Li(ny)) - 8, rep(d(ax,N)),

where 7 €{1,2} is 1 iff a; is the left child of parent(ay). 0f(d(ax,N))/dd(ay,n;) de-
pends on the specific cost function. This backpropagation is of order (W +N2R). Note
that for a function of the form rep(xy,...,xy)=(rep,;(x1),...,repy(xy)) the complexity
further reduces because the derivative rep;(xi,...,xy) reduces to a vector with only one
non-zero entry. Hence the complexity in this case reduces to order T(W + N?), the
complexity of BPTT.

Another possible bottleneck can be found if the dimensionality of rep is low such
as in SOMSD. Then backpropagation can be done through the internal representations
of the structured data. The complexity of this method depends on the dimensionality
of R. Explicit formulas can be found in [22].

We finally look at the specific cost functions for VQ, (approximate) SOM, and
NG for the structural case in order to show explicitly that Hebbian learning can be
interpreted as approximate stochastic gradient descent in these cases.

5.1. Energy function of VQ

The cost function of vector quantization in our case is
d N

1 ~
Ep(T): =53 > uTun)d(Tiny),

i=1 j=1
where

1 if d(Ti,n;) is minimal,

0 otherwise.

28 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

Hence f(J(T,-,N)) has the form % Z/. X(]},n_,-)n?(T,-,nj). The only term in the above
derivatives which is specific for the cost function of VQ is 0 f(d(ax, N))/aj(ak,nj).
The derivative of this term can be found in the appendix. If we disregard the terms
(1.2), (1.3), (2.2), (2.3), (3.2) and (3.3) in the general formulas for the derivatives, we
obtain the Hebb formulas. Note thereby, that these terms contain o or o/*! for i > 1,
which is usually small. If dj and dy constitute the Euclidian metric, these truncated
Hebbian formulas look like in the following:

Lo(ny) - =Lo(n;) +1n - o+ x(Ti,ni)(a — Lo(ny)),
Ly(ny) : =Ly(ny) +n- B x(Ti,n))(Ry — Li(np)),
Lo(np) : =La(ny) +n- B y(Tin)(Ry — La(ny)),

where a denotes the current label and R; the internal representations of the subtrees.

It is possible to transfer the above gradient calculations to RecSOM directly because
the formal representation for trees lies in a real vector space and the involved functions
are differentiable. The component number / of 0; repg(x;,...,xy) yields —exp(—x;), all
other components are zero. For SOMSD, the above method cannot be applied directly:
the involved function repg is not differentiable; moreover, it is expected that repg is
substituted by rep, as before, which encodes winners in a unary fashion instead of
referring to a lattice location. Although rep), is not differentiable, it can be approximated
up to any desired degree of accuracy with a differentiable function, e.g. using the
soft-min function

exp(—x1/7) exp(—xn/7))
> exp(=xi/y)" 7 3 exp(—xify))

where y > 0 controls the quality of the approximation. The original function is recov-
ered for y — 0 except for situations where the minimum is not unique.

repy(xi,...,xy) = <

5.2. Energy function of SOM

As before we adapt a variation proposed in [25] which uses a slightly different
notation of the winner. This is done because the original learning rule as proposed by
Kohonen does not possess a cost function in the continuous case (though for the discrete
case an energy function exists [42]). The corresponding cost function for structured data
has the form:

T N N
1 ~
ES(T) =5 D> us(Tiny) Y n(mh(ng m))d(T;,),
i=1 j=1 k=1
where nh: N x N — R describes the neighborhood function of the lattice and n(x) =
1o exp(—x/a?) with ny > 0,6 > 0 provides a scaling factor for the update of neighbors:
N
1 if n(nh(n;,n))d(T;,n;)* is minimal,
1s(Tin;) = ,;

0 otherwise

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 29

determines the winner. Here the winner is the neuron with optimum weighted distance
with respect to the neighborhood. Given a tree 7}, this cost function induces the function

fd(T,N)) = % > as(Tion) Y n(nh(n, n))d(T;, n).
J k

The derivative with respect to d(7},n;) can be found in the appendix. Disregarding
terms (1.2), (1.3), (2.2), (2.3), (3.2) and (3.3) this yields the standard Hebb terms if
the Euclidian metric dp and dy is used:

