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a b s t r a c t

We formulate a supervised, localized dimensionality reduction method using a gating model that

divides up the input space into regions and selects the dimensionality reduction projection separately

in each region. The gating model, the locally linear projections, and the kernel-based supervised

learning algorithm which uses them in its kernels are coupled and their training is performed with an

alternating optimization procedure. Our proposed local projection kernel projects a data instance into

different feature spaces by using the local projection matrices, combines them with the gating model,

and performs the dot product in the combined feature space. Empirical results on benchmark data sets

for visualization and classification tasks validate the idea. The method is generalizable to regression

estimation and novelty detection.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

In binary classification, we are given a training data set
fðxi,yiÞg

n
i ¼ 1 where n is the number of training instances, xiARd

and yiAf�1,þ1g. Dimensionality reduction is commonly used
to alleviate the effect of redundant or correlated features and
to visualize the training data using few, for example, two
dimensions.

Principal component analysis (PCA) is the first method that
comes to mind for linear dimensionality reduction. PCA seeks to
maximize the explained variance of the data in the projected
feature space and performs a linear dimensionality reduction by
calculating a projection matrix from the eigenvectors of the
covariance matrix. It may perform badly for classification
problems due to its linear and unsupervised nature. Kernel PCA
is an extension to PCA algorithm which obtains nonlinear
mappings with the help of kernel functions [1].

Fisher discriminant analysis (FDA) is a well-known linear
supervised method for dimensionality reduction that jointly
minimizes the within-class variance and maximizes the
between-class variance. FDA has two main limitations: (a) the
dimensionality of the projected feature space can be at most c�1
where c is the number of classes, (b) it assumes that each class
follows a unimodal distribution, which may not always hold. FDA
can also be kernelized to obtain nonlinear mappings.

Methods such as PCA and FDA learn a global projection matrix
and use this matrix over the whole input space. This approach
ll rights reserved.

, alpaydin@boun.edu.tr
may not work for data sets which have a local neighborhood
structure. A mixture of principal component analyzers has been
proposed to capture regional differences in the covariance
structure [2]. The method divides the input density into clusters
and learns a local PCA model in each cluster. However, the
unsupervised nature of PCA method is preserved even though we
learn local models.

Locally linear embedding (LLE) [3], Isomap [4], and Laplacian
eigenmaps [5] are some examples of unsupervised locality
preserving manifold learning algorithms but these methods do
not explicitly learn a mapping function for unseen data instances.
Onclinx et al. [6] and Hou et al. [7] propose two variants of the LLE
algorithm in order to capture the local neighborhood structure in
the data better. Locality preserving projections (LPP) have been
proposed also to learn a mapping function while preserving
locality [8].

In addition to these unsupervised methods, there are also
supervised methods which keep the local neighborhood structure
in the data. Local Fisher discriminant analysis (LFDA) combines the
ideas behind FDA and LPP [9]. The mapping is obtained again by
solving a generalized eigenvalue problem but the between-class
scatter and within-class scatter matrices are calculated locally
with the help of an affinity matrix (an idea which is borrowed
from LPP). LFDA also removes the restriction of obtaining at most
c�1 dimensions in the projected feature space. Tao et al. [10]
extend FDA by maximizing the geometric mean of the
divergences between different pairs of classes. This strategy
obtains better projections in terms of class separation for
multiclass problems. Another method is local learning projections

(LLP) which can use supervised information (its difference from
PCA) and minimize the local estimation error instead of the global
estimation error [11].
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Yan et al. [12] formulate a common framework for represent-
ing different dimensionality reduction algorithms as graph
embedding problems. For example, PCA, FDA, Isomap, LLE, LPP,
and Laplacian eigenmaps can be cast into a common formulation.
Following this idea, a supervised variant of LLE called discrimi-
nant LLE that also learns a mapping function is proposed [13].

