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Abstract

Mueller, P., J . van der Spiegel, V Agami, D. Blackman, P. Chance, C . Denham, R . Etienne, J . Flinn, J .
Kim, M. Massa and S . Samamsekera, Design and performance of a prototype analog neural computer,
Neurocomputing 4(1992)311 324.

A prototype programmable analog neural computer and selected applications are described . The machine
is assembled from over 100 custom VLSI modules containing neurons, synapses, muting switches and
programmable synaptic time constants . Connection symmetry and modular construction allow expansion
to arbitrary size . The network runs in real time analog mode, however connection architecture as well as
neuron and synapse parameters are controlled by a digital host that monitors also the network performance
through an A/D interface . Programming and monitoring software has been developed and several appli-
cation examples including the dynamic decomposition of acoustical patterns are described . The machine
is intended for real time, real world computations including ATR . In current configuration its maximal
speed is equivalent to that of a digital machine capable of mom than 10" flops . A much larger machine is
currently under development .

Keywords . Analog neural computer, optical character recognition; phoneme recognition ; real time compu-
tation .

1. System overview

We have assembled and tested a programmable Analog Neural Computer designed for real
time computation of neural network problems . A photograph of the machine is seen in Fig.
1. The system is a prototype intended to validate the design concept, a larger machine for
commercial applications is being developed .

The computer contains directly interconnected arrays of electronic neurons, modifiable
synapses, modifiable synaptic time constants and analog routing switches . The arrays are
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Fig . 1 . Photograph of the neural computer, showing the main circuit boards, I/O buffer, power supplies
and LED display panel . the host computer is at right .

fabricated on VLSI chips and packaged in planar chips carriers that form separate modules
and arc mounted on interconnected circuit boards . Neuron arrays are arranged in rows and
columns and surrounded by synapse and routing switch arrays . The switches select the
connections between neurons . Figure 2 illustrates the machine architecture .
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Fig . 2 . General architecture and data flow. Neuron modules receive inputs from synapse modules
east and west and feed outputs into switch modules north and south . Due to the connection
symmetry the network can be expanded to arbitrary size .



The computer runs in analog mode. However, interconnections, synaptic gains, time
constants and neuron parameters are set by a digital host computer through an interface board
either from the keyboard or from stored programs . For the display of neuron activity and
the implementation of learning algorithms, selected time segments of the outputs from all
neurons are multiplexed on each neuron chip, digitized and stored in host memory . The
multiplexing operation is independent of and does not interfere with the analog computations
of the network .

Adjustments of synapse parameters and connection architectures are computed by the
learning algorithms on the basis of the stored neuron activity and loaded serially into the
neural computer via a digital interface board .

The machine has several unique attributes . First, both the gains and the time constants
of synaptic transfer are separately programmable, a feature that is indispensable for analog
computation of time domain phenomena such as visual motion, target tracking and analysis
of acoustical patterns. Second, it is constructed from interchangeable modules with two-
dimensional symmetrical pinout that permits easy modification of the numerical ratios and
positions of neurons, synapses and routing switches . Third, the network is expandable to
arbitrary size . Finally, the coupling of analog and digital hardware adds the flexibility of
digital methods .

In its current configuration the machine is composed of 3 circuit boards each containing
35 directly interconnected VLSI modules (Fig. 3) . Each module contains a separate array of
neurons, modifiable synapses, modifiable synaptic time constants or analog routing switches .
The neurons have an adjustable threshold and minimum output at threshold, synapse gains
are programmable from 0 to ±15 with logarithmic 6 bit control and the time constants from
5 ms to 2s with 4 bit resolution .

Fig . 3 .
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Block diagram of the processor boards . The major components and 1/4 of the analog data
paths are shown. Support chips, digital data buses and power connections am omitted . I/O
buffers and digital interface are on separate boards .

2. Description of the modules

The four different VLSI modules containing arrays of neurons, synapses, time constants or
routing switches were designed and fabricated in 2µ CMOS . For this prototype the synapse
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chip contained 8 x 16 synapses, the switch chip 16 x 16 analog crosspoint switches and the
neuron chip 8 neurons . The relatively low component count was dictated mainly by economic
considerations . For details of the VLSI components see [1] and [2] .