Lo(ny) - =Lo(ni) +n -0+ Y 7(T i)n(nh(ng,n))(a — Lo(n:)),
%

Li(n):=Li(n;)+n-p- Z 1Ty, min(nh(ng, ny))(Ry — Li(np)),
i

Lo(ny) s =Lo(ny) + 0 By 0(Toom (e, n) (R — Lo(ny)).
k

The specific adaptations of this method for the recursive SOM and SOMSD follow the
same line as in the previous case. Note that we could again use the alternatives of for-
ward or backward propagation as described above. Again the function repg of SOMSD
is not differentiable. However, we can approximate the function rep up to every desired
degree. Denote the indices of the neurons by #(1),...,72(N). The representation function
which computes the index of the minimum input can be approximated by the soft-min
function:

exp(—x;/y)
Zl exp(—x;/y)’

where y > 0 controls the quality of the approximation. This approximation is differ-
entiable. The original function is recovered for y — 0 except for situations where the
minimum is not unique.

Note that for SOMSD the lattice of neurons has to be chosen a priori. It can be
expected that a two-dimensional regular grid is appropriate only for very restricted
data sets due to the incompatibility between the grid topology and the complex data.
The experiments of [19] show that different structures are stored in different clusters
in a regular grid map. The lattice can hold different structures only partially due to a
combinatorial explosion of possible neighbors: an exponential increase can be observed
if a small tree is expanded to trees of more complex structures. One could expect that
lattices which reflect this property of an exponentially increasing neighborhood, like
the hyperbolic SOM [41], could be a good alternative choice.

N
repg(Xi,...,x,) = Zf(i) .
i=1

5.3. Energy function of NG

The cost function of NG adapted to structured data has the following form:

1 d N .
EN(T) =35> D k(i)d(T; ny).

i=1 j=1

30 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

rk(i,j) equals the number of neurons k£ such that d(Ti i) < c?(T,-,n_,—). Again n(x) =
noexp(—x/c?) is a scaling factor. If we put this cost function in the above general
form, we find for the function f":

TN = 3 30k)T),
J

The derivative with respect to d(7},n;) is again given in the appendix. The Hebbian up-
dates result if (1.2), (1.3), (2.2), (2.3), (3.2) and (3.3) are discarded and the Euclidian
metric dp and dy is used:

Lo(ny) := Lo(ny) +n - o - n(rk(i, 1))(a — Lo(n;)),
Li(ny) := Ly(ng) +n - B-n(rk(i,)Ry — Li(n;)),

Ly(ny) := La(ny) +n - B - n(rk(i, [))(Ry — Li(n;)).

The distance between indices should be dynamically computed during the training
algorithm for SOMSD according to the ranking with respect to the respective data
point. We could use the representation function repy(xj ...,x,)=

N N
(rk(x),.ork(oy)) = [O HG —x).....) HGoy —x)) |,
j=1

j=1

where rk(x;) denotes the rank of x; if the values xi,...,xy are ordered according to their
size. Since this function is not differentiable, we have to approximate by a differentiable
function, e.g. we can substitute H by a sigmoidal approximation sgd, (x) := sgd(x/y) —
H(x) for y >0, 7 — 0 and x # 0 where sgd(x)= (1 +exp(—x))~'. Note that the same
amount is laid on each position of the ranking in this formulation. It can be expected
that the position of winning units is more important than the rank of neurons which
are far away. Hence one could modify the formal representation of trees such that
the winning neurons are ranked higher. One possibility is to include an exponential
weighting rep(x1,...,x,)=(exp(—rki(x,)),...,exp(—rki(xy))). This has the effect that
deviations for neurons which are close to the currently presented tree are ranked higher
than neurons which are further away.

6. Discussion

We have proposed a general framework for unsupervised processing of structured
data based on the main idea of recursive processing of the given recursive structured
data. For this purpose, the dynamics of supervised recurrent and recursive networks
is directly transferred to the unsupervised framework. Many special approaches like
TKM, RecSOM, SOMSD, and even recurrent and recursive networks are covered by
the framework. A key issue of the dynamics is the notion of internal representations
of context, which enables networks to store activation profiles of recursively processed
substructures in a distributed manner in a finite and fixed dimensional vector space.