In this paper, we propose a supervised dimensionality
reduction method coupled with a kernel machine called local

projection kernels (LPK). In Section 2, we reproduce the modifica-
tion of the discriminant function of the support vector machine

(SVM) by integrating a projection matrix and explain how to
optimize SVM parameters and the projection matrix jointly, as
given by Chapelle et al. [14]. We give a brief description of
localized kernel functions proposed by Gönen and Alpaydın [15]
in Section 3. Then, in Section 4, we combine these two ideas of
projections and localized kernels, and describe how to optimize
all of the parameters in a coupled manner with an alternating
optimization procedure. Section 5 explains the key properties of
the proposed algorithm. We then demonstrate its performance on
benchmark data sets for visualization and classification tasks in
Section 6 and conclude in Section 7.
2. Supervised learning of projection kernels

SVM is a discriminative classifier based on structural risk
minimization [16] and soft-margin SVM formulation can be
given as

min:
1

2
JwJ2

þC
Xn

i ¼ 1

xi

w:r:t: w,b,n

s:t: yið/w,FðxiÞSþbÞZ1�xi 8i; xiZ0 8i ð1Þ

where w is the vector of weight coefficients, C is the regulariza-
tion parameter, b is the threshold, n is the vector of slack
variables, and Fð�Þ is the mapping function used for classification.
Suppose that, instead of using the original features, we apply a
linear projection to data instances with the projection

matrix, WARd�r:

z¼W>x

where r is the dimensionality of the projected feature space. If we
use the projected instances in the decision function, we
obtain

f ðxÞ ¼/w,FðzÞSþb

and the primal problem for SVM in (1) becomes

min:
1

2
JwJ2

þC
Xn

i ¼ 1

xi

w:r:t: w,b,n,W
s:t: yið/w,FðziÞSþbÞZ1�xi 8i; xiZ0 8i: ð2Þ

Note that the optimization problem in (2) is not convex due to the
nonlinearity in the separation constraints.

Instead of trying to optimize SVM parameters, fw,b,ng, and the
projection matrix, W , together, we utilize a two-step optimization
algorithm as in Chapelle et al. [14] and Rakotomamonjy et al.
[17]. The algorithm starts with a random projection matrix. In
the first step, we solve (2) with respect to fw,b,ng while fixing W .
We then update W using a gradient-descent step calculated
from the objective function of (2) in the second step. The
following dual formulation can be solved instead of the primal
formulation in the first step to apply the kernel trick.

max: J¼
Xn

i ¼ 1

ai�
1

2

Xn

i ¼ 1

Xn

j ¼ 1

aiajyiyj/FðziÞ,FðzjÞS|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Kðzi ,zjÞ

w:r:t: a

s:t:
Xn

i ¼ 1

aiyi ¼ 0; CZaiZ0 8i: ð3Þ

For a fixed W , we solve the dual optimization problem and
obtain the optimal a values. We need to update W by calculating
the gradient of the objective function in (3). The gradient of the
objective function with respect to the elements of W is calculated as

@J

@Wkl
¼�

1

2

Xn

i ¼ 1

Xn

j ¼ 1

aiajyiyj

@Kðzi,zjÞ

@Wkl

where kAf1,2, . . . ,dg and lAf1,2, . . . ,rg. The same gradient can also
be obtained as the derivative of the margin [14].

Three commonly used kernels, linear kernel (KL), polynomial
kernel (KP), and Gaussian kernel (KG), can be expressed in terms of
W as follows:

KLðzi,zjÞ ¼/zi,zjS¼ x>i WW>xj

KPðzi,zjÞ ¼ ð/zi,zjSþ1Þq ¼ ðx>i WW>xjþ1Þq

KGðzi,zjÞ ¼ expð�Jzi�zjJ
2=s2Þ ¼ expð�ðxi�xjÞ

>WW>
ðxi�xjÞ=s2Þ:

The derivative of the kernels with respect to the elements of the
projection matrix are given as

