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cInstituto de Investigación en Informática de Albacete (I3A), Universidad de Castilla-La Mancha, 02071 Albacete, Spain

Available online 12 November 2007
Abstract

An important problem in artificial intelligence (AI) is to find calculation procedures to save the semantic gap between the analytic

formulations of the neuronal models and the concepts of the natural language used to describe the cognitive processes. In this work we

explore a way of saving this gap for the case of the attentional processes, consisting in (1) proposing in first place a conceptual model of

the attention double bottom-up/top-down organization, (2) proposing afterwards a neurophysiological model of the cortical and sub-

cortical involved structures, (3) establishing the correspondences between the entities of (1) and (2), (4) operationalizing the model by

using biologically inspired calculation mechanisms (algorithmic lateral inhibition and accumulative computation) formulated at symbolic

level, and, (5) assessing the validity of the proposal by accommodating the works of the research team on diverse aspects of attention

associated to visual surveillance tasks. The results obtained support in a reasonable way the validity of the proposal and enable its

application in surveillance tasks different from the ones considered in this work. In particular, this is the case when linking the geometric

descriptions of a scene with the corresponding activity level.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

One of the most important problems in artificial
intelligence (AI) and in computational neuroscience (CN)
is to find effective calculation procedures that enable
connecting the analytic models of the behaviour of
individual neurons, typical of the Neurodynamics [6,7],
with the formulations in natural language of the concepts
and inferences associated to the high-level cognitive
processes [49,55,52,59]. We have just celebrated the 50th
anniversary of AI and it is evident that there is still no
general and satisfactory solution to this problem. The
e front matter r 2007 Elsevier B.V. All rights reserved.
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reasons for this lack of links between the models belonging
to Physics and AI reside in the intrinsic complexity of the
cognitive processes and in the lack of adequate methodo-
logical approaches.
In this work the selective visual attention (SVA) problem

is approached, firstly proposing a conceptual model at the
knowledge level on the double bottom-up/top-down
organization, of the attentional processes in humans,
together with a neurophysiological model of the corre-
sponding cortical and sub-cortical structures. Next two
complimentary neural mechanisms, algorithmic lateral
inhibition (ALI) [9,10,43,54] and accumulative computa-
tion (AC) [16,19–21] are selected for the computational re-
writing of the different elements of the conceptual model.
Finally, the validity of our proposal, by using image
sequences in visual surveillance tasks, is analysed.
The ideas underlying the work are: (1) In order to

theorize and to solve problems that go beyond the
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retinotopic projection step it is necessary to propose
neurophysiologically plausible synthetic architectures
(knowledge models), but without the precision by which
the more peripheral structures are known. (2) It is not
sufficient to model and interpret the neuronal function at
physical (physiological) level of registrations of slow
potentials or spikes trains. It is necessary to re-formulate
the neuronal mechanisms at the symbolic level in terms of
inferential rules and frames, closer to the natural language
used by an external observer when describing the atten-
tional processes, or when performing psychophysical
experiments [32,33].

The rest of the paper is constructed as follows. In Section 2,
the SVA task and some relevant approaches to its compu-
tational modelling are presented. Then, our proposal is
introduced at a conceptual level (Section 3) and illustrated
in Section 4. Afterwards, the two basic mechanisms
selected for making this architecture operational, namely
ALI (Section 5.1) and AC (Section 5.2) are described.
Finally, Section 6 draws some conclusions.

2. Selective visual attention task

The name SVA embraces a set of image processing
mechanisms for focusing vision and/or a set of effectors on
regions of the image where there are relevant local
space–time events. The greater or less relevance of a local
event has to do with: (1) its differential character in relation
to its environment, (2) its analogy or difference with the set
of features defining the objects in a pre-defined set to be
recognized, and (3) a combination of both criteria. These
SVA mechanisms have a twofold purpose: (1) to filter the
relevant information from irrelevant information and (2) to
modulate the information, pre-selected in accordance with
a purpose, using an active search process.

The SVA task has the characteristics of a dynamic
selection process based on a combination of data-guided
(bottom-up) and knowledge-based (top-down) criteria, as
Selected Ev

Where to look: (

What to look at :

Data-guided
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(passive selection)
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Fig. 1. Selective visu
illustrated in Fig. 1 (see also [7,31,32,58,67,75]). The input
role is the set of pixels in the visual scene at every moment
and the output role consists of coordinates of the selected
items. These are the coordinates of image regions that
stand out at that moment (‘‘where’’ to look). The pixels
stand out because they have maximum values of activity in
some property or combination of properties or in the
analogy measurement of the object detected (‘‘what’’ to
look at) with one or another of the pre-selected set. The
static roles consist of the active and passive selection
criteria.
This description of the SVA task is static, since it

implicitly implies that the visual scene remains constant
while the selection criteria are applied. However, in many
situations of interest, the selection of coordinates and/or
relevant items is done on time (driving, moving targets,
surveillance, etc.) which forces us to compare the situation
of the visual scene in successive instants of time first seeing
‘‘when’’ it changes in some relevant aspect and, afterwards,
seeing ‘‘where’’ it changes. Accordingly, the SVA mechan-
isms need to have a short-term memory (STM) or the more
inferential functionality of a working memory (WM) to
store every fact or new event in the time evolution of the
scene.
There are two types of criteria: (1) based on the scene