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 31

This allows the comparison of structured data of arbitrary size. The general framework
allows to formulate training mechanisms in a uniform manner. Hebbian learning with
various topologies such as VQ and NG topology can be immediately formulated. It
turns out that unlike the case of unsupervised vector processing, Hebbian learning is
only an approximation of a gradient dynamics of appropriate cost functions. We have
formulated the cost functions for the general framework and we derived two ways to
precisely compute the gradients. Hebbian learning disregards the contribution of sub-
structures in all cases and is thus much less costly than the precise approaches. Nev-
ertheless, the precise formulation allows us to recover supervised training mechanisms
within the general framework, too. An appropriate choice of the cost functions yields
standard training algorithms for supervised recurrent networks like BPTT and RTRL.
Moreover, this formulation proposes how to transfer different learning paradigms such
as generalized vector quantization and variations to the recursive case [23,44]: learn-
ing vector quantization (LVQ) [31,32] constitutes a self-organizing supervised training
method to learn a prototype based clustering of data with Hebb-style learning rules. The
approach [44] proposes a cost function for variants of LVQ and introduces so-called
GLVQ. This method constitutes a very stable and intuitive learning method for which
additional features like automatic metric adaptation have been developed [23]. Since all
these methods rely on cost functions which only depend on the squared Euclidian dis-
tance of patterns from the weights of neurons, they can immediately be included in the
above framework for structured data, and above formulas can be used for calculating
the corresponding derivatives.

Starting from this general formulation, a uniform investigation of properties of re-
current self-organizing maps is possible. We already demonstrated the possibility with
respect to the investigation of training algorithms. Further directions of research can
take general properties of rep and the internal representation of trees into consideration
which would help to design general criteria of the respective functions and uniform
possibilities to evaluate the approaches. First steps into this direction can be found in
[22] where the noise tolerance of various representations, the representation capability,
and the notion of topology preservation are discussed with specific emphasis on the
respective internal representation. Note that standard issues of self-organizing maps in-
clude the problem of convergence and ordering, the notion of topology preservation,
and the magnification as discussed e.g. in [7,42,24]. Analogous issues can be uniformly
investigated for general recursive self-organizing maps.

Appendix A.

A.l. Derivative of f for VQ

af(c?(ak,N))/ac?(ak,nj) for VQ is to be computed. Note that

1(Tinj) =H (Z H(d(T;.np) — d(Tonp) = N + 1.5> :
!

32 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

where H is the Heaviside function

- 1 if x>0,
H(x)=
0 otherwise.

The derivative of H is the function ¢ which is a symmetric function which is non-
vanishing only for x = 0. Hence we find

Af(d(T,N)) 1 > 0x(Ti,nj)

3d(Ton) 2 > od(Trny)

aj(Ti’nj)

~ 1
d Ean' + = T’ian' B .
(Tiuny) 2;;{(D ST

The second term yields the standard Hebb factor of VQ, i.e. it yields the contribution
% y(T;,n;) to the above general formulas for the derivatives. The first summand equals

3d(Ti,my) - dd(T;,n))
0d(Ty,n;) 0d(Ty,ny)

3 38T)~ (T (
J-k

) (Z H(d(T;,ny) — d(Ti,n;)) — N + 1.5) d(T;,n)).
k

Hence it vanishes because 0 is symmetric, and the terms involving ¢ are non-vanishing
iff the role of d(T;,ny) and d(Ti,n;) can be changed.

