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Time series data have grown at an explosive rate in numerous domains and have stimulated a surge of
time series modeling research. A comprehensive comparison of different time series models, for a consid-
ered data analytics task, provides useful guidance on model selection for data analytics practitioners.
Data scarcity is a universal issue that occurs in a vast range of data analytics problems, due to the high
costs associated with collecting, generating, and labeling data as well as some data quality issues such as
missing data. In this paper, we focus on the temporal classification/regression problem that attempts to
build a mathematical mapping from multivariate time series inputs to a discrete class label or a real-
valued response variable. For this specific problem, we identify two types of scarce data: scarce data with
small samples and scarce data with sparsely and irregularly observed time series covariates. Observing
that all existing works are incapable of utilizing the sparse time series inputs for proper modeling build-
ing, we propose a model called sparse functional multilayer perceptron (SFMLP) for handling the sparsity
in the time series covariates. The effectiveness of the proposed SFMLP under each of the two types of data
scarcity, in comparison with the conventional deep sequential learning models (e.g., Recurrent Neural
Network, and Long Short-Term Memory), is investigated through mathematical arguments and numeri-
cal experiments.

� 2021 Published by Elsevier B.V.
1. Introduction

Nowadays, time series data that consist of repeated data mea-
surements over a bounded time range have become ubiquitous
in numerous domains, such as meteorology, epidemiology, trans-
portation, agriculture, industry, bioinformatics, and the world wide
web. Time series data often have intrinsic temporal structures such
as auto-correlation, trend, and seasonality. For example, for indus-
trial equipment, the sensor measurements over the lifespan are
correlated. Also, the sensor time series often gradually increase/de-
crease due to performance degradation. When modeling time ser-
ies data, it is of paramount importance to leverage the internal
temporal information to achieve good data analytical performance.

In the literature, three types of time series approaches have
been widely explored, including (1) the classical time series mod-
els (e.g., the Auto-Regressive Integrated Moving Average and the
autoregressive exogenous models) [3], (2) the sequential deep
learning models such as the Recurrent Neural Network (RNN),
the Long Short-Term Memory (LSTM), and the Gated Recurrent
Unit (GRU) in the machine learning community [4–6], and the
(3) emerging functional data analysis in the statistical field [7].
Fundamentally, the classical time series models exploit the autore-
gressive (AR) and moving average (MA) techniques to encode the
dependency of later observations on the prior data and the regres-
sion error at previous timestamps. The deep sequential learning
models use hidden states to hold the up-to-present memory and
recurrently conduct the same transformation on the internal mem-
ory and input data along the timestamps to sequentially process
the temporal information. Rather than considering time series as
a sequence of scalar-valued observations, functional data analysis
(FDA) models treat the observed time series data as discrete real-
izations given rise by a continuous underlying random function
of time (i.e., random curve) [7] and directly analyze a sample of
such finitely evaluated random functions. This functional setting
naturally accounts for temporal information. There is substantial
literature on modeling and estimation for functional data, includ-
ing functional principal component analysis [8,9], regression with
functional responses, functional predictors or both [10–13], func-
tional classification and clustering [14,15], and functional quantile
analysis [16–18]. Ramsay [7] offers a comprehensive perspective of
FDA methods.

The aforementioned time series analytic modeling techniques
handle temporal information from different perspectives. Corre-
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spondingly, they impose varying requirements on data and achieve
different performances under diverse scenarios. A comprehensive
comparison of time series models, for a considered data analytics
task, provides useful guidance on model selection for data analytics
practitioners. Some papers [19,20] conducted comparative studies
of RNN and ARIMA for the time series forecasting task, but the lit-
erature still lacks a comprehensive comparison between FDA and
these approaches.

In this paper, we focus on the crucial problem of building super-
vised learning models in time series analysis. In particular, the goal
is to build a mathematical mapping from one or several real-valued
time series within a bounded period to a discrete class label or a
real-valued response variable. Note that we consider the general
case where the response variable is different from the temporal
covariates. The classical time series models such as ARIMA and
the autoregressive exogenous models are infeasible for the consid-
ered temporal classification/regression problem, as they are inca-
pable of building mappings for time series to a heterogeneous
response. In the other two categories of time series models, several
methods are feasible to solve the considered problem, of which the
most important two are the sequential learning models [4,21,6],
and the Functional Multilayer Perceptron (FMLP), a counterpart
of the classical MLP for continuous random functions over a contin-
uum such as time series [22,23,2].

Due to the nature of deep learning models, the sequential and
functional deep learning models can both be used to train an
end-to-end temporal classification/regression model with reason-
able generalizability if we have access to a large number of training
samples that cover the diverse variability in data. However, due to
the high cost associated with collecting, labeling, storing, process-
ing, and modeling a large amount of training data, building effec-
tive deep learning models with a limited amount of samples (i.e.,
scarce data) is an appealing and meaningful topic in the time series
analysis field. In particular to the considered problem, we identify
two types of scarce data which can be described as follows. The
ideal case is that the number of samples N is sufficiently large
and each time series input is densely and regularly observed time
series, as shown in Fig. 1. Scarce data occur when any of these
requirements are not satisfied: scarce data with a limited number
of samples as illustrated in Fig. 1b and scarce data with sparsely
and irregularly evaluated time series covariates as illustrated in
Fig. 1c.

This paper first presents a review of the existing sequential and
functional temporal predictive models. Observing that the existing
method’s limitations in dealing with the sparse and irregularly
observed covariates, we introduce two sparse functional MLP
based on the univariate and multivariate sparse functional princi-
pal component analysis [24–26].1 The contributions of this paper
are summarized as follows:

1. We discuss the different types of data scarcity for the temporal
classification/regression problem.

2. We introduce a new temporal predictive model specially
designed to handle scenarios with sparsely and irregularly
observed time series inputs.

3. We use mathematical arguments and numerical experiments to
investigate each model’s feasibility and efficiency in building
temporal predictive models under various types of data
scarcity.

The rest of the paper is organized as follows. Some preliminar-
ies, including the problem formulation, and review of sequential
learning models and the conventional FMLP that only works for
1 A preliminary version of this method appears as [1].
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dense and regular time series [22,2] are presented in Section 2.
The proposed sparse FMLP for sparse time series inputs is
described in Section 3. The performance of the candidate models
under the two types of scarce data scenarios is respectively inves-
tigated in Section 4 and 5. The paper is concluded in Section 6.

2. Preliminaries

2.1. Problem formulation

The goal of temporal predictive models is to build a mapping
from multivariate time series covariates to a scalar response vari-
able with good accuracy and generalizability by leveraging the
temporal patterns and dependencies.

Suppose that we have access to N independent training sam-
ples. For each subject i 2 f1; . . . ;Ng;R features are repeatedly mea-
sured within a bounded time range T#R. In practice, the
measuring timestamps can vary across different covariates and dif-
ferent subjects. As a result, the subject and feature indexes need to
be included in the mathematical notations. In particular, the
observed data for the r-th covariate of subject i is represented by

a Mi;r dimensional vector Zði;rÞ ¼ ½Zði;rÞ
1 ; . . . ; Zði;rÞ

j ; . . . ; Zði;rÞ
Mi;r

�T , which

correspond to observations at timestamps Tði;rÞ
1 ; . . . ; T ði;rÞ

j ; . . . ; Tði;rÞ
Mi;r

,

with T ði;rÞ
j 2 T, for j ¼ 1; . . . ;Mi;r . The response variable is Yi, which

is binary for temporal classifications and real-valued for temporal
regressions. In summary, the observed data are

fZði;1Þ; . . . ;Zði;RÞ;Yig
N

i¼1, based on which the temporal predictive
models aim at constructing the mapping in Eq. (1).