(guided by data) and (2) based on the task [71] (guided by
knowledge). The first model guided by data was pro-
posed by Koch and Ullman [40] and it is based on Anne
Treisman’s conjecture on feature integration [66]. In [38],
this bottom-up model is associated with biological
data on the anatomy and physiology of the visual pathway
in its closest stage to the external environment, before
arriving to the cortex. It assumes that a maximum selection
operation on the responses of the neural circuitry that has
to extract features is sufficient [60]. In SAIM [34], the
assumption is that there are three nets (‘‘contents’’,
‘‘selection’’, and ‘‘knowledge’’) that interact as if they were
‘‘agents’’.
ents
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Fig. 2. Bottom-up/top-down double organization of SVA task, as

proposed in [7,31,32,58,67,75], among others.
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In relation to top-down models, based on criteria of
selection associated with the internal activity of the system
(with its intentions, purposes and objectives), it is necessary
to highlight the ‘‘Guided Search’’ model proposed by
Wolfe [74]. This model uses the idea of ‘‘relevant features
map’’ (saliency map) as a starting point to close the loop
and to look for the targets of interest using knowledge
about the objects. The attention is directed towards the
objects that better correspond with the features that stand
out in every temporary interval. Another model [71] can
learn to focus its attention on important features depend-
ing on the task to be fulfilled by gating the flow of
information from the lower to the higher levels of the visual
system. Backer and Metsching’s model [2] also abounds
with the necessity to combine bottom-up criteria with other
intentional top-down criteria. In all cases, in an explicit or
implicit form, the idea of ‘‘control loop’’ that connects the
perception with the action underlies.

The idea of combining top-down with bottom-up
processing is not new. A model for aspects of visual
attention based on the concept of selective tuning [68] is
perhaps the first known approach. In general, there is now
a consensus that visual search is guided by a mixture of
bottom-up and top-down influence. An excellent review on
computational models—including papers describing the
double organization—can be found in [23]. Hamker [31]
describes a computational model of attention which
explains the guidance of spatial attention by explicitly
incorporating top-down feature feedback within a distrib-
uted network. Deco and Rolls [7] describe a model of
invariant visual object recognition in the brain that
incorporates feedback biasing effects of top-down atten-
tion mechanisms on a hierarchically organized set of visual
cortical areas with convergent forward connectivity,
reciprocal feedback connections, and local intra-area
competition. A good attempt to mix top-down and
bottom-up guided search has been introduced in a recent
model by Navalpakkam and Itti [58] in which bottom-up
saliency is combined with information about the ongoing
task or goal. Task constraints are introduced by user-
supplied keywords interacting with knowledge in a long-
term memory (LTM) network. In another work [67], a
novel model of attentive visual motion processing is
presented, addressing both decomposition of the signal
into constituent features as well as the binding of those
features into wholes. The visual processing architecture is
pyramidal in structure, with units within this network
receiving both feed-forward and feedback connections. In
[32], some simulations with a revised version of the
Selective Attention for Identification Model (SAIM)
demonstrate the usage of both factors. A very different
integrative approach is adopted in another recent image-
based model by Zelinsky et al. [75]. In this model, the
relative contributions of top-down and bottom-up pro-
cesses are systematically explored in the context of a
realistic search task. Rather than biasing individual
bottom-up features to reflect task demands, these authors
compute separate bottom-up and top-down saliency maps,
and then combine the two in various mixtures to derive a
guidance signal.
Thus, there is experimental evidence and consensus on

theoretical developments about the existence of a double
bottom-up (from the photoreceptors up to the sensory
cortex) and top-down (from the prefrontal cortex to motor
areas and effectors) organization [6] in SVA mechanisms
(see Fig. 2). It is crucial to consider the function of
interaction between both organizations, which is present in
almost all cortical levels. Most theories of visual search
explicitly acknowledge [64,74] or tacitly assume [13] the
contribution of both bottom-up and top-down processes in
guiding search behaviour.
This approach involves a set of hierarchically biased

cooperative/competitive attentional processes. It is coop-
erative because it relies on the double bottom-up/top-down
process. And it is hierarchically biased as there is a
hierarchy of levels and the mechanism is globally con-
trolled by the high level cognitive processes. Biased
competition suggests that neuronal responses are deter-
mined by competitive interactions that are subject to a
number of biases, such as ‘bottom-up’ stimulus informa-
tion and ‘top-down’ cognitive requirements. Important in
the theory is the idea that a WM template of the target
object can bias competition between objects and features
such that the target object is given a competitive advantage
and other objects are suppressed (cf. [11]). The dominance
is provided by the purposes or objectives in a concrete task,
in a concrete domain and for a concrete observer.