2.1 The neuron module

The module contains 8 neurons, an analog multiplexer and digital control logic for ad-
dressing the chip and driving the multiplexer. The neuron input is a current provided by the
synapse and the output a voltage (0-4V). The neuron transfer function is shown in Fig. 4 .
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Fig- 4 . The measured neuron output voltage versus input current: (a) transfer characteristics for
different minimum outputs at threshold ranging from 0 to 5 V: (b) characteristics for different
threshold bias currents: -30, 0, and +30 pA with a 1.7 V step at threshold .

The reasons for choosing this particular transfer function which permits variable degrees of
arithmetic and logic operation by the same unit have been described elsewhere [1] . In order to
avoid possible crosstalk in the switch lines the neuron bandwidth was designed for 150 KHz
and provisions were made to further reduce the bandwidth at the system level . However, no
crosstalk problems were encountered and in future designs the bandwidth shall be increased
to 1 MHz. The analog multiplexer which permits sampling of the neuron activity by the host



computer is of conventional design and does not interfere with the neuron operation . The
sampling rate of the multiplexer is under software control with a maximal rate of 150 KHz .
Thus the activity of all neurons can be sampled at up to 0 .5 ms per point .

2.2 The synapse module

The synapse converts the neuron output voltage into a current through a V/I converter
and scales the current mirrors into 5 values . A current recombination unit controlled by a
shift register memory combines the currents to the appropriate value specified by the user
programmable weight. In order to achieve a large dynamic range for the weights (4 orders
of magnitude) a floating point scheme was chosen for the current scaling and recombination .
The block diagram of the synapse module and some measurements of synapse performance
are shown in Figs. S and 6 .
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Fig . 5 . Block diagram of the synapse module ; the inputs are common to all synapses in the same

column and the output lines sum the currents of alt synapses in the same row .
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For time domain operations, programmable time constants over the range from 5 ms to
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2.4 The switch module

This module is used to route the analog signals between the neurons and the synapses and
thus specify the network architecture. The module consists of an array of crosspoint switches
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1 s are desirable. These time constants were implemented fully on chip with no external
capacitors by using an operational transconductance amplifier as a high resistance . The time
constant values are set by a 4 bit local memory . The values vary logarithmically with digital
code as seen in Fig. 7.
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Fig . 6 . Left: Output current versus input voltage of a synapse, measured from 4 chips from the same
run for weights of 2 .5, 1, 0.5 and 0 .25 . Right: Measured and theoretical weight factors of the
synapse versus the digital code programmed in synapse memory . The measured values are
normalized by the measured weight value for a gain of 1 .
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Fig . 7 . The average time constant values versus the digital code measured from 16 circuits on 4
different chips . The standard deviations vary from 2.5 to 7 .5% .



with additional cut switches at the vertical and horizontal lines . Each crosspoint switch is set
by a local one bit memory, the cut swtiches also allow grounding either output or input and
have a two hit memory . On-resistance is 2 to 3 KQ and On-resistance > 1 TQ . The block
diagram of the module is shown in Fig. 8 .
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3. System operation

The machine is controlled by software residing in the digital host . An overview of the
different tools is shown in Fig. 9 .

The connection architecture, synapse and neuron parameters are set and verified serially
at 2 MHZ from a digital host through a special interface board and graphic control software .
At the lowest level of control the network parameters are set manually through a mouse
and graphic display that highlights the connections and displays the synapse parameters .
Parameters are loaded either for the entire network, a selected hoard or a selected module .

Higher level control software, allowing the automatic transfer of conceptual networks into
the machine has also been developed . In this case the neurons in the conceptual network
are first partitioned and grouped according to the degree to which their inputs originate from
common sources. The groups are then assigned to specific modules in the physical network
by a placement routine and subsequently interconnected by an autorouting program based on
min-cut procedures . This program generates settings of switches and component parameters
that arc loaded into the neural computer .

The network is connected directly to the outside world through parallel analog 1/0 buffers .
There are 352 analog I/O lines available . In addition to the analog I/O, each neuron chip
contains an analog multiplexer that enables the digital host to monitor and store the neu-
ron activity for feeds over a common line into a 250 KHz A/D board located in the host .
The monitor software generates either arrays of selected time segments of each neuron output
that are displayed as separate graphs as shown inFig. 10, or it generates a continuous gray scale
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Fig. 9 . Overview of the software for the neural computer.

display of activity for all neurons . Neuron activity is also displayed directly by an LED Panel
seen in Fig. 1 .