A.2. Derivative of f for approximate SOM

The derivative we are interested in can be computed by

1 — Oxs(Tisny)
EZZ adS(T,, ,j Z”(”"(”/’"k))d(ﬂ,nk)
3d(T, ny)

4 Zzs(n,nﬂzn(nh(nj,nk»ad(T e

The second term yields the usual SOM-update with slightly different notion of the
winner as explained in Section 5. The contribution to the above formulas is
3 Z xs(Ti,nj)n(nh(n;,n;)). The first term vanishes, as can be seen as follows: we
use the identity

xS(T,-,n,>:H(ZH<Z n(nh(ny, m))d(Ti, i)
i k

_Z ﬂ(”h(”j,nk))ci(ﬂ,nk)> — N+ 1.5))
%

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 33

Hence the first sum equals

330 (SSH(S nhnmATn) = S b m VT | =N +15
js0 s t t

> n(wh(ng, n))d(Tion) = > n(nh(nj,n))d(T;,n,)

S AT mn(nh(ng.n)) (n(mh(no,ny)) — n(ah(ng,np))).
k

This vanishes because 0 is symmetric and the above J-terms are non-vanishing only if
the weighted distances of n, and n; can be substituted.

A.3. Derivative of f for NG

The derivative is

k(i) + d(T;,n))
ZZ T d(Tin)) + 5 Zn(r s s

where the second term yields the usual update rule for NG, i.e. the contribution
%n(rk(i, 1)) to the above formulas. The first term vanishes, which can again be explic-
itly computed by using the identity

rk(i,j) =Y H(d(Ti,n;) — d(Ti,ny).
k

Then the first term becomes

an(rk(u)) s e (8d(Tn) (T ng)
Z kG,) OTon) = AT DA(Tm) | Z2 s = 222

This vanishes due to the properties of o.

References

[1] P. Baldi, S. Brunak, P. Frasconi, G. Pollastri, G. Soda, Exploiting the past and the future in protein
secondary structure prediction, Bioinformatics 15 (11) (1999) 918-929.

[2] G. Barreto, A. Aratjo, Time in self-organizing maps: an overview of models, Int. J. Comput. Res. 10
(2) (2001) 139-179.

[3] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with gradient descent is difficult,
IEEE Trans. Neural Networks 5 (2) (1994) 157-166.

[4] AM. Bianucci, A. Micheli, A. Sperduti, A. Starita, Application of cascade correlation networks for
structures to chemistry, J. Appl. Intell. 12 (2000) 117-146.

[5] G. Chappell, J. Taylor, The temporal Kohonen map, Neural Networks 6 (1993) 441-445.

[6] F. Costa, P. Frasconi, V. Lombardo, G. Soda, Towards incremental parsing of natural language using
recursive neural networks, Appl. Intell., to appear.

[7] M. Cottrell, J.C. Fort, G. Paget, Theoretical aspects of the SOM algorithm, Neurocomputing 21 (1998)
119-138.

34 B. Hammer et al. | Neurocomputing 57 (2004) 3-35

[8] M. Cottrell, P. Letrémy, ImFra94, in: M. Verleysen (Ed.), European Symposium on Artificial Neural
Networks 2003, d-side publication, 2003, pp. 85-92.

[9] M. Cottrell, P. Rousset, The Kohonen algorithm: a powerful tool for analysing and representing
multidimensional quantitative and qualitative variables, in: Proceedings IWANN’97, Springer, Berlin,
1997, pp. 861-871.

[10] E. Erwin, K. Obermayer, K. Schulten, Self-organizing maps, convergence properties, and energy
functions, Biol. Cybern. 67 (1) (1992) 47-55.

[11] N.R. Euliano, J.C. Principe, A spatiotemporal memory based on SOMs with activity diffusion, in:
E. Oja, S. Kaski (Eds.), Kohonen Maps, Elsevier, Amsterdam, 1999.

[12] 1. Farkas, R. Miikkulainen, Modeling the self-organization of directional selectivity in the primary visual
cortex, in: Proceedings of the International Conference on Artificial Neural Networks, Springer, Berlin,
1999, pp. 251-256.

[13] P. Frasconi, M. Gori, A. Kiichler, A. Sperduti, A field guide to dynamical recurrent networks, in:
J.F. Kolen, S.C. Kremer (Eds.), From Sequences to Data Structures: Theory and Applications, IEEE,
Silverspring, MD, 2001, pp. 351-374.

[14] P. Frasconi, M. Gori, A. Sperduti, A general framework for adaptive processing of data structures, IEEE
Trans. Neural Network 9 (5) (1998) 768-786.