3. Conceptual and neurophysiological models of SVA: a

conjecture of correspondences

In CN it is always difficult to establish a correspondence
between the neurophysiological data and the anatomic
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organization of the information flow, on the one hand, and
the external formulation in terms of natural language of the
emergent functions at conscious cognitive level. That is
why we talk about conjecture when referring to the content
of this section, where a possible correspondence between
the functions that we consider necessary for the synthesis of
the SVA processes and the underlying anatomic structures
when the attentional functions are performed by a human
is proposed.

SVA is a global synthetic activity based on the
cooperative action of the sensory, motor and association-
decision brain structures [8,47,48,56,57]. The different
brain structures cooperate as contributing factors to the
functions proper of the bottom-up and top-down organi-
zations; and this cooperation is modified with development
and learning.

From the point of view of an external observer, the
distinguishing features of the SVA bottom-up organiza-
tion, as shown in Fig. 3, are as follows:
1.
 It is pre-attentive and automatic [65,66], although it can
be modulated by voluntary activity and reflex mechan-
isms dependent on innovation, conflict, surprise and
uncertainty of the stimuli.
2.
 Computationally, it possesses the architecture of a
parallel process (connectionist) on the whole visual
scene [65,66], also concurrent with the rest of the sensory
modalities.
3.
 It is generally accepted that this parallel process consists
of extracting a set of local features [36] (intensity,
intensity contrast, colour, orientation of the shapes,
speed, direction, and so on) from which we construct a
representation of the scene [63,68].
4.
 There are transverse lateral inhibition (LI) mechanisms
[12,28], which enable the different features to be
integrated to represent local situations characterized
by the conjunction of two or more properties.
t
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Fig. 3. Conceptual model of SVA bottom-up organization.
5.
 The feature detectors must be able to adapt (learn) so
that the computational counterpart of the receptive
fields of ganglion cells, LGB cells and columns in cortex
can adjust [25] in shape and size.

In summary, the SVA bottom-up organization enables
the calculation in parallel of local features of differential
type, which detect the coordinates of the points in which
there are strong discontinuities in the value of each
property. It also enables the subsequent combination of
these individual maps in a single map of relevant
coordinates (feature integration).
The main justification for the bottom-up organization

schema of the SVA in Fig. 3 is of computational nature. It
includes the sequence of steps that we consider necessary
and sufficient to dynamically obtain the coordinates of the
attention focus. Therefore it is a synthetic architecture
corresponding to a computable inferential schema, which
has demonstrated its validity in segmentation and tracking
tasks [16,18,19,44] where attentional processes participate.
On the other hand, when operationalizing the different
functions of feature extraction, evaluation (maxima selec-
tion), integration (configuration evaluation), transitory
storage (FIFO-like memory) and presentation of the
coordinates of the dynamic focus, the necessary logical-
mathematical calculations are sufficiently ergonomic to
enable their processing in real time [42].
The anatomic structures underlying the bottom-up organi-

zation of the SVA (Fig. 3) correspond to the three stages
of the sensory pathway shown in Fig. 4 [8,47,48,51,56,57]:
(1) sensation, (2) perception, and (3) conceptualization by
multisensory association (integration of the different sensory
modalities). The first stage is repeated for each sensory
modality and includes receptor, corresponding thalamic
nucleus and primary cortical area. Here the stimulus is
detected but not identified. For the visual pathway it would
be: (a) receptor (retina, optic nerve, and chiasm), (b) thalamic
nucleus (external geniculate body), and (c) primary cortical
area. The second stage (perception) constitutes the first
gnostic level. Here there is already semantics. It is where the
stimulus is coded and identified. It is the process that the
sensory information undergoes from the thalamic nucleus of
the previous level to the secondary cortical areas, passing
through the corresponding associative thalamic nucleus. The
third stage (multisensory association and stimulus conceptua-
lization) includes the confluence and interaction of secondary
areas corresponding to the different sensory modalities. Here
the supramodal (symbolic) schema takes place.
From the computational viewpoint, the top-down

organization of SVA corresponds to a task-oriented guided
search with the following characteristics (Fig. 5):
1.
 It is a sequential process [68,74].

2.
 The system initially knows the features of the objects

and events on which it wants to focus its attention
[30,50]. It knows the ‘‘objects and events of interest’’
that it tries to identify [39].