The neuron activity patterns read by the host also form the basis for implementation of
different learning algorithms in which the network and the host form a closed loop . The
learning of a simple OCR task by packpropagation has been demonstrated (see below) .

4. Performance of simple computational tasks

The machine has been programmed for several tasks in order to evaluate its performance .
A few examples are discussed . In all cases the actual neural computations (no( learning)
are performed in real time, with response time limited only by the bandwidth of the neurons
which was maximally 300 KHz .

The first example (Fig. 10) is a `Winner Take All' net which, depending on the inhibitory
feedback gain, either extracts the largest output among 32 neurons or enhances the contrast
between the different outputs . The network settles within the time constant of the neuron
outputs and shows no oscillations . Simulations of this small network on a SUN 4 are slower
by a factor of 100 . Since this is a fully connected net the speed ratio would scale with n 2 on
the number of neurons .

Other small circuits, not shown, have been programmed, including an associative net of
24 neurons, a motor control circuit that models the last stage of the control of saccadic eye
movements, a neural integrator and several circuits for the computation of time domain pattern
primitives .

An example of a time domain operation is shown in Fig. 11 which shows small circuits
that are tuned to the frequency of amplitude modulation of a carrier frequency . Such circuits
are useful in the recognition of sonar patterns . Several coupled oscillators and central pattern
generators have also been programmed . By making use of threshold bias, feedback and
synaptic time constants, the networks can generate arbitrary dynamic activity patterns in the
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Fig . 10(a) . Conceptual network and performance of a `Winner Take All' network . 16 neurons receive
different inputs and are connected by mutual inhibitory connections . The records at right show
outputs from 16 neurons in response to a square wave input of different amplitude to each
neuron . At A the weightss of the inhibitory connections were set to zem . In B these gains were
0.5 and C, 0 .9 . The 0 .5 inhibition results only in contrast enhancement . The records were
obtained through the analog multiplexer . ; on the neuron modules and were displayed with the
monitor software by the digital host .
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Fig . 10(b) . Routing configuration of the `Winner Take All' net . This example shows pan of the graphic
displays used for muting of connections and setting of synapse parameters . Parameters are
selected from graphic menus for each chip module .

absence of external inputs .
The example of character recognition in Fig. 12 demonstrates that the system can learn by

hackpropagation in a simple 4 layer network. Development of alternative learning algorithms
for the machine is still at an early stage. Various algorithms can be run either by the host
alone or with the neural computer in loop . Since the weights are computed and updated by
the host, the learning speed for error correcting algorithms is improved only in those cases
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Fig. 11 . Network for recognition of amplitude modulation frequency of a specific carrier frequency. The
carrier frequencies, which are separated by a set of bandpass filters, are amplitude modulated by
a function generator and fed into an array of first stage of neurons . Their outputs connect with
inhibitory and excitatory synapses to second stage neurons . By adjusting the synaptic transfer
time constants and weights, individual neurons can be sharply tuned to a narrow band of amplitude
modulation frequency as seen in the middle records which show the amplitude modulated signal
and the output from one of the second stage neurons . this unit responds only in a phase locked
manner to a narrow band of modulation frequency (middle record) . The tuning curve of this unit
is shows at right .

where the actual performance computation is the rate limiting factor such as in networks
with extensive front ends or networks having lateral or feedback connections or different
synaptic time constants . However, we arc developing single shot learning schemes for
pattern recognition where the synapse parameters are determined from the input patterns
without iterative adjustments .

The machine is especially suited for the real-time analysis of dynamic patterns such as
speech. Another example of a more elaborate network for time domain computation is shown
in Figs. 13 and 14. This network, involving most of the available neurons, performs an initial
decomposition of acoustical patterns and the real time recognition of several phonetic speech
sounds . The net receives analog input from a set of 8 bandpass filters (200-3000 Hz) and
extracts local maxima of amplitude vs . frequency, (d2E/dS2), local rates of rise and fall of
amplitude (+ dE/dt), and local rise and fall of frequency i .e. motion (+ dS/dT) of activity
along the frequency axis (see also [3] and [4]) . The activity patterns generated in this feature
space by individual sounds are decoded by connection matrices to individual neurons that
respond in real time selectively to a specific sound such as a phoneme .