@KLðzi,zjÞ

@Wkl
¼ xi½k�zj½l�þzi½l�xj½k�

@KPðzi,zjÞ

@Wkl
¼ ðxi½k�zj½l�þzi½l�xj½k�Þqð/zi,zjSþ1Þq�1

@KGðzi,zjÞ

@Wkl
¼�2ðxi½k��xj½k�Þðzi½l��zj½l�ÞKGðzi,zjÞ=s2

where ½�� indexes the elements of a vector.
The projection matrix can be updated using a simple gradient-

descent update rule with a fixed step size or Armijo’s rule can
be used to determine a better step size at each iteration
(see Section 5). Note that this alternating optimization procedure
does not guarantee convergence to the global optimum and
the initial value of W may affect the solution quality. Algorithm 1
lists the main steps of the procedure which we call global

projection kernels (GPK) from now on (DðtÞ is the step size in
gradient-descent).

Algorithm 1. Global projection kernels.
1:
 Initialize W to random numbers

2:
 repeat

3:
 Calculate Kðzi,zjÞ
4:
 Solve canonical SVM with Kðzi,zjÞ
5:

W ðtþ1Þ

kl (W ðtÞ
kl �D

ðtÞ @J

@Wkl
8ðk,lÞ
6:
 until convergence
After convergence, we obtain the decision function in terms of
model parameters as follows:

f ðxÞ ¼
Xn

i ¼ 1

aiyiKðW
>xi,W

>xÞþb:
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We project both the input x and the support vector xi to the lower
dimensional space and calculate the kernel there.
3. Localized kernel functions

Each mapping function we use in (1) or (2) corresponds to a
different kernel function in the dual formulation and is directly
related to the performance of the resulting classifier. The best
kernel function (i.e., the mapping function) for a specific data set
is generally selected from a set of candidate kernel functions
using a statistical cross-validation procedure.

Instead of selecting and using a single mapping (kernel)
function, Bach et al. [18] propose multiple kernel learning (MKL)
which takes an unweighted sum of multiple discriminant values
in different feature spaces obtained with different mapping
functions:

f ðxÞ ¼
Xp

m ¼ 1

/wm,FmðxÞSþb

where m indexes kernels, wm is the vector of weight coefficients,
Fmð�Þ is the mapping function for feature space m, and p is the
number of kernels. The primal formulation of MKL is obtained as

min:
1

2

Xp

m ¼ 1

JwmJ

 !2

þC
Xn

i ¼ 1

xi

w:r:t: wm,b,n

s:t: yi

Xp

m ¼ 1

/wm,FmðxiÞSþb

 !
Z1�xi 8i, xiZ0 8i

and the resulting decision function is a weighted sum of kernels:

f ðxÞ ¼
Xn

i ¼ 1

Xp

m ¼ 1

aiyiZm/FmðxiÞ,FmðxÞS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Kmðxi ,xÞ

þb

where the kernel weights satisfy ZmZ0 and
Pp

m ¼ 1 Zm ¼ 1.
MKL uses a fixed combination rule which assigns the same

weight to a kernel over the whole input space. If data has an
underlying local structure, we should give higher weights to
appropriate kernel functions (i.e., kernels which match the
complexity of data distribution) for each local region. Gönen
and Alpaydın [15] propose localized multiple kernel learning

(LMKL) by rewriting the discriminant function as follows, in
order to allow local combinations of kernels:

f ðxÞ ¼
Xp

m ¼ 1

ZmðxjVÞ/wm,FmðxÞSþb ð4Þ

where ZmðxjVÞ is the gating function which chooses the weight for
feature space m as a function of input x and V is the vector of the
gating function parameters. Assuming that the regions of use of
kernels are linearly separable, we can express the gating model as

ZmðxjVÞ ¼
expð/vm,FGðxÞSþvm0ÞPp

k ¼ 1 expð/vk,FGðxÞSþvk0Þ
ð5Þ

where V includes all vm, vm0, and FGðxÞ is the feature space in
which we learn the gating model.