ARTICLE IN PRESS

RECEPTOR
Retina
Optic Nerve
Chiasm

FIRST STAGE
(sensation)

Feature extraction

First evaluation

Short-term memory

Thalamic
Associative

Nucleus
(Pulvinar)

SECOND STAGE
(unimodal perception)

Feature map
integraction

Working memory

Thalamic Nucleus

(E. Gen. Body)

Primary Cortical

Area

(17,V1)

THIRD STAGE
(supramodal schemes)

Where “to look at”

What “to look for”

Link with the top-down
organization

Associative

Cortical Areas

(18,19)

Multisensory

Association Areas

(39,40)

From other

sensorial

modalities
To other

cortical Areas

Fig. 4. Neurophysiological model with the anatomical substratum of the bottom-up organization of sensory functions.
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3.
 The inferential schema of this active selection task
includes sub-tasks of (a) retrieval (activation) of the
sensory and motor patterns associated to the ‘‘knowl-
edge base’’ of objects and events of potential interest,
(b) pattern matching, (c) motor planning and control,
and (d) learning, which reinforces or disables the pre-
selected attention focus [35,62,70].
4.
 This top-down organization is in charge of controlling
the interaction between both organizations and refining
the selection of the attention focus starting from the
specific features of an object-target [29], that is to say, of
a class properties combination. According to a recent
study by Chen and Zelinsky [5], when top-down and
bottom-up guidance signals are placed in competition,
then top-down guidance clearly prevails. Previous
studies have argued for a similarly dominant role of
top-down processes during search [23].

The top-down organization has to do with task-oriented
purposes and intentions and with the control in a closed
loop of the activity of the sensors and effectors directed to
reaching these purposes. Here we start with objects and
events, which are entities of a superior level of semantics
than the vectors of properties of the top-down organization
(blobs, shape, colour, velocity, and so on). Thus, the top-
down attentional processes involve: (a) an object recogni-
tion process that heightens the combination of best fit
properties for the proposal of the search and (b) reinforce-
ment learning to refine the initial bottom-up selection by
tuning the parameters of the initial filtering and by
eliminating those items that are less similar to the stored
prototypes [45].
Although the justification of the schema proposed in

Fig. 5 is purely of computational nature, the neurophysio-
logical model shown in Fig. 6 as anatomical support to
the top-down attentional processes in humans is proposed
in this paper. The decision on the interest events emerge
from the activity of the prefrontal areas that programme
and control the execution of all the voluntary motor
acts (eye, head and rest of the body movements, to focus
on the coordinates proposed by the sensory system).
These prefrontal areas are connected to the contents of
sensory and motor memory, and, consequently, have
access to the sensory patterns of the objects and events
of interest and to the motor patterns (the ‘‘kinetic melody’’)
adequate to cross the visual pathway and to focus on
the environment of the coordinates where the object is
present. The scanning of the scene is performed by
means of saccadic, pursuit and compensatory movements
that give place to successive overlapped observa-
tion windows. The motor patterns are in charge of turning
the eyes, and/or moving the head, and/or moving the
rest of the body, or performing displacements looking for
other perspectives. The final result of this scanning phase
enables to focus on regions where a more refined search is
initiated.
From the very beginning of the search process the

feedback loops between the motor outputs and the bottom-
up sensory organization are active in order to compare
the stored pattern with the current ones (see Fig. 6).
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Finally, there is a learning process that enables to refine the
matching operation, by adding new components to the
prototypes base, or by modifying the distance measure, or
by modifying the parameters of the bottom-up organiza-
tion, which have led to the selection process that has
activated the top-down organization.
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4. Application in surveillance

Similarly to [30], where the author proposes a model for
generic computer vision, which, in the long run, could be
used for object recognition and tracking, our approach is
task-oriented towards visual surveillance. Hamker states
that there seems to be no generic data-driven solution to
computer vision, but rather the model itself (by a cognitive
control structure) has to provide appropriate top-down
knowledge for each task. In our surveillance works, not all
the functionalities of the biological systems can be used.
Indeed, we do not use the movement of a camera situated
on a robot, or the saccadic movements, the convergent, and
divergent and adaptation processes of the eyes, etc. We
limit to anything that can be extracted computationally
from one or various image sequences captured by fixed
cameras or cameras performing an easy two-dimensional
translational movement. This limits the richness of the
attention concept, as shown in Fig. 7, where an example is
depicted using as input a sequence containing different
Feature