[15] P. Frasconi, M. Gori, A. Sperduti, Learning efficiently with neural networks: a theoretical comparison
between structured and flat representations, in: ECAI 2000, Proceedings of the 14th European Conference
on Artificial Intelligence, I0S Press, Amsterdam, 2000.

[16] C.L. Giles, G.M. Kuhn, R.J. Williams, Special issue on dynamic recurrent neural networks, IEEE Trans.
Neural Networks 5 (2) (1994).

[17] M. Gori, M. Mozer, A. C. Tsoi, R.L. Watrous, Special issue on recurrent neural networks for sequence
processing, Neurocomputing 15 (3—4) (1997).

[18] S. Giinter, H. Buhnke, Validation indices for graph clustering, in: J.-M. Jolion, W.G. Kropatsch,
M. Vento (Eds.), Proceedings of the Third IAPR-TC15 Workshop on Graph-based Representations
in Pattern Recognition, Ischia, Italy, 2001, pp. 229-238.

[19] M. Hagenbuchner, A. Sperduti, A.C. Tsoi, A self-organizing map for adaptive processing of structured
data, IEEE Trans. Neural Networks 14 (3) (2003) 491-505.

[20] M. Hagenbuchner, A.C. Tsoi, A. Sperduti, A supervised self-organizing map for structured data, in:
N. Allison, H. Yin, L. Allinson, J. Slack (Eds.), Advances in Self-Organizing Maps, Springer, Berlin,
2001, pp. 21-28.

[21] B. Hammer, Learning with Recurrent Neural Networks, Lecture Notes in Control and Information
Sciences, Vol. 254, Springer, Berlin, 2000.

[22] B. Hammer, A. Micheli, A. Sperduti, A general framework for self-organizing structure processing
neural networks, Technical Report TR-03-04, Dipartimento di Informatica, Universita di Pisa, 2003.

[23] B. Hammer, T. Villmann, Generalized relevance learning vector quantization, Neural Networks
15 (8-9) (2002) 1059-1068.

[24] B. Hammer, T. Villmann, Mathematical aspects of neural networks, in: M. Verleysen (Ed.), European
Symposium of Artificial Neural Networks 2003, 2003, pp. 59-72.

[25] T. Heskes, Self-organizing maps, vector quantization, and mixture modeling, IEEE Trans. Neural
Networks 12 (2001) 1299-1305.

[26] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural. Comput. 9 (8) (1997) 1735-1780.

[27] A. Hoekstra, M.F.J. Drossaers, An extended Kohonen feature map for sentence recognition, in: S. Gielen,
B. Kappen (Eds.), Proceedings of ICANN’93, International Conference on Artif. Neural Networks,
Springer, Berlin, 1993, pp. 404—407.

[28] D.L. James, R. Miikkulainen, SARDNET: a self-organizing feature map for sequences, in: G. Tesauro,
D. Touretzky, T. Leen (Eds.), Advances in Neural Information Processing Systems, Vol. 7, MIT Press,
Cambridge, MA, 1995, pp. 577-584.

[29] J. Kangas, Time-delayed self-organizing maps, In: Proceedings of IEEE/INNS International Joint
Conjecture on Neural Networks 1990, Vol. 2, 1990, pp. 331-336.

[30] S. Kaski, Bankruptcy analysis with self-organizing maps in learning metrics, IEEE Trans. Neural
Networks 12 (2001) 936-947.

B. Hammer et al. | Neurocomputing 57 (2004) 3-35 35

[31] T. Kohonen, Learning vector quantization, in: M. Arbib (Ed.), The Handbook of Brain Theory and
Neural Networks, MIT Press, Cambridge, MA, 1995, pp. 537-540.

[32] T. Kohonen, Self-Organizing Maps, Springer, Berlin, 1997.

[33] T. Kohonen, S. Kaski, K. Lagus, T. Honkela, Very large two-level SOM for the browsing of newsgroups,
in: C. von der Malsburg, W. von Seelen, J.C. Vorbriiggen, B. Sendhoff (Eds.), Proceedings of
ICANN’96, Springer, Berlin, 1996, pp. 269-274.