Yi ¼ FðZði;1Þ; . . . ;Zði;RÞÞ: ð1Þ
The sample size N, the number of observations per curve Mi;r ,

and the measuring timestamps Tði;rÞ
1 ; . . . ; T ði;rÞ

j ; . . . ; Tði;rÞ
Mi;r

jointly deter-

mine the level of data availability. A large data scenario depicted in
Fig. 1 means that not only N and Mi;r are sufficiently large but also
the measuring timestamps uniformly cover the time domain T for
all subjects and covariates. Scarce data occur when at least one of
these requirements is not satisfied. In particular, scarce data with a
limited number of data points happen if the sample size N is small.
Whereas, scarce data with sparsely evaluated time series features
correspond to situations where Mi;r is a small number and/or there

exist large gaps among the measuring times Tði;rÞ
1 ; . . . ; T ði;rÞ

j ; . . . ; Tði;rÞ
Mi;r

,

for at least one subject and one covariate. This paper focuses on
examining the advantages and disadvantages of several time series
models in solving the problem in Eq. (1) given scarce data. We
respectively present the candidate models in the remainder of this
section.

2.2. Sequential learning models

Sequential learning models such as the Recurrent Neural Net-
work (RNN), the Long Short-Term Memory (LSTM), and the Gated
Recurrent Unit (GRU) are generalizations of the fully connected
MLP that have internal hidden states to process the sequences of
inputs [21]. The key idea is that they employ a series of MLP-
based computational cells with the same architecture and param-
eters to build a directed neural network structure. Any individual
cell in the network takes the actual observations at the current
index and the hidden states obtained at the previous step (i.e.,
memory) to produce the updated hidden states that serve as the
input for the next computational cell. When the goal is to predict
the scalar response associated with the time series, the achieved
hidden states at the last index are fed into a nonlinear function
to compute the output state. In RNN, each computational cell has



Fig. 1. Left: An example of large samples. Middle: Scarce data with a limited number of data pairs. Right: Scarce data with sparsely evaluated time series covariates.
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one MLP, while there are multiple interacting MLPs in each recur-
rent unit in LSTM [4,21].

The sequential learning models originally designed for text data
mining are capable of capturing the order information and the
interactions among observations in sequential inputs [4,21].
Recently, these sequential learning models are also frequently
adopted to model time series data [27,19,20]. However, when
using these models to handle time series data, it is explicitly
required that the multivariate inputs are evaluated at an equally-
spaced time grid shared by all subjects. This is because the sequen-
tial learning models cannot encode the concrete measuring times-
tamps associated with the individual observations in the time
series inputs. Mathematically, in the observed data samples

fZði;1Þ; . . . ;Zði;RÞ;Yig
N

i¼1, the covariate vectors Zði;rÞ are of the same
length M across all subjects and all covariates. Also, they are eval-
uated at equally-spaced time grid within time range T, which is
denoted as T1; . . . ; Tj; . . . ; TM . In practice, data pre-processing proce-
dures such as interpolation are often implemented to obtain the
required regular time series when the raw data is sparse and irreg-
ular. It is noteworthy that the conventional data pre-processing
techniques significantly contaminate the training data when the
individual time series are highly sparse and irregular.

Let’s use RNN as an example to present the mathematics behind

the sequential learning models. Suppose that ZðiÞ
j ¼ ½Zði;1Þ

j ; . . . ;

Zði;rÞ
j ; . . . ; Zði;RÞ

j �T represents the R dimensional vector containing the
R features at time Tj. Let the number of hidden units in MLP be

LRNN and the LRNN dimensional hidden state at time Tj be hðiÞ
j . For

j ¼ 0; . . . ;M, the following calculation is recursively conducted

hðiÞ
j ¼ Uact1ðWhhh

ðiÞ
j�1 þWhzZ

ðiÞ
j Þ; ð2Þ

whereWhh is a LRNN by LRNN dimensional parameter matrix, andWhz

is a LRNN by R dimensional parameter matrix, and Uact1ð�Þ is a non-
linear activation function. LetWyh denote the parameter matrix that

associates the last hidden state hðiÞ
M with the response variable Yi. In

the output layer, the output is computed by

Yi ¼ Uact2ðWyhh
ðiÞ
M Þ; ð3Þ

where Uact2ð�Þ is a non-linear activation function.
2.3. Functional data analysis and dense functional MLP

Functional data analysis (FDA) is an emerging branch in statis-
tics that specializes in the analysis and theory of data dynamically
evolves over a continuum. In general, FDA deals with data subjects
that can be viewed as a functional form XiðtÞ over a continuous
index t. Frequently encountered FDA-type data include time series
data, tracing data such as hand-writings, and image data [7].
3

From the FDA modeling perspective, theMi;r observations of the

r-th time series feature of subject i (i.e., Zði;rÞ) are treated as dis-

cretized realizations from a continuous underlying curve Xði;rÞðtÞ
contaminated with zero-mean random errors.

Zði;rÞ
j ¼ Xði;rÞðTði;rÞ

j Þ þ �i;r;j: ð4Þ

FDA predictive models directly handle the continuous time series
features and solve the problem defined in Eq. (1) by learning

Yi ¼ FðXði;1ÞðtÞ; . . . :;Xði;RÞðtÞÞ: ð5Þ
Under certain assumptions on the smoothness of the underlying

random functions Xði;rÞðtÞ (e.g., continuous second derivatives
exist), the conventional functional linear classification or regres-
sion models [7,28] assume and learn the unknown real-valued
parameters in a linear-formed mapping

Yi ¼ bþ
XR
r¼1

Z
t2T

Wrðbr; tÞXði;rÞðtÞdt; ð6Þ

where b 2 R is the unknown intercept, br is a finite-dimensional
vector that quantifies the parameter function Wrðbr; tÞ, andR
t2T Wrðbr; tÞXði;rÞðtÞdt is a generalization of vector inner product to

L2ðtÞ space and it aggregates the time-varying impact of the time
series input on the response. Given Eq. (6), it can be seen that,
unlike the sequential learning models, the functional models do
not require equally-spaced time series observations and can be
effectively trained end-to-end as long as the integral can be consis-

tently approximated based on the actual observations Zði;rÞ.
To capture more complex relationships, a functional MLP that

embeds the linear calculation in Eq. (6) into the network structure
of the conventional MLP [29] is introduced by [30,23] and later
explored further by [2]. In particular, functional MLP proposed a
new functional neuron that consists of the linear transformation
in Eq. (6) and an additional non-linear activation step, as shown
in Fig. 2. To build functional MLP, multiple functional neurons that
take functional inputs and calculates a numerical output are placed
on the first layer. The outputs from the functional layer are sup-
plied into subsequent numerical neuron layers whose inputs and
outputs are both scalar values, for further manipulations till the
output layer that holds the response variable. An example FMLP
with three functional neurons on the first layer and two numerical
neurons on the second layer is illustrated in Fig. 2 [2].

For the simplicity of mathematical notations, let’s consider the
case where K functional neurons in the first layer and one numer-
ical neuron in the second layer. Let Ukð�Þ be an activation function
from R to R; ak; bk 2 R for k ¼ 1; ::;K. The weight function for the r-
th functional feature in the k-th functional neuron is assumed to be
quantified by a finite dimensional unknown vector bk;r and is
denoted as Wk;rðbk;r; tÞ for k ¼ 1; . . . ;K and r ¼ 1; ::;R. Let



Fig. 2. The architecture of a functional MLP with three functional neurons on the
first layer and two numerical neurons on the second layer [2].
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b ¼ ½b1;1; . . . ; b1;R; . . . ; bK;1; . . . :; bK;R�T ;XðiÞ ¼ ½Xði;1ÞðtÞ; . . . :;Xði;RÞðtÞ�T .
Then the scalar output of the first layer is

HðXðiÞ;bÞ ¼
XK
k¼1

akUkðbk þ
XR
r¼1

Z
t2T

Wk;rðbk;r ; tÞXði;rÞðtÞdtÞ: ð7Þ

For more details about the functional MLP including the speci-
fications of the weight functions Wk;rðbk;r ; tÞ in the functional neu-
rons, and assumptions and implementations of the gradient
descent based training procedure, we list the literature [30,2] as
good references. It is noteworthy that this conventional functional
MLP requires that the number of observations per curve is large
enough and the individual observations are relatively regularly
spaced (i.e., Fig. 1b and 1c), as stated in Theorem 1 in [30]. In the
next section, we propose an effective way of generalizing func-
tional MLP to sparsely and irregularly observed time series inputs.
3. Proposed sparse functional MLP

When there is a limited amount of irregularly-spaced data
available per feature curve, as shown in Fig. 1c, the existing models
described in the previous section are no longer feasible solutions.
The deep sequential models need dense and regular observations
to model the temporal information through the recurrent network
structure. A common practice is to conduct data interpolation to
obtain the required dense regular data, however, the conventional
interpolation techniques such as the cubic B-spline and the Gaus-
sian process regression often produce biased curve estimates.
Analogously, the numerical integration calculation in the conven-
tional FMLP is problematic under sparse data scenarios. In this sec-
tion, we propose a novel algorithm for generalizing Multilayer
Perceptron (MLP) to handle sparse functional data, wherein for a
given subject there are multiple observations available over time
and these observations are sparsely and irregularly distributed
within the considered time range.