Integration

Motion Features

Extraction &

Evaluation

THIRD STAGE

FIRST STAGE

SECOND STAGE

Fig. 7. Results of the bottom-up and top-down organizations
moving objects that may be interesting in surveillance. The
final objective is the capacity of paying attention on
pedestrians and/or vehicles. Thus, the proposal for the
surveillance task is limited to:
1.
Bl
Bl
Bl

in a
The starting point is an image sequence (video
sequence) in the bottom-up part of our double
organization proposal. As you may notice in Fig. 7a,
the input to this first step is a couple of images captured
at two consecutive time instants t�Dt and t.
2.
 In the first stage (Fig. 7a) the extraction and evaluation
of motion and shape features takes place. The result of
Motion Features Extraction and Evaluation is shown as
an image where white pixels represent image pixels
where motion has been detected between two con-
secutive frames. This process consists in motion
detection by image differencing.
3.
 Now, in Shape Features Extraction and Evaluation the
values used for the evaluation of the blobs present in
the image are shown. In our approach a blob is defined
ob Size < 4000 pixels
ob Width < 200 pixels
ob Height <150 pixels

Attention Focus

Coordinates

Image (t-Δt)

Image (t)

Short-Term

Memory

t-2Δt

t-Δt

t

Shape Features

Extraction &

Evaluation

surveillance scenario. (a) Bottom-up. (b) Top-down.
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as a set of connected zones with similar colours
(generally, we work with grey levels). For the extrac-
tion of the blobs the ALI mechanism is used.
4.
 In the second stage (Fig. 7a) the result of Feature

Integration, depicted as an image, is obtained. The
colour white in the Feature Integration image references
image blobs that include some pixel of image Motion

Features Extraction and Evaluation and fulfil the shape
conditions indicated in Shape Features Extraction and

Evaluation. The colour grey indicates the zones that do
not fulfil the shape features. Hence, the zones where
there is motion associated to candidate objects of
interest are filtered out.
5.
 Also, in this second stage the STM stores in diverse
time instants the image zones that fulfil the initially
required conditions of shape and motion. In our
example the pedestrians as well as the vehicles fulfil
the conditions.
6.
 In the bottom-up organization (we are still in Fig. 7a)
in the third stage we keep the selected regions with the
blobs of interest in the so-called Attention Focus

Coordinates. The Attention Focus Coordinates have
precisely been obtained by performing an AC process
on the STM. We may observe that the desired objects
appear in the Attention Focus Coordinates; these will be
refined in the top-down organization (see Fig. 7b).
7.
 The first objective of the process shown in Fig. 7b is to
refine the attention focus by means of ALI’s competi-
tion mechanism of maxima selection, similar to winner-
take-all (WTA), to obtain a unique object according to
the semantics associated to the task proposal. In our
case, the proposal is to focus attending to the semantic
memory ‘‘to track the car’’. The decision stage receives
the proposal related to the surveillance task and the
current input image.
8.
 In the motor stage (also in Fig. 7b) a comparison
between the Attention Focus Coordinates and the
STM—both coming from the bottom-up organiza-
tion—and the stored prototypes is performed. In our
current proposal the prototypes are stored as ranges of
values that the objects (figures) of interest have to
comply with. Precisely, we are working with shape
parameters related to size, width, height (given in
pixels), and width/height ratio.
9.
 The output of the motor stage is the values obtained in
the associated Dynamic Attention Focus figure (the
vehicle, according to our proposal).
10.
 Lastly, the learning stage, as well as offering the
Dynamic Attention Focus according to the values
generated during the motor stage, it also activates the
reinforcement learning mechanisms for the construc-
tion of a shapes base annotated with the parameters
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that define them and with the potential semantics
associated for its incremental usage in the follow-
ing iterations of the bottom-up component of our
proposal.
5. Operationalization of the inferences

In the previous sections the inferential schemes corre-
sponding to the bottom-up (Fig. 3) and top-down (Fig. 5)
organizations of the SVA together with the corresponding
neurophysiological model (Figs. 4 and 6, respectively) have
been described. In order to pass from these general
descriptions to more operational ones, the inferences have
to be substituted by analytic operators, by logical-
relational rules, or by instructions of a programming
language. For instance, Tsotsos [68] uses WTA updating
rules and analytic operators, Deco and Rolls [6] uses a
spiking dynamics approach, modelling each neuron by an
integrate-and-fire model (first-order differential equation),
and Walther [72] uses linear threshold units for the bottom-
up attention and ‘‘if-then’’ rules for the top-down
attentional modulation.

In this work we explore the conjecture that both
organizations, bottom-up and top-down, may be made
operational by essentially using two biologically inspired
methods called algorithmic lateral interaction (ALI), a
generalization of LI anatomical circuits [10] and AC. The
ALI method may be compared to centre-surround
approaches used by other authors in visual attention by
considering that WTA algorithms are an extreme case of
LI. Analogously, the AC method can be considered a
generalization of STM, WM, and semantic memory.