By modifying the original SVM formulation in (1) with the
localized discriminant function in (4), we get the following
optimization problem:

min:
1

2

Xp

m ¼ 1

JwmJ
2
þC

Xn

i ¼ 1

xi

w:r:t: wm,b,n,V

s:t: yi

Xp

m ¼ 1

ZmðxijVÞ/wm,FmðxiÞSþb

 !
Z1�xi 8i; xiZ0 8i:
LMKL uses an alternating optimization procedure to solve
this nonconvex problem and obtains the discriminant
function as

f ðxÞ ¼
Xn

i ¼ 1

Xp

m ¼ 1

aiyiZmðxijVÞKmðxi,xÞZmðxjVÞþb:

4. Supervised learning of local projection kernels

Using a single projection matrix over the whole input space
cannot capture multiple modalities that may exist in the data. At
this point, we can combine localized kernel functions of Section 3
with projection matrices of Section 2 and similar to using kernel
functions with changing weights in different regions, we can
divide the input space into p regions and learn a local projection
matrix, WmARd�r , m¼1, y, p, in each region, in order to capture
the local structure information. So, we have p different projected
data instances for each instance:

zm ¼W>
mx, m¼ 1, . . . ,p

and the discriminant function can be rewritten as

f ðxÞ ¼
Xp

m ¼ 1

ZmðxjVÞ/wm,FðzmÞSþb

where the gating function, ZmðxjVÞ, now chooses the weight for
projected feature space m as a function of input x. By modifying
the formulation in (2) with this new discriminant function, we get
the following optimization problem:

min:
1

2

Xp

m ¼ 1

JwmJ
2
þC

Xn

i ¼ 1

xi

w:r:t: wm,b,n,Wm,V

s:t: yi

Xp

m ¼ 1

ZmðxijVÞ/wm,FðzimÞSþb

 !
Z1�xi 8i, xiZ0 8i

ð6Þ

and this problem is not convex, either. For given fW1:p,Vg values,
(6) becomes convex and we can obtain the Lagrangian of the
primal problem:

LD ¼
1

2

Xp

m ¼ 1

JwmJ
2
þ
Xn

i ¼ 1

ðC�ai�biÞxiþ
Xn

i ¼ 1

ai

�
Xn

i ¼ 1

aiyi

Xp

m ¼ 1

ZmðxijVÞ/wm,FðzimÞSþb

 !

and taking the derivatives of LD with respect to the primal
variables gives

@LD

@wm
) wm ¼

Xn

i ¼ 1

aiyiZmðxijVÞFðzimÞ 8m

@LD

@b
)
Xn

i ¼ 1

aiyi ¼ 0

@LD

@xi
) C ¼ aiþbi 8i: ð7Þ

From (6) and (7), the dual formulation is obtained as

max: JZ ¼
Xn

i ¼ 1

ai�
1

2

Xn

i ¼ 1

Xn

j ¼ 1

aiajyiyjKZðxi,xjÞ



ARTICLE IN PRESS

M. Gönen, E. Alpaydın / Neurocomputing 73 (2010) 1694–1703 1697
w:r:t: a

s:t:
Xn

i ¼ 1

aiyi ¼ 0; CZaiZ0 8i ð8Þ

where the local projection kernel matrix is defined as

KZðxi,xjÞ ¼
Xp

m ¼ 1

ZmðxijVÞ/FðzimÞ,FðzjmÞS|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
KðW>

mxi ,W
>
mxjÞ

ZmðxjjVÞ

and using KZðxi,xjÞ corresponds to projecting data instances into
the ðp� rÞ- dimensional feature space and using the dot product
in this feature space.