3.1. Sparse functional MLP based on univariate PACE

To derive and define a functional neuron that is calculable for
sparse functional data, we propose to go one step further than
the existing functional neuron in Eq. (7) with the help of the func-
tional principal component analysis [31,9,24]. Let the r-th feature
be a random process with an unknown mean function lrðtÞ and
an unknown covariance function Grðt; t0Þ; t; t0 2 T. Mathematically,
the non-increasing eigenvalues fkr;pg1p¼1 and the corresponding

eigenfunctions f/r;pðtÞg1p¼1 are solutions of
4

k/ðtÞ ¼
Z
t02T

Grðt; t0Þ/ðt0Þdt0: ð8Þ

The eigenfunctions are orthonormal in the sense thatR
t2T /r;pðtÞ/r;p0 ðtÞdt ¼ 0 for p– p0 and

R
t2T /2

r;pðtÞdt ¼ 1. Based on
the orthonormality of the eigenfunctions, the r-th feature of subject
i can be represented as

Xði;rÞðtÞ ¼
X1
p¼1

gi;r;p/r;pðtÞ; ð9Þ

where gi;r;p ¼
R
t2T Xði;rÞðtÞ/r;pðtÞdt. A common practice for basis

expansion-based methods in FDA [32,15] is to truncate the expan-
sion at the first several directions. This practice is supported by

the fact that the core information regarding Xði;rÞðtÞ is mostly cap-
tured by the first several basis functions when the curve is smooth
in a certain degree. Strict theoretical proofs can be found in [24]. For
the r-th feature, let’s truncate at the first Pr dimensions and plug the

Xði;rÞðtÞ’s approximated representation into the FMLP in Eq. (7), we
have

HðXðiÞ;bÞ �
XK
k¼1

akUkð½bk þ
XR
r¼1

Z
t2T

Wk;rðbk;r; tÞ

�
XPr
p¼1

gi;r;p/r;pðtÞdt�Þ: ð10Þ

Practically, Pr can be selected using the fraction of variance
explained approach, AIC or BIC criterion based approach, or the
leave-one-curve-out cross-validation method [33].

Given Eq. (10), it can be seen that the model still cannot directly
go through as we cannot consistently estimate

gi;r;p ¼
R
t2T Xði;rÞðtÞ/r;pðtÞdt from the sparse observations Zði;rÞ. Bor-

rowing the idea from sparse data Principal Components Analysis
through Conditional Expectation (PACE) [24], we propose to esti-

mate gi;r;p by its best linear unbiased predictor, E½gi;r;pjZði;rÞ�. This
is a reasonable choice to estimate gi;r;p, because if we take the ran-
domness of measuring time t into account, then

Et ½E½gi;r;pjZði;rÞ�� ¼ E½gi;r;p�: ð11Þ

That is to say the random quantities E½gi;r;pjZði;rÞ� and gi;r;p share the
same expectation. Motivated by a special case where the observa-

tions Zði;rÞ and the random errors �i;r;j are jointly Gaussian dis-
tributed, given Eqs. (4) and (9), we can get the explicit formula

for E½gi;r;pjZði;rÞ�,

E½gi;r;pjZði;rÞ� ¼ cr;p þ kr;p/
T
i;r;p½/i;rdiagðkrÞ/T

i;r þ r2
r I�

�1ðZði;rÞ � li;rÞ;
ð12Þ

where cr;p ¼
R
/r;pðtÞlrðtÞdt; kr ¼ ½k1; . . . ; kPr �T , and /i;r;p is the eigen-

function /r;pðtÞ evaluated at the Mi;r observing time points, i.e.,

/i;r;p ¼ ½/r;pðti;r;1Þ; . . . ;/r;pðti;r;Mi;r
Þ�T . /i;r is a Mi;r � Pr matrix, with the

p-th column being /i;r;p. rr is the standard deviation of the random
noise �i;r;j. By plugging Eq. (12) back into Eq. (10), we achieve the
output of the first layer of our proposed sparse functional MLP with
K neurons,

~HðXðiÞ;bÞ¼
XK
k¼1

akUkð½bkþ
XR
r¼1

Z
t2T

Wk;sðbk;r ;tÞ
XPr
p¼1

E½gi;r;pjZði;rÞ�/r;pðtÞdt�Þ:

ð13Þ
The sparse functional neuron in the above equation plays the same
role as the functional neuron in Eq. (7) for the conventional func-
tional MLP [30].
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Before training the proposed sparse functional MLP model, we
need to first estimate the unknown values in Eq. (10) and Eq.
(12), including the eigenfunctions /r;pðtÞ, eigenvalues kr;p, standard
deviation of random error rr . They can be estimated using the
restricted maximum likelihood estimation in [33], the local linear
smoothing based method in [24], or the EM algorithm in [34]. Since
This is not the main focus in this paper, we skip the details. The
point is that our algorithm needs consistent estimations for the
functional components. All the three methods have been proved
to produce consistent estimates for these eigen components for
sparse functional data and they can be used to perform the estima-
tion step. In our numerical experiments in Section 5, we used the
local linear smoothing based method in [24]. Let’s denote the esti-
mated values as /̂r;pðtÞ; k̂r;p and r̂r . Then we have the empirical

counterparts for Eqs. (10) and (12), denoted as ~̂HðXðiÞ; bÞ and

Ê½gi;r;pjZði;rÞ�.
After the estimation step, similar to the dense functional MLP in

[30], we propose to use gradient based algorithms to train our
sparse functional MLP model. The forward propagation step can
go through as follows. First, in the functional neurons, the integralR
t2T Wk;rðbk;r; tÞ

PPr
p¼1Ê½gi;r;pjZði;rÞ�/̂r;pðtÞdt is approximated by the

numerical integration techniques. First layer’s output ~̂HðXðiÞ; bÞ
can then calculated by the formula in Eq. (10). The forward propa-
gation calculation in subsequent numerical layers is straightfor-
ward. In the backward propagation step, the partial derivatives
from the output layer up to the second hidden layer (i.e., the
numerical layer after the functional neuron layer) can be easily cal-
culated as before. Whereas, it is essential to ensure that the partial

derivatives of the values at the second layer (i.e., ~̂HðXðiÞ; bÞ) with
respect to the parameters b exist. This requires that
@Wk;rðbk;r; tÞ=@bk;r;q exists almost everywhere for t 2 T. Under this

assumption, @ ~̂HðXðiÞ; bÞ=@bk;r;q for any k ¼ 1; . . . ;K; r ¼ 1; ::;R;
q ¼ 1; . . . ;Qr can be estimated using numerical approximations of
the following quantity

@ ~̂HðXðiÞ;bÞ
@bk;r;q

� akU
0
k

 "
bk þ

XR
r¼1

Z
t2T

Wk;rðbk;r; tÞ

�
XPr
p¼1

Ê½gi;r;pjZði;rÞ�/̂r;pðtÞdt
#!