The reason underlying this conjecture is that the first of
these mechanisms the (ALI) enables the discrimination and
detection of novelties and spatial–temporal changes, and
the second (AC) permits to detect and to accumulate
persistence in the structure of the optic flow. In formal terms
the first mechanism permits the differential calculation and
Fig. 8. Flock of birds
the second the integral calculation. And in terms of
organizational principles, the first mechanism permits the
cooperation and the competition among the different neural
assemblies and the second permits to filter, to store
transitorily and to process the information associated to
the neuronal activity in a similar way as the working
memories (WM) are supposed to do.
To examine the results of the use of ALI and AC in SVA,

a running example consisting of a flock of birds flying in
the sky, as shown in Fig. 8, will be used throughout the
remainder of the text.

5.1. Algorithmic lateral inhibition (ALI)

There are some neuronal structures that are repeated at
all integration levels in the nervous system and which
emerge again in the global behaviour of human beings.
This is the case of the LI circuits. LI may be found in levels
such as neurogenesis, dendro-dendritic contacts, neuronal
circuits in the retina, lateral geniculate body (LGB), and in
cerebral cortex, in the interaction between groups of
neurons (ocular and orientation dominance columns)
[54]. At the physical level, in terms of interconnected
neurons, there are two basic connectivity schemes: (1) non-
recurrent (feed-forward) LI and (2) recurrent LI, with
feedback from the central and peripheral parts of the
axonal output spaces (see Fig. 9). In non-recurrent LI, the
modification of a unit response depends on the inputs of
the neighbouring units, and in recurrent LI it depends on
the outputs of the neighbouring units.
When extending the formulation to the continuous case

(Fig. 9b) the terms of interaction become nuclei of a
convolution integral. Then, the output, F(x, y), is the result
of accumulating the direct excitation of each unit, I(x, y),
with the inhibition from modulating the excitation received
by the connected neighbouring units, I(a, b), via the weight
factors K(x, y; a, b). The difference nucleus, K(x, y; a, b), is
now responsible for the specific form of the calculation
which, in all cases, acts as a detector of contrasts (Fig. 10).
running example.



ARTICLE IN PRESS

Ii

��i �j

Ij I(x,y)

�(x,y)

I(�,�)

�(�,�)

(x,y) d�

d�

K(x,y ; �,�)

K*(x,y ; �,�)

(�,�)

Fig. 9. Non-recurrent (continuous line) and recurrent (discontinuous line) LI connectivity schemes at the physical level: (a) discrete case and

(b) continuous case.

Fig. 10. Application of non-recurrent (feed forward) LI to the running example: (a) horizontal contrasts, (b) vertical contrasts and (c) contrasts on both

axes.
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In the recurrent LI it is the direct output, F(x, y), which
accumulates the inhibition from the responses of the
neighbouring units, F(a, b), weighted by an interaction
coefficient K*(x, y;a, b), basically different from that of the
direct path (K). Here again, in recurrent LI, the shape and
size of the receptive field (the interaction nucleus K*)
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specifies the network connectivity (cooperation–competi-
tion area) and the calculation details (syntony, orienta-
tions, shapes, speeds, etc.). The most usual shape in K and
K* is obtained from subtracting two Gaussians. Thus, the
calculation structures inherent in the entire LI network are
obtained: (1) a central area (ON or OFF), (2) a peripheral
area (OFF or ON), and (3) an excluded region (outside the
receptive field).

This operationalization of the LI model is limited to a
language of physical signals as functions of time (adders
followed of sigmoids or integrate-and-fire models), but the
same structure of calculus can be reformulated in terms of
‘‘if-then’’ rules. Now feed forward and feed back receptive
fields with an excitatory centre and an inhibitory periphery
are defined over the data fields of a FIFO-like local STM.

With this interpretation of the calculation performed by
a net of LI the associated semantics are augmented [52].
Now the ‘‘inputs’’ to the LI network may be not only
signals of the photoreceptors but also properties detected
by the ganglionar cells, or the activity of the neuronal
groups of the LGB, or ‘‘excitatory and inhibitory pools’’ in
cortex [6], for instance. In an analogous way, the ‘‘outputs’’

of the LI network may be considered as ‘‘decisions’’
associated to the state of activity of specific neuronal
groups. We call this generalization of the LI ALI, as it
maintains invariant the structure of the calculation of the
LI but it eliminates the analytic restrictions of the contents
of the ‘‘condition’’ and ‘‘action’’ fields of the rules
[9,10,52,54].

With this interpretation of ALI, each element of calculus
samples its data in the centre and periphery of the volume
specified by its receptive field in the input space (STM) and
also samples in the centre and periphery of the volume
which specifies its receptive field in the output space
(STM). By specifying the nature of the decision rules, the
different types of calculus attainable by a network of
algorithmic LI are obtained.