[34] T. Koskela, M. Varsta, J. Heikkonen, K. Kaski, Recurrent SOM with local linear models in time series
prediction, in: M. Verleysen (Ed.), Sixth European Symposium on Artificial Neural Networks, De facto,
1998, p. 167-172.

[35] S.C. Kremer, Spatio-temporal connectionist networks: a taxonomy and review, Neural Comput. 13 (2)
(2001) 249-306.

[36] C.-M. Kuan, K. Hornik, Convergence of learning algorithms with constant learning rates, IEEE Trans.
Neural Networks 2 (5) (1991) 484-489.

[37] H.J. Kushner, D.S. Clark, Stochastic Approximation Methods for Constrained and Unconstrained
Systems, Springer, Berlin, 1978.

[38] T. Martinetz, S. Berkovich, K. Schulten, “Neural-gas” network for vector quantization and its application
to time-series prediction, IEEE Trans. Neural Networks 4 (4) (1993) 558-569.

[39] T. Martinetz, K. Schulten, Topology representing networks, Neural Networks 7 (3) (1993) 507-522.

[40] B.A. Pearlmutter, Gradient calculations for dynamic recurrent neural networks: a survey, IEEE Trans.
Neural Networks 6 (5) (1995) 1212-1228.

[41] H. Ritter, Self-organizing maps in non-euclidean spaces, in: E. Oja, S. Kaski (Eds.), Kohonen Maps,
Springer, Berlin, 1999, pp. 97-108.

[42] H. Ritter, T. Martinetz, K. Schulten, Neural Computation and Self-Organizing Maps, An Introduction,
Addison-Wesley, Reading, MA, 1992.

[43] A. Sadeghi, Asymptotic behaviour of self-organizing maps with non-uniform stimuli distribution,
Technical Report, Universitit Kaiserslautern, FB Mathematik, Germany, July 1996.

[44] A.S. Sato, K. Yamada, Generalized learning vector quantization, in: G. Tesauro, D. Touretzky, T. Leen,
(Eds.), Advances in Neural Information Processing Systems, Vol. 7, MIT Press, Cambridge, MA, 1995,
pp. 423-429.

[45] J. Sinkkonen, S. Kaski, Clustering based on conditional distribution in an auxiliary space, Neural
Comput. 14 (2002) 217-239.

[46] A. Sperduti, Neural networks for adaptive processing of structured data, in: G. Dorffner, H. Bischof,
K. Hornik (Eds.), ICANN’2001, Springer, Berlin, 2001, pp. 5-12.

[47] A. Sperduti, A. Starita, Supervised neural networks for the classification of structures, IEEE Trans.
Neural Networks 8 (3) (1997) 714-735.

[48] J. Vesanto, Using the SOM and local models in time-series prediction, in: Proceedings of the Workshop
on Self-Organizing Maps 1997, Helsinki, Finland, 1997, pp. 209-214.

[49] T. Villmann, R. Der, M. Herrmann, T. Martinetz, Topology preservation in self-organizing maps: exact
definition and measurement, IEEE Trans. Neural Networks 8 (2) (1997) 256-266.

[50] T. Voegtlin, Context quantization and contextual self-organizing maps, in: Proceedings of the
International Joint Conference on Neural Networks, Vol. 5, 2000, pp. 20-25.

[51] T. Voegtlin, Recursive self-organizing maps, Neural Networks 15 (8-9) (2002) 979-992.

[52] T. Voegtlin, P.F. Dominey, Recursive self-organizing maps, in: N. Allison, H. Yin, L. Allinson, J. Slack
(Eds.), Advances in Self-Organizing Maps, Springer, Berlin, 2001, pp. 210-215.

	A general framework for unsupervised processing of structured data
	Introduction
	Structure processing self-organizing maps
	Temporal Kohonen map
	Recursive SOM
	SOM for structured data

	A general framework for the dynamic
	Hebbian learning
	Learning as cost minimization
	Energy function of VQ
	Energy function of SOM
	Energy function of NG

	Discussion
	Appendix A.
	Derivative of f for VQ
	Derivative of f for approximate SOM
	Derivative of f for NG

	References