5. Conclusions

Several conclusions can be drawn from these tests . First of all the machine performance has
met all expectations regarding noise levels, accuracy, stability, programming flexibility and
processing speed . Particularly the routing space proved entirely adequate . There is therefore
no reason to project an increase in the ratio of switch modules to neuron and synapse modules
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Fig. t2 . Architecture and performance of a network for opticalcharacterrecognitionl The network consists
of 5 x 5 input layer, a 3 x 3 second layer and a separate 2 x 2 array for each character . The
recognition units form layer 4 . Each unit in the second layer is connected to 9 units in layer 1 and
each unit in layer 3 connects to 4 units in layer 2. The output units receive inputs from the 4 units
in layer 3 . The network was trained by hackpropagation in conjunction with the neural computer
for the letters A through H at shifted positions in the input layer and a Null input . The resulting
weights as loaded in the neural computer are shown as gray scale pixels in the middle figure . At
right arc the outputs from the neurons in the different layers for the characters A to H . Although
the outputs from the second and third layer units bear no resemblance to the input patterns, the
recognition by the 4th layer units was 100% . The recognition is shift invariant .
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Fig . 13 . Section of the conceptualdesignofanetworkfortheprimarydceompositionofacousticalpatterns .
The primary neurons receive input from eight band pass filters . These neurons are connected
with mutually inhibitory inputs in a center-surround scheme with spatially decaying gains . They
extract the maxima of the sound amplitude . The next stage extracts separately the temporal
rise and decay of the sound amplitudes. These neurons receive delayed excitatory or inhibitory
inputs from the previous stage . The third stage neurons are normally `on' through positive bias
input and compute the complement of the activity of the second stage neurons . The fourth stage
units compute the changes of frequency maxima and their direction through a combination of the
second and third stage neurons . In essence they are motion detectors . The outputs from all these
neurons provide inputs selectively to individual neurons that respond specifically to a particular
phoneme as shown in Fig. 14 . These connections are now shown in this figure .
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Fig . 14 . Neuron outputs from the network shown in Fig. 13 for the phonemes 'All', 'DAB', 'EH', and

'OH', illustrating the differences of the patterns and their recognition by single neurons . Each

block shows the output of a neuron as function of time during the pronunciation of the phoneme .

The column represent increasing frequency from left to right (from 200 to 3000 Hz) . The activity

of the neurons in the first row is proportional to the sound energy at the different frequencies . The

second and fourth rows represent the positive and negative rate of change of the sound amplitude
at the different frequencies and the third and fifth rows are the inverse of rows two and four. The
outputs of neurons in rows five and six represent up and down changes of frequency as function
of time as they occur, for example, in diphones during formant transitions in diphones . Such a

transition is indicated by the activity of unit 63 for the diphone'DAH' . The last row (units 57, 58,



Prototype analog neural cavnputer 323

59) for phonemes 'AH', 'EH' and `OH' shows the outputs from neurons that receive excitatory

and inhibitory inputs from the active neurons in rows one to seven such that they respond only to

a particular phoneme, in this case'AH', `EH' or'OH' . Notice that the outputs of the recognizing

neurons have a shorter duration than the spectral components of the sound patterns seen in the
top row . This arises from the fact that the 'ON' units are excitatory whereas the 'OFF' units are

inhibitory . A detailed discussion of the decoding strategy used to determine the connection to the

recognizing units is beyond the scope of this paper .

for larger machines . No major design change for the neurons is needed . The synapse gain

(weighting) scheme could be improved by increasing the resolution for middle range gains

(between 0.1 and 1) . The range and resolution of synaptic time constants seems adequate .

The major advantage of analog hardware implementations of neural computation is speed .

Simulations show that the matching of real time performance of even small networks similar

to that in Fig. 13 requires digital processing speeds exceeding 10" flops and larger machines

of this type in which the neuron band width is increased to l MHz, can be expected to approach

1014 equivalent flops .
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