A simple example is to use ALI to select coordinates
where a given individual feature reaches its maximum value
in a certain local and/or temporal environment, as a WTA
mechanism. There, ALI behaves as a competitive algorithm
which enables comparing the values of a property in a
certain region of the image, pj, with the values in the rest of
the image in order to retrieve only the coordinates of the
maximum. The recurrent ALI units dialogue until only
those xmax

j that have a maximum input respond:

xmax
j ¼ position x where the measure of property

pjðxÞ is maximum:

For this reason, the calculation is performed on the
central (C*) and the peripheral (P*) part of the output
receptive field by means of the following rule:
1.
 Select maximum in C*, that is Cm.
2.
 Select maximum of absolute values in P*, that is Pm.
3.
 If max(Cm, |Pm|)=Cm then go to (4) else go to (5).
4.
 Write Cm in the output space.

5.
 Write �Pm in the output space.

The justification for the third point of the ALI algorithm
is the need that each module possesses to distinguish if an
‘‘opinion’’ is a proper one (+) or if it belongs to a
neighbour (�). The aim of the algorithm is to detect and to
propagate a local maximum (Cm) within the receptive field
and to distinguish if this maximum is a proper one (belongs
to C*) or belongs to the neighbours (is within P*). If it is a
proper one it is retained and propagated (write Cm in the
output space). In the case of belonging to a neighbour, it is
assumed and propagated (write �Pm in the output space).
The essential thing is to maintain the centre/periphery
distinction, to assume the maximum value (proper or
belonging to the neighbours) and to propagate it with a
label. In order to carry out this function the distinction
between module (|Pm|) and sign (+,�) may be used, as it
is done here, or complex numbers might be used, as for
instance in [10]. The usage of the sign or the module is
physiologically more appropriate than the usage of
complex numbers.
The output space of an ALI ‘‘circuit’’ represents the tem-

poral evolution for the decision of choosing the ‘‘winning’’
neuron for that input. Evidently, when the receptive field
covers the whole net (total connectivity in the feedback
pathways), the decision is reached in a single step. But this
is not the usual case in the brain. Moreover, this would
mask the cooperative process inherent to a local dialogue
and the diffusion of the maximum, made possible by the
overlap of the receptive fields in the output space.
Fig. 11 illustrates the calculation schema and the results

of the simulation for a network of 201 units with receptive
field size 11 and convergence in the maximum value of the
property (x ¼ 41) after 12 iterations. Note that the
cooperative decision of ALI needs a lower number of
iterations when increasing the size of the receptive field.
Also note that any ALI net needs to perform on two time
scales; one external for the inputs {pj(t)} and another one
for the competition process. While the detection and local
maximum diffusion algorithm operates, the input has to
remain constant, waiting for the centre-periphery dialogue
of each unit with its neighbours.
The application of the previously introduced competi-

tion algorithm to our running example is shown in Fig. 12.
The crosses are the result of looking for the maximum grey
level value on the negative of the image, by applying the
competitive ALI with a 100� 100 pixels receptive field size.
The cross within the box is the result of using a greater
receptive field in order to obtain one single maximum in the
whole image.
WTA neural networks, a particular case of ALI, have

been extensively discussed in the literature as a way of
making decisions. The idea of using mutually inhibiting
networks of neurons is now 30 years old [26,27]. The first
use of a WTA network for SVA goes back to Koch and
Ullman’s work [40]. In his selective tuning model of visual
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attention, Tsotsos [69] uses WTA networks at multiple
levels of visual processing to overcome computational
complexity barriers for visual search. Also, Itti and Koch
[37] introduced a detailed saliency map model to explain
how bottom-up visual information could be used to direct
attention towards potentially interesting stimuli in the
visual field. In their model, visual features are extracted
from an image and separated into various feature maps.
Within each map, centre-surround competition weakens
the representation of features occurring abundantly in the
image and strengthens unique features. Koike and Saiki
[41] proposed that a stochastic WTA enables the saliency-
based search model to vary the relative saliency in order to
change search efficiency, due to stochastic shifts of
attention.

We have seen how, when substituting the weighted sum
with a maxima selector, ALI circuits project into compe-
titive WTA-like algorithms. In an analogous way, if
substituting the maxima selector with the more general
inferences of ‘‘evaluate’’ an expression in the centre and the
periphery, ‘‘compare’’ the results of these evaluations and
‘‘select’’ the result that best satisfy a certain criterion, then
the ALI circuits convert into problem-solving methods
(PSM) in the usual sense in AI [61]. In [43] we applied this
PSM to a SVA system with the objective of moving objects
detection, labelling, and further tracking.