�
Z

t2T

� @Wk;rðbk;r ; tÞ
@bk;r;q

XPr
p¼1

Ê½gi;r;pjZði;rÞ�/̂r;pðtÞdt: ð14Þ

To justify the validity of our proposal, we have provided brief
arguments regarding the consistency of using estimated values
as well as the equivalence between our sparse and the proposed
dense MLP under dense regular data scenarios.
3.2. Sparse functional MLP based on multivariate FPCA

The functional neurons in Eq. (10) (i.e., an equivalent of the
dense functional neuron in Section 2.3) and Eq. (13) (i.e., the pro-
posed sparse functional neuron) are based on the univariate func-
tional principal component analysis. When separately conducting
FPCA, the joint variations among the R variables

fXði;1ÞðtÞ; . . . :;Xði;RÞðtÞg are not captured, which makes the random

scores from different variables (i.e, gi;r;p and E½gi;r;pjZði;rÞ�) being cor-
related and causes multicollinearity issues during modeling. An
example of correlated random scores are illustrated in Fig. 12 in
Section 5. To overcome this issue, we propose functional neural
networks based on the multivariate FPCA [26,25] that are
described as follows.
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Let Wk;rðbk; tÞ ¼ ½Wk;1ðbk;r ; tÞ; . . . ;Wk;rðbk;R; tÞ�T , then Eq. (7) can
be written as in the following vector format

HðXðiÞ;bÞ ¼
XK
k¼1

akUkð½bk þ
Z
t2T

Wk;rðbk; tÞTXðiÞðtÞ�Þ: ð15Þ

Let’s denote the R� R matrix that quantifies the covariance of each
variable and the joint variation between variables as Gðt; t0Þ, with

the ðr; r0Þ-th element being Gr;r0 ðt; t0Þ ¼ CovðXði;rÞðtÞ;Xði;r0 Þðt0ÞÞ. Accord-
ing to the multivariate FPCA, there exists a set of R dimensional

orthonormal eigenfunction vectors ~/pðtÞ ¼ ½~/1;pðtÞ; . . . ; ~/R;pðtÞ�T , for
p ¼ 1; . . . ;1, such thatZ

Gðt; t0Þ~/pðt0Þdt0 ¼ ~kp~/pðtÞ; with lim
p!1

~kp ¼ 0; ð16Þ

where ~kp 2 R is the eigenvalue corresponding to the p-th eigenfunc-
tion vector ~/pðtÞ. Accordingly, it has been shown that the R dimen-

sional data XðiÞðtÞ can be represented by

XðiÞðtÞ ¼
X1
p¼1

~gi;p
~/pðtÞ �

XP
p¼1

~gi;p
~/pðtÞ; ð17Þ

where ~gi;p ¼
PR

r¼1

R
Xði;rÞðtÞ~/r;pðtÞdt. Comparing the separate FPCA in

Section 3.1 with the multivariate FPCA in Eqs. (16) (17), it can be
seen that univariate FPCA is a special case of the multivariate FPCA
that assumes zero joint variation between variables. Theoretically,
we expect the functional regression models in this section to out-
perform those in Section 3.1. The magnitude of improvement is
affected by the size of joint variation between variables and the
complexity of the underlying mapping.

Given Eq. (15)(16) (17), when all the variables

fXði;rÞðtÞ; i ¼ 1; . . . ;N; r ¼ 1; . . . ;Rg are densely and regularly evalu-
ated, the multivariate functional neuron is defined as follows

HMðXðiÞ;bÞ �
XK
k¼1

akUkð½bk þ
Z
t2T

Wk;rðbk; tÞT
XP
p¼1

~gi;p
~/pðtÞdt�Þ: ð18Þ

For sparsely evaluated data, analogous to Eq. (10), the sparse mul-
tivariate function neuron is

HMðXðiÞ;bÞ�
XK
k¼1

akUkð½bkþ
Z

Wk;rðbk;tÞT
XP
p¼1

E½~gi;pjZði;1Þ; . . . ;Zði;RÞ�~/pðtÞdt�Þ

E½~gi;pjZði;1Þ; . . . ;Zði;RÞ� ¼
XR
r¼1

E½~gi;pjZði;rÞ�: ð19Þ

Note that E½~gi;pjZði;rÞ� is calculated by replacing /r;pðtÞ and kr;p with
~/r;pðtÞ and ~kp respectively. Based on the multivariate function neu-
rons discussed above, we propose multivariate FMLP by embedding
these neurons in the architecture in Fig. 2.

Next, we describe how to numerically implement the multivari-
ate FMLP as follows. The core theoretical result in [25] is that there
is an analytical relationship between the univariate FPCA and the
multivariate FPCA, which implied that ~/r;pðtÞ and ~kp can be calcu-
lated by estimating /r;pðtÞ and kr;p for all r ¼ 1; . . . ;R. In particular,
let the estimated score from univariate FPCA be ŝi;r;p ¼ ĝi;r;p or

ŝi;r;p ¼ Ê½gi;r;pjZði;rÞ�, for i ¼ 1; . . . ;N; r ¼ 1; . . .R; p ¼ 1; . . . ; Pr . Let

Pþ ¼PR
r¼1Pr and N is a Pþ � Pþ consisting of blocks Nðrr0 Þ 2 RPr�Pr0

with the ðp; p0Þ-th entry being

Nðrr0 Þ
pp0 ¼ Covðŝi;r;p; ŝi;r0 ;p0 Þ

¼ 1
N�1

XN
i¼1

ðŝi;r;p � �̂si;r;pÞðŝi;r0 ;p0 � �̂si;r0 ;p0 Þ
ð20Þ
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Let’s conduct eigen decomposition on matrix N and denote the p-th
eigenvector as cp. Note that cp can be considered as a vector consist-

ing of R blocks, with the r-th block being denoted as ½cp�ðrÞ 2 RPr .

According to the proposition in [25], we can estimate ~/r;pðtÞ by

~̂/r;pðtÞ ¼
XPr
m¼1

½cp�ðrÞm /̂r;mðtÞ; ð21Þ

where /̂r;mðtÞ is the achieved eigenfunction from conducting uni-
variate FPCA on the r-th variable. The joint eigenvalue ~kp is the same
as the eigenvalue of matrix N.

In summary, we propose two types of extensions of the FMLP in
[22,2]. The model in Section 3.1 equipped with the sparse func-
tional principal component analysis is proposed to handle sparse
data cases. The models in Section 3.2 are generalizations of the
FMLP to explicitly account for the correlations among variables.
The FMLPs using the conventional FPCA are more straightforward
to implement, while the multivariate FMLPs are expected to be
more accurate, especially when the correlations among the vari-
ables are large.

4. Scarce data with limited number of samples

In this section, we present a comparative study of the sequen-
tial learning models and the regular FMLP (equivalently, the pro-
posed sparse FMLP) under scenarios where the sample size is
small, i.e., Fig. 1b. We first theoretically compare the minimum
sample size required by each model by calculating the number of
parameters. We also discuss their feasibility and efficiency in deal-
ing with two different types of time series inputs. Finally, we con-
duct numerical experiments to demonstrate their performance in
solving the challenging remaining useful life prediction task in
the Predictive Maintenance domain, given the limited amount of
training data.

4.1. Theoretical comparison

4.1.1. Comparing the number of parameters
To understand the minimum sample size required to train each

candidate model, we first present the mathematical formula for the
number of unknown parameters in the considered deep learning
models. For the simple RNN described in Section 2.2, supposing
that there are LRNN hidden states, the total number of unknown
parameters CountRNN is given in Eq. (22). The first term
LRNNðLRNN þ RÞ in the equation corresponds to the sequential pro-
cessing by memory cells in Eq. (2), while the second term is related
to the output state in Eq. (3). The number of unknown parameters
for LSTM is four times that of RNN, as there are an input gate, an
output gate, and a forget gate in addition to the RNN-like memory
cell. Gated recurrent units (GRUs) are a type of hidden activation
function in recurrent neural networks. GRU is like a long short-
term memory (LSTM) with a forget gate, but has fewer parameters
than LSTM, as it lacks an output gate. GRU has been used to model
speech, music, and language data by maximizing the conditional
probability of a target sequence given a source sequence. For the
functional MLP in Section 2.3 and 3, let’s denote the length of
unknown parameters in the parameter functions Wk;rðbk;r ; tÞ as
Qk;r and the number of hidden functional neurons as LFMLP. Then
the number of unknown parameters in FMLP CountFMLP can be
obtained by the formula in Eq. (22). Note that the first term repre-
sents the connections between layers and the second term corre-
sponds to the biases in every layer.
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CountRNN ¼ LRNNðLRNN þ RÞ þ LRNN ¼ OðL2RNNÞ
CountLSTM ¼ 4ðLLSTMðLLSTM þ RÞ þ LLSTMÞ ¼ OðL2LSTMÞ
CountGRU ¼ 3ðLGRUðLGRU þ RÞ þ LGRUÞ ¼ OðL2GRUÞ
CountFMLP ¼

XLFMLP

k¼1

XR

r¼1
Qk;r þ LFMLP

� �
þ ðLFMLP þ 1Þ ¼ OðLFMLPÞ

ð22Þ
Based on Eq. (22), it can be seen that the total number of

unknown parameters of RNN, LSTM, and GRU are in a quadratic
order of the number of hidden units, while the number of param-
eters of FMLP is in the same order with LFMLP, the number of func-
tional neurons. This indicates that the minimal sample size
required by the sequential learning model is theoretically much
larger than FMLP when the underlying mapping Fð�Þ in Eq. (1)
and (5) is complex and needs a comparable large number of hidden
units in the sequential learning models and FMLP to be well
approximated. On the other hand, when LRNN and LFMLP are signifi-
cantly different (i.e., LRNN � LFMLP, or LRNN � LFMLP), the model that
can more efficiently capture the temporal information in the
covariates requires less number of training samples. As a next step,
we study the candidate model’s feasibility and efficiency in terms
of temporal information capturing under different circumstances.
LSTM is the popularly used in many applications, in the rest of
the paper, we use LSTM as a representative of the sequential learn-
ing models.
4.1.2. Comparison under different scenarios
In real practice, the observed time series data often contains

certain zero-mean noises. That is there exist the additive relation-

ship among the actual observation Zði;rÞ
j , the underlying continuous

process Xði;rÞðtÞ that give rises to the time-specific observation, and
the random noise �i;r;j, as indicated by Eq. (4). Depending on its

mathematical properties, the individual function Xði;rÞðtÞ can be
divided into two categories, consisting of smooth functions whose
continuous second derivatives exist and non-smooth functions
otherwise. Both smooth and non-smooth processes are frequently
encountered in real-world applications. Examples of time series
data from smooth underlying functions include child growth over
time, traffic flow during the day, accumulative number of positive
cases over time for a certain pandemic. Continuous processes of
the non-smooth nature include the vibration data and acoustic
data, of which the rapidly changing dynamics contain the key

information to distinguish a given function Xði;rÞðtÞ from other ran-

dom samples fXði;rÞðtÞgi0–i.
According to Section 2, the sequential learning models are more

appropriate models for building predictive models with non-
smooth time series covariates. This is because the sequential learn-
ing models conduct computations on the individual observations
at each timestamp and offer a good way of capturing the non-
linear dependencies within the highly dynamic time series as well
as the complex relationship between the time series and the
response. Whereas, the functional predictive models attempt to
model the infinite-dimensional continuous curve and therefore
essentially rely on certain smoothness assumptions on each under-

lying process Xði;rÞðtÞ to overcome the curse of dimensionality in the
formulation in Eq. (6) and (7) [7]. More specifically, the assumption
that the parameter function Wk;rðbk;r ; tÞ can be determined by a
finite-dimensional vector bk;r , i.e., the assumed model can be
trained end-to-end accordingly, only if the underlying process is
smooth.
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When it comes to smooth time series inputs, the FMLP has
advantages over the sequential learning models in general thanks
to the basis expansion technique in FDA. The key idea of basis
expansion is to set the weight function Wk;rðbk;r ; tÞ as a linear com-
bination of a set of fixed or data-driven basis functions

f/k;r;pðtÞgQk;r
p¼1.

Wk;rðbk;r; tÞ ¼
XQk;r

p¼1

bk;r;p/k;r;pðtÞ: ð23Þ

Then the core temporal information processing unitR
t2T Wk;rðbk;r ; tÞXði;rÞðtÞdt in FMLP becomes

Z
t2T

Wrðbr; tÞXði;rÞðtÞ ¼
XQk;r

p¼1

bk;r;p

Z
t2T

/k;r;pðtÞXði;rÞðtÞdt: ð24Þ

This means that the infinite-dimensional variation in Xði;rÞðtÞ
is transferred to the Qk;r scalar random variables

fRt2T /k;r;pðtÞXði;rÞðtÞdtgQk;r

p¼1, the projection scores of Xði;rÞðtÞ onto the

pre-defined basis functions. The basis function-based parameter
specification in Eq. (23) is supported by theoretical arguments that

the infinite continuous stochastic process Xði;rÞðtÞ can be consis-
tently represented by a finite set of basis functions given a certain
degree of smoothness [7,31]. The benefit of the formulation in Eq.

(24) is two-folds. First, the temporal information in Xði;rÞðtÞ can be
more succinctly captured by the integrals, which take less time to
compute than RNN, especially when the time series inputs are long
time series. Second, it allows us to embed prior domain knowledge
about the characteristic of time series features into the temporal
predictive model. For instance, if we know there are sparse jumps,
spikes, peaks in the time series covariates, the wavelet basis is a
good choice to extract meaningful projection scores. On the other
hand, the sequential learning models need more complex architec-
tures to capture this useful knowledge. This means that the number
of hidden units and accordingly the minimal sample size required in
FMLP is in general much less than the sequential learning models
for a target level model performance.

4.2. Comparison of performance on equipment remaining useful life
prediction

Remaining Useful Life (RUL) of equipment or one of its compo-
nents is defined as the time left until the equipment or component
reaches its end of useful life. Accurate RUL prediction is exception-
ally beneficial to Predictive Maintenance, and Prognostics and
Health Management (PHM). Recently, data-driven solutions that
utilize historical sensor and operational data to estimate RUL are
gaining popularity. In particular, the RUL prediction problem is
usually formulated as a temporal regression problem defined in
Eqs. (1) and (5). In this section, we compare the performance of
functional MLP (‘FMLP’), LSTM, and the traditional multivariate
regression models that treat the measurements in time series as
features (‘MLP’ and ‘SVR’) in solving the RUL prediction task with
a limited number of training samples in a widely-used benchmark
data set called NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) data [35].

4.2.1. Background and data pre-processing
Background: C-MAPSS data set consists of simulated 21 sensor

readings, 3 operating condition variables for a group of turbofan
engines as they running until some critical failures happen. There
are four data subsets in C-MAPSS that correspond to scenarios with
different numbers of operating conditions and fault modes [35].
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Each subset is divided into the training and testing sets. The train-
ing sets contain run-to-failure data where engines are fully
observed from an initial healthy state to a failure state. The testing
sets consist of prior-to-failure data where engines are observed
until a certain time before failure. Table 1 provides a summary
for each subset in C-MAPSS, including the number of operating
conditions and fault modes, and the number of subjects in the
training and testing phase.

Removing the effect of operating conditions: For the second and
the fourth sub-datasets, there are six operating conditions
reflected by the three operating condition variables. To remove
the effects of operating conditions, for each of the 21 sensors, we
train an MLP model to learn a mapping from the operating condi-
tion variables to the sensor variable. In particular, for a given sen-
sor in ‘FD002’, we use data from all the 260 engines in the training
set to train the MLP model. The sample size is the summation of
the number of observations across the 260 engines. The input data
is the three operation condition variables and the output is the
considered sensor data. Then we normalize the considered sensor
variable by deducting the fitted value of the MLP model from the
raw sensor readings. The raw sensor trajectory and normalized tra-
jectory of the second sensor for a randomly selected engine in the
training set of FD002 are visualized in Fig. 3.