5.2. Accumulative computation (AC)

The memory in ALI is supported by the networks of
delays in the receptive fields, which store in a STM the
input and output configurations of the network during the
last calculation intervals. Computationally this is equiva-
lent to simulating, in a discreet manner in terms of finite
differences equations, the analogical models of ‘‘integrate-
and-fire’’ neurons. The ALI model greatly increments its
calculation capacity when substituting this STM by
another transitory data storage method that admits more
possibilities to manage its contents. We call this sort of
memory ‘‘accumulative computation’’ (AC) [15–17,53],
which is formed by a set of ‘‘dynamic state variables’’
whose activity state (attentional state) can be controlled in
function of the presence, persistence or extinction of the
following events:
�
 Evaluation of the presence of specific features in the
central and the peripheral parts of a receptive field.

�
 Accumulation of the persistency of these features.

�
 Generation of an output pattern function of the

accumulated value.

�
 Action of specific control algorithms of the charge/

discharge process, including the possibility of learning,
understood as a change in the value of a set of
parameters (increment and decrement steps, maximum
and minimum value, and time scale).

The upper part of Fig. 13 shows the AC model’s
inferential schema. The model works in two time scales, a
macroscopic, t, associated to the external data sequence to
be processed by the net, and a microscopic one, t,
associated to the set of internal processes that take place
while the external data (an image) remain constant. The
lower part of Fig. 13 illustrates the temporal evolution of
the state of the charge in an AC WM in front of a
particular one-dimensional stimuli sequence.
When applying this AC process to a sequence of images

of the flock of birds running example, the results of
Fig. 14a are found. The control rules used to calculate the
persistency of motion through time are:

Q½x; y; tþ Dt�

¼
maxðQ½x; y; t� � dQ;minÞ if C½x; y; t� ¼ 1;

minðQ½x; y; t� þ dQ;maxÞ otherwise;

(

where C[x, y; t] ¼ 1 means that motion has been
detected on pixel [x, y] at t. Note that white colour is
associated to pixels where no motion has been detected
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Fig. 12. Application of the ALI competition algorithm to a flock of birds.
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Fig. 13. The AC inferential schema (upper part) and an example of the temporal evolution of the accumulated persistency state, Q(t), in response to a

specific sequence of values of a detected feature, C(t), (lower part).
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and black is associated to pixels where motion has been
detected at the current time instant. Intermediate grey
colours indicate motion detected during the last previous
time instants. The result of this AC process followed by
threshold provides the Attention Focus (Fig. 14b). Note
that almost the whole background has been eliminated.
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Fig. 14. Application of AC in ALI to the running example: (a) motion persistency measure and (b) attention focus at a given time instant.
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The closest concept to our FIFO memory in ALI is the
one of the STM. Similarly, the concept closer to our AC is
the WM, as proposed by Baddeley and Hitch [4]. From the
computational viewpoint WM allows keeping active a
limited amount of information for a brief period of time. It
was thought to have two functions: storing material that
we have to recall in a few seconds and providing a gateway
to LTM [1]. WM, as AC, is conceptualized as an active
system for temporarily storing and manipulating informa-
tion needed in the execution of complex cognitive tasks.
There are two types of components: storage and central
executive functions. WM may also be seen as the ability to
transiently hold and manipulate goal-related information
to guide forthcoming actions [3,24]. Stimulus-specific
persistent neural activity is, apparently, one of the neural
process underlying active memory processes [73].

6. Conclusions

In this work we have integrated a great part of the
research team’s works [14,18,20–22,34,44,46] on SVA
processes in visual surveillance tasks, using a knowledge
model based in the acceptance of the existence of a double
organization of the bottom-up/top-down attentional pro-
cesses [7,31,32,58,67,75] and two biologically inspired
mechanisms, ALI and AC, as basic functional modules to
operationalize the different inferences of the model
(‘‘evaluate’’, ‘‘compare’’, ‘‘select’’, ‘‘dialogue’’).
In addition to the possible value of the proposal in the

specific field of the attentional processes, this paper
exemplifies a methodological approach to CN that may
be of interest in the modelling of other aspects in the
integration of perception and action. We refer to the use of
neuronal circuits as a source of inspiration for new
algorithms and problem-solving methods of potential
utility in Computer Vision and Robotics. The usual
strategy in Neurodynamics [6] is to start from an anatomic
circuit, to substitute the neurons by analogical integrate-
and-fire like models, and to simulate the behaviour of these
artificial neural networks (ANN). Our suggestion is to add
to these descriptions of the neurophysiological level other
symbolic ones coming from keeping the structure of the



ARTICLE IN PRESS
J. Mira et al. / Neurocomputing 71 (2008) 704–720718
neural networks (their connectivity) but substituting the
analytic operators by inferential rules, and now simulating
the behaviour of these nets of rules, whose semantics is
closer to the description in natural language that an
external observer emits when he sees the behaviour that
emerges of the biological neural networks.
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