Window-sliding and RUL labeling: In the C-MAPSS data set, the
engines in the training and testing sets are observed for a different
number of time cycles. Moreover, the full sensor data trajectories
in the testing sets are blinded for a variety of periods, therefore
the true RUL labels are distributed variously. To handle this phe-
nomenon, we propose to use the window sliding technique used
in [36,37]. Let’s denote the smallest number of sensor measure-
ments for the individual engines in data subset d as Md for
d ¼ 1; . . . ;4. The values for M1; M2; M3; M4 are 31, 21, 38, 19
respectively. The functional inputs and RUL labels are generated
as follows. For the d-th subset, trajectories corresponding to each
engine in the training and testing data sets are cut into multiple
data instances of length Md. For instance, the first engine in the
training set of FD001 fails at the 144th cycle. A total of 114 training
data instances are generated from this engine, with the c-th data
instance being the sensor measurements between time cycle c
and c þMd � 1. To specify the RUL labels for the 114 data instances
of this engine, we adopt the widely-used piece-wise labeling
approach in relevant literature [38,27]. Under the observation that
the degradation in the performance is negligible at the beginning
period and it starts to degrade linearly at some point T, the RUL
label is defined as

RULc;piecewise ¼ minfT;RULc;linearg: ð25Þ

Note that in our experiment, we set T ¼ 130, following the specifi-
cations in the prior art [38,27].

4.2.2. Implementations and results
Implementation of FMLP: Following the implementation of LSTM

in [27], we use the Min–Max normalization to scale the individual
sensor sequences to the range of ½0;1�. The specific mathematical
formula can be found in [27,2]. A FMLP with a two-layered archi-
tecture is deployed to learn the mapping from 21 sensors to the
RUL label. There are four functional neurons (i.e., K = 4) on the first
layer and two numerical neurons on the second layer in the FMLP.
The activation function on both layers are the standard logistic
function, i.e., UkðuÞ ¼ 1

1þe�u. To better deal with the complex sensor
data, we propose to specify data-driven weight functions by calcu-
lating the eigenfunctions from data. Let the estimated eigenfunc-
tion from the N samples of the r-th sensor be /̂r;pðtÞ. The weight
functions are then specified as



Table 1
Summary of the subsets in C-MAPSS data set.

FD001 FD002 FD003 FD004

# of engines in training 100 260 100 249
# of engines in testing 100 259 100 248
# of operating conditions 1 6 1 6
# of fault modes 1 1 2 2

Fig. 3. Removing the effect of operating conditions on sensor data.

Fig. 4. Remaining useful life label for a given engine: the red line represents the
piece-wise RUL label capped at T ¼ 130.
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Wk;rðbk;r; tÞ ¼
XPk;r
p¼1

bk;r;p; /̂r;pðtÞ; ð26Þ

where Pk;r is selected from the regularly-used fraction of variance
explained (FVE) with a 80% cutoff. In practice, there are four
commonly-used cutoff values, i.e., 80%;90%;95%, and 99%. In this
experiment, we choose the smallest rule-of-thumb value. This is
because choosing a smaller FVE helps retaining the key smooth pat-
terns in sensor data and removing the random noises shown in
Fig. 3.

Evaluation metrics: We evaluate the performance of functional
MLP with the same evaluation strategy used in [38,27]. Suppose
that there are N subjects in the testing set, and the true RUL since
the last observation of engine i is RULi;true and the estimated RUL is
RULi;est . The root mean squared error (RMSE) calculated from the N
engines is defined as Fig. 4

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðRULi;est � RULi;trueÞ2
vuut : ð27Þ

Results: The RMSE of FMLP together with the results of LSTM
and the multivariate regression models including the Support vec-
tor regression (‘SVR’) and the multilayer perceptron (‘MLP’) from
previous literature are summarized in Tables 2. For all the four sub-
sets, functional MLP significantly outperforms the baseline meth-
ods in terms of RMSE. The average improvement over LSTM [27]
is 26:89%. For industrial equipment like turbofan engines, the sen-
sor signals over time are often correlated with the smooth degra-
dation process and thus can be assumed to be generated by
smooth continuous functions. The experimental results in Tables
2 numerically justify our discussion about the advantage of FMLP
over the state-of-art models in handing smooth time series covari-
ates in Section 4.1.

5. Scarce data with sparse time series features

In this section, we consider circumstances where the time series
inputs are sparsely and irregularly observed over the time domain.
The sparse functional MLP (SFMLP) in Section 3.1 and the SFMLP
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equipped with multivariate FPCA in Section 3.2 are temporal pre-
dictive models that are specially designed to handle this type of
scenario. The sequential learning models are incapable of directly
utilizing the sparsely evaluated temporal information for proper
model building. They require to preliminarily fill in the gaps in
the raw sparse data based on certain interpolation techniques.
The performance of the sequential learning models heavily relies
on the accuracy of interpolation. A description of this interpolation
plus sequential learning approach is provided in the first part of
this Section. Next, we conduct three numerical experiments to
demonstrate the superior performance of the proposed sparse
FMLPs for sparse data scenarios.

5.1. Sequential learning models under sparse data

As discussed in Section 2.2, the sequential deep learning models
essentially require the time series covariates to be densely
observed at an equally-spaced time grid. Under sparse data cases,
certain data interpolation techniques such as the cubic spline
interpolation are often deployed to get data readings of the same
interval. The interpolated data are then fed into sequential learning
models to build temporal predictive models. The performance of



Table 2
RMSE comparison on C-MAPSS data and improvement (‘IMP’) of functional MLP over LSTM [27].

Model FD001 FD002 FD003 FD004

MLP[38] 37.56 80.03 37.39 77.37
SVR[38] 20.96 42.00 21.05 45.35
LSTM[27] 16.14 24.49 16.18 28.17
FMLP 13.36 16.62 12.74 17.76

IMP 17:22% 32:14% 21:26% 36:95%

* IMP w.r.t LSTM is ðRMSELSTM � RMSELSTMÞ=RMSELSTM.

Fig. 5. Data pre-processing in sequential learning models.
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the sequential learning models heavily relies on the accuracy of
interpolation.

The conventional way of performing interpolation is to sepa-
rately apply techniques such as cubic B-spline and Gaussian pro-
cess regression on the sparse observations from each subject.
This common practice is illustrated in Fig. 5. However, the recov-
ered curves using data from the individual curves alone are often
not consistent estimates for the true underlying curves, due to
the limited amount of information available per curve. For
instance, as shown by the left figure in Fig. 6, the interpolated
curves are significantly dispersed from the actual sin-shaped ran-
dom functions with two full cycles. As a consequence, the sequen-
tial learning models built based upon the biased input data are not
reliable.

Observing the benefit of jointly using time series across samples
to estimate or model the temporal variations within time series
data in functional data analysis (i.e., the right figure in Fig. 6), in
this paper, we also consider the functional data approach PACE
in Eqs. (9) and (12) as an interpolation method for the sequential
learning models. As shown in the numerical experiments in Sec-
tion 5.2, the performance of LSTM when the recovered data are
generated by PACE is significantly better than the other interpola-
tions for the considered problems. In general, FDA type of models is
valid when the time series of different subjects can be considered
as random samples from an underlying random process, which is a
reasonable assumption under many real-world use cases. There-
fore, we recommend using FDA-type modelings as interpolation
when dealing with sparse time series.
5.2. Performance comparison in numerical experiments

In this section, we conduct three numerical studies, including
classification of synthetic curves, prediction of patient’s survival
beyond a given period, and prediction of engine’s remaining time
to failure. We compare our sparse functional MLP (‘sparse FMLP’
or ‘SFMLP’) with the ‘LSTM’ as the baseline methods. Our proposed
method outperforms LSTM in all three numerical studies, where
the input variables are observed multiple times for each subject,
and the observing times are irregularly spaced and are not shared
across subjects.
5.2.1. Curve classification on simulated data
In this subsection, we conduct a numerical experiment on syn-

thetic data, with the objective of showing the benefit of modeling
repeated data over time in the functional fashion as well as the
validity of the proposed sparse functional MLP. Specifically, we
consider a curve classification problem. For each subject, we have
a variable of interest measured at multiple random times within
time range T. Each subject has an associated group label. The
problem is to build a model to predict the group label using the
repeatedly observed feature within time window T.

The synthetic curves and labels are generated as follows. There
are two distinct groups, i.e., g ¼ 1;2. The j-th observation of the i-th
subject in group g is denoted as Zg;i;j, which is generated using
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Zðg;iÞ
j ¼ Xðg;iÞðT ðg;iÞ

j Þ þ �g;i;j Eq. (4) and the Karhunen-Loève expansion

Xðg;iÞðT ðg;iÞ
j Þ ¼ lgðT ðg;iÞ

j Þ þP1
p¼1ng;i;p/pðTðg;iÞ

j Þ [7], with ng;i;p 	 Nð0; kpÞ,
for i ¼ 1; . . . ;Ng ; j ¼ 1; . . . ;Mg;i. Without loss of generality, we set
time window T ¼ ½0;1�. The number of subjects in both groups
are N1 ¼ N2 ¼ 300. The number of observation on each curve is
10, i.e., Mg;i ¼ M ¼ 10. GivenMg;i, the observing times are i.i.d sam-
ples from the Uniform distribution within [0,1]. The p-th eigen-
function /pðtÞ equals

ffiffiffi
2

p
sinðpptÞ for p ¼ 1; . . . ;1. The first four

eigenvalues are ð0:1;0:045; 0:01;0:001Þ and kp ¼ 0 for p > 4. The
mean functions are l1ðtÞ ¼ sinð4ptÞ and l2ðtÞ ¼ � sinð4ptÞ. The
standard deviation of the i.i.d random errors is 0.3. Two randomly
selected subjects from each of the two groups are visualized in
Fig. 7a and b. In each plot, the true curve Xg;iðtÞ is the brown dashed
line and the observations to be modeled are the black dots. We can
see that the data on each curve is sparse, and the big gaps between
observations prohibit the pre-smoothing step in LSTM and the
dense functional MLP to successfully recover the two-cycle sine
functions using the limited amount of data available. Our proposed
sparse functional MLP is specifically designed to handle this kind of
scenarios.

Cubic spline, the Gaussian process regression, and functional
data analysis based PACE interpolations are used in this experi-
ment to get data readings of the same interval. We then feed these
interpolation data readings into an LSTM network. This LSTM uses
two layers LSTM (32, 64) and one layer of neural network (8). Note
that grid search is used to tune the hyperparameters in LSTM. Fig. 9
shows the achieved interpolation at 100 points (M ¼ 100) within
the period for one randomly selected subject in group 1. It can
be seen that cubic splines and the Gaussian process regression pro-
duce biased estimates of the true curve, while the result of PACE is
consistent. The same observation is shown by the RMSE for all the
300 curves in group 1 in the first table in Table 3. Given the simu-
lation result, in real practice, we recommend trying PACE as an
alternative curve fitting method when the measurements in each
time series are sparse and irregular. The leave-one-out cross vali-
dation results are given by the first three rows of Table 3.

To implement our proposed sparse FMLP, we first estimate all
the required components in the proposed sparse FMLP. The first
three dimensions of the achieved eigen projection scores, i.e.,



Fig. 6. Left: An example when doing interpolation based on a single subject is problematic. Brown line is the underlying true curve, black dots are the observations to be used,
and purple lines is the biased pre-smoothing results. Right: Visualization of the benefit of performing interpolate using combined the observations from different subjects.

Fig. 7. Visualizations of simulated data in Section 5.2.1.
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E½gg;i;1jZg;i�; E½gg;i;2jZg;i�, and E½gg;i;3jZg;i� for g ¼ 1;2; i ¼ 1; . . . ;Ng , are
visualized in Fig. 8. In the plots, two different types of dots corre-
spond to the two different groups. As shown by the plots, the
extracted eigen projection scores better distinguishes the two evo-
lution curves sinð4ptÞ and � sinð4ptÞ. We specify the weight func-
tion of the k-th functional neuron asWkðbk; tÞ ¼

PP
p¼1bk;p/̂pðtÞ, with

/̂pðtÞ being the p-th estimated eigenfunction. The architecture of
the sparse functional MLP is that there are 4 functional neurons
in the first layer followed by a layer with two numerical neurons.
The activation functions in both layers are logistic function. The
leave-one-out cross-validation results are given by the last two
rows of Table 3.

Based on the two tables in Table 3, we have the following obser-
vations. First, the functional data based interpolation that jointly
Table 3
The interpolation accuracy of different methods for time series in group 1 and leave-one-

Interpolation method

Cubic spline
Gaussian process regression
PACE

Model Spec # of samp

LSTMSpline M ¼ 100 600
LSTMGP M ¼ 100 600
LSTMPACE M ¼ 100 600
Sparse FMLP P ¼ 2 600
Sparse FMLP P ¼ 3 600
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consider the data from all samples significantly outperforms the
alternative techniques. Second, for this example, the performance
of our sparse functional MLP under P ¼ 2 and P ¼ 3 is comparable,
with the result under P ¼ 3 being slightly worse. This makes sense
because the first two and three components contain a comparable
amount of information in the curves, according to our setting (i.e.,
eigenvalues are (0.1, 0.045, 0.01, 0.001)). Also, the reason why
P ¼ 3 slightly worse is that the third component with a very small
eigenvalue and can be considered as additional noises introduced
to the first two components. Third, the performances of LSTM with
different interpolations are similar, although the fitting perfor-
mance of PACE is significantly better than the other approaches.
We think this is because the interpolation within each group might
be biased in a similar way for all subjects, such that the two groups
of curves are still distinguishable. Last but not least, the perfor-
mance of LSTM with PACE and the proposed sparse FMLP is com-
parable. We think this is because the distinction between the
two groups of data is large and different models tend to have sim-
ilar performances.

5.2.2. Prediction of PBC patient’s long-term survival
In this section, we consider the problem of predicting the long-

term survival of patients with primary biliary cirrhosis (PBC) using
their serum bilirubin measurements (in mg/dl) at the beginning
period of the study. This enables the doctors to get early warnings
and to take corresponding actions to increase patient’s survival
possibility. The PBC data set we used are results of a Mayo Clinic
trial from 1974 to 1984. This data set is publicly available in an R
package called ‘survival’ and has been investigated by numerous
researchers including [15].

We consider the following problem setting. We use the patient’s
bilirubin measurements, which is known to be an important indi-
cator of the presence of chronic liver cirrhosis, within the first
910 days of the study to predict whether the patients survive
beyond 10 years after entering the study. There are 260 patients
included in the analysis, with 84 died between 910 and 3650 days
and 176 being alive after 10 years. Following [15], the bilirubin
measurements are log-transformed. The number of bilirubin mea-
surements per patient within the 910 days ranges from 1 to 5, with
out cross-validation results for synthetic curve classification task in Section 5.2.1.

RMSE

0.562
0.440
0.169

les Architecture Accuracy

L(32,64) N(8) 99:4%
L(32,64) N(8) 99.5%
L(32,64) N(8) 99:3%
F(4) N(2) 99.5%
F(4) N(2) 99:3%



Fig. 8. Extracted features from sparse FMLP(P ¼ 3). Black dots represent group 1 and red dots represent group 2.

Fig. 9. Comparison of interpolation results for a randomly selected sample. The
blue dots are the sparse observations available in the data set. The black line is the
ground truth. The red, green, and purple lines respectively corresponding to the
Gaussian process regression, cubic B-spline and PACE.

Fig. 10. Some results for the PBC long

Fig. 11. The raw data and the recovered log(bilirubin) curve
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histogram given in Fig. 10a. The sparse observations of two ran-
domly selected patients are plotted as the black dots in Fig. 11.
Given these two plots, it can be seen that the functional data is
sparse, and the number of observations and the observing time
are not the same across patients.

Our proposed sparse functional MLP is implemented in the
same fashion as described in the previous numerical experiment.
The number of projection is chosen through the leave-one-curve-
out cross-validation approach described in [24]. The selected

P̂ ¼ 2. The estimated eigen-functions using the restricted maxi-
mum likelihood estimate method in [33], denoted as /̂pðtÞ for
p ¼ 1;2, are given in Fig. 10b. The best predicted curves using
~XiðtÞ ¼

PP̂
p¼1Ê½gi;pjZi�/̂pðtÞ for two randomly selected patients are

given in Fig. 11. In each of the two plots in Fig. 11, the observed
dots are closely distributed around the predicted log(bilirubin)
curve ~XiðtÞ with some random errors, which visually justified the
validity of our curve approximator in Eqs. (13) and (14). The archi-
-term survival prediction study.

using sparse FMLP for two randomly selected patients.



Table 4
Leave-one-out cross-validation results for PBC long-term survival prediction using
sparse FMLP.

True

Classified Survived Died

Survived 151 25
Died 45 39
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tecture of the sparse functional MLP we used is that there are four
functional neurons on the first layer, i.e., K ¼ 4 in Eqs. (13) and
(14), followed by another layer of two numerical neurons. The acti-
vation functions in both layers are logistic function. The weight
function Vkðbk; tÞ for the k-th functional neuron in the first layer

Wkðbk; tÞ ¼
XP̂
p¼1

bk;p/̂pðtÞ; ð28Þ

with /̂pðtÞ being the p-th estimated eigenfunction. The leave-one-
out cross-validation results using the specifications mentioned
above are given in Table 4. The overall accuracy is 73.08%. We also
implemented the cubic B-spline interpolation plus LSTM strategy
described in the previous subsection. The accuracy of LSTM with
M ¼ 910 is 67%, which is lower than our proposed method.

5.2.3. Predicting remaining useful life for aircraft engines
In this subsection, we re-consider the RUL prediction problem

in Section 4. The C-MAPSS data set is a simulated data set without
any irregularity and missing values. To mimic real scenarios where
there are usually a certain level of irregularity in time series trajec-
tories, we sparsify the data set by randomly keep a certain percent-
age of the raw data (30%;50% or 100%) for each of the engines in
the training data. Note that the sampled timestamps are different
for different variables and subject. The last observation of each
engine is always kept to indicate the failure time.
Fig. 12. Correlation matrix for the projection scores
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For each of the 21 sensor variables, the correlations among the
projection scores from separately conducting FPCA on different
sensors are visualized in Fig. 12. It can be seen that there are strong
correlations among some of the sensors. Therefore, there will be
some benefits of considering the multivariate FPCA in Section 3.1.
The architecture of the sparse functional MLP (‘Sparse FMLP’) and
the multivariate sparse functional MLP (‘Sparse MFMLP’) we used
is that there are four functional neurons on the first layer, i.e.,
K ¼ 4 in (13) and (14), followed by another layer of two numerical
neurons. The activation functions in both layers are logistic func-
tion. And the weight function is the same as Eq. (28). The basis
functions in Eq. (28) are the eigenfunction from separate FPCA
for ‘Sparse MFMLP’ and the eigenfunctions from multivariate FPCA
for ‘Sparse MFMLP’. The baselines respectively utilize the cubic
spline, Gaussian process regression, PACE and multivariate PACE
to prepare data for LSTM (‘LSTMSpline’, ‘LSTMGP’, ‘LSTMPACE’,
‘LSTMMPACE’). The RMSE are summarized in Table 5. The plots of
RMSE over different level of data sparsity for the considered
approaches are provided in Fig. 13. The plot is produced with the
result for data set ’FD001’.

Here a summary of the major observations. First, the perfor-
mance of LSTM varies across different interpolation techniques.
What’s more, the LSTM with FDA type of interpolation approaches
significantly outperforms the conventional data interpolation tech-
niques. This is because the fitting error of the FDA type of interpo-
lations is smaller. Second, the proposed models in the paper
outperform all the LSTM based approaches. Specifically, the pro-
posed models is more accurate the ‘LSTMPACE’ and ‘LSTMMPACE’. This
indicates that the functional way of modeling is better than the
sequential calculation in LSTM for this specific problem. Third,
the multivariate FMLP performs slightly better than the FMLP
based on separate PACE. This is consistent with our intuition, as
there are some correlations among the projection scores and
‘Sparse MFMLP’ is proposed to handle such correlations. Note that
the magnitude of improvement is not large. We think it is reason-
of sensors calculated from the univariate PACE.



Table 5
RMSE comparison on C-MAPSS data.

Train Test Model FD001 FD002 FD003 FD004

10% 100% LSTMSpline 40.54 43.76 39.81 49.02
LSTMGP 34.22 36.78 35.89 34.33
LSTMPACE 22.03 23.69 21.89 23.75
LSTMMPACE 21.85 23.10 21.10 23.54
Sparse FMLP 20.81 19.53 19.83 19.39
Sparse MFMLP 20.27 18.67 19.63 19.03

30% 100% LSTMSpline 40.54 43.76 39.81 49.02
LSTMGP 29.98 30.28 30.42 28.91
LSTMPACE 17.79 18.94 20.26 21.64
LSTMMPACE 17.48 18.36 20.09 21.56
Sparse FMLP 17.12 17.45 16.41 18.34
Sparse MFMLP 16.85 17.08 16.06 18.18

50% 100% LSTMSpline 40.57 49.56 39.82 44.35
LSTMGP 26.45 24.76 26.43 25.26
LSTMPACE 18.85 18.84 20.44 20.77
LSTMMPACE 17.13 18.52 19.49 20.14
Sparse FMLP 15.47 17.24 14.63 17.44
Sparse MFMLP 15.02 16.98 14.41 17.19

100% 100% LSTM [27] 16.14 24.49 16.18 28.17
FMLP 13.36 16.62 12.74 17.76
Sparse FMLP 13.73 17.04 12.75 16.92
Sparse MFMLP 13.11 16.03 11.97 16.33

Fig. 13. RMSE under different percentage of data per subject.
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able as the correlation exists among small clusters of projections.
As another point, under the dense data scenario, i.e., 100% for both
training and testing, our proposed sparse FMLP and the dense
FMLP [30] has comparable performance. This experimentally justi-
fies their equivalence under dense data circumstance as discussed
in Section 3.1. Last, as shown in Fig. 13, the performance of models
utilize functional thinking is less affected when the number of data
points per curve decreases, compared to models such as
‘LSTMSpline’, ‘LSTMGP’.
6. Conclusion and discussion

In this paper, we focused on the temporal classification/regres-
sion problem, the purpose of which is to learn a mathematical
mapping from the time series inputs to scalar response, leveraging
the temporal dependencies and patterns. In real-world applica-
tions, we noticed that two types of data scarcity are frequently
encountered: scarcity in terms of small sample sizes and scarcity
introduced by sparsely and irregularly observed time series covari-
13
ates. Noticing the lack of feasible temporal predictive models for
sparse time series data in the literature, we proposed two sparse
functional MLP (‘Sparse FMLP’ and ‘Sparse MFMLP’) to specifically
handle this problem. The proposed SFMLP is an extension of the
conventional FMLP for densely observed time series data, employ-
ing the univariate and multivariate sparse functional principal
component analysis. We used mathematically arguments and
numerical experiments to evaluate the performance of each candi-
date model under different types of data scarcity and achieved the
following conclusions:


 When the sample size is large and the underlying function that
gives rise to the time series observations is non-smooth over
time, the sequential learning models are more appropriate
models to handle the supervised learning task.


 When the sample size is small and the underlying function is
smooth, we expect FMLP or equivalently the proposed SFMLP
to outperform the sequential learning in general, since
1. FMLP requires fewer training samples due to its feed-

forward network structure, succinct temporal pattern cap-
turing technique, and its capability of encoding domain
expert knowledge.

2. FMLP is easier to train as the time-varying impact of the
covariates on the response is aggregated through integrals
of the continuous processes, rather than recursive compu-
tations on the individual observations.

3. FMLP is less restrictive on the data format. In particular, the
time series covariates can be regular or irregular. Also, the
number of observations as well as the measuring times-
tamps can be different across features and subjects.


 The proposed sparse FMLPs are feasible solutions when the
individual time series features are sparsely and irregularly
evaluated.
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