Z1ðxijVÞFðW
>
1 xiÞ

Z2ðxijVÞFðW
>
2 xiÞ

^

ZpðxijVÞFðW
>
p xiÞ

0
BBBB@

1
CCCCA
> Z1ðxjjVÞFðW

>
1 xjÞ

Z2ðxjjVÞFðW
>
2 xjÞ

^

ZpðxjjVÞFðW
>
p xjÞ

0
BBBBB@

1
CCCCCA

Having fixed SVM and gating, we can update the local
projection matrices using gradient-descent. For given fa,Vg
values, the gradient of the objective function in (8) with respect
to the elements of Wm matrices is given as
@JZ

@Wmkl
¼�

1

2

Xn

i ¼ 1

Xn

j ¼ 1

UijZmðxijVÞ
@Kðzim,zjmÞ

@Wmkl
ZmðxjjVÞ

where Uij ¼ aiajyiyj.
Having fixed SVM and the local projections, we can update the

gating parameters. For given fa,W1:pg values, the gradients of the
objective function in (8) with respect to the gating model
parameters are given as

@JZ
@vm
¼�

1

2

Xn

i ¼ 1

Xn

j ¼ 1

Xp

k ¼ 1

UijZkðxijVÞKðzik,zjkÞZkðxjjVÞ

ðFGðxiÞðd
k
m�ZmðxijVÞÞþFGðxjÞðd

k
m�ZmðxjjVÞÞÞ

@JZ
@vm0

¼�
1

2

Xn

i ¼ 1

Xn

j ¼ 1

Xp

k ¼ 1

UijZkðxijVÞKðzik,zjkÞZkðxjjVÞ

ðdk
m�ZmðxijVÞþd

k
m�ZmðxjjVÞÞ

where dk
m is 1 if m¼k, and 0 otherwise.
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Fig. 1. Motivating example for learning local projections. (a) There are two local regions

arrows show the projection directions in the two regions. The solid lines show the di

projected directions in the two regions and the solid line shows the resulting discrimin

this space.
The complete algorithm of our proposed LPK with linear gating
model is summarized in Algorithm 2 (DðtÞ and mðtÞ are the step
sizes of the corresponding updates in gradient-descent). The
convergence of the algorithm can be determined by observing the
change in the objective function value.

Algorithm 2. Local projection kernels.
−2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

in the o

scrimina

ant in th
1:
 Initialize fW1:p,Vg to random numbers
2:
 repeat

3:
 Calculate KZðxi,xjÞ
4:
 Solve canonical SVM with KZðxi,xjÞ
5:

W ðtþ1Þ

mkl (W ðtÞ
mkl�D

ðtÞ @JZ
@Wmkl

8ðm,k,lÞ
6:
 Calculate KZðxi,xjÞ
7:
 Solve canonical SVM with KZðxi,xjÞ
8:

vðtþ1Þ

m ( vðtÞm�mðtÞ
@JZ
@vm

8m
9:

vðtþ1Þ

m0 ( vðtÞm0�m
ðtÞ @JZ
@vm0

8m
0:
 until convergence
1

After determining the final fa,b,W1:p,Vg values, the resulting

discriminant function is

f ðxÞ ¼
Xn

i ¼ 1

Xp

m ¼ 1

aiyiZmðxijVÞKðW
>
mxi,W

>
mxÞZmðxjVÞþb:

In order to better illustrate the proposed method, we create a
toy data set which consists of four clusters (two for each class) as
shown in Fig. 1(a). If we use a global projection matrix over the
whole input space, we cannot obtain a clear linear separation
between classes due to intraclass multimodalities. However, we
can obtain a projected space in which classes are well-separated
and multimodal structures in each class are preserved, as shown
in Fig. 1(b), by splitting the input space into two regions using the
linear gating model (shown with the thick dashed line in Fig. 1(a))
and performing local projections (one-dimensional projections,
W1AR2�1 and W2AR2�1, shown with arrows in Fig. 1(a)) in each
region.
−1.5 −1 −0.5 0 0.5 1 1.5 2

W1

W2

Projected Space

riginal feature space and the thick dashed line separate them. W1 and W2

nt in each region. (b) The horizontal and vertical axes correspond to the

is projected space. We see that the two classes are perfectly separated in
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Fig. 2. The gating model output superimposed with training data for the

motivating example.
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Fig. 2 shows the gating model output superimposed with
training data. We see that Z1ðxjVÞ divides the input space into two
local regions. The line where Z1ðxjVÞ ¼ 0:5 is shown by a thick
dashed line in Fig. 1(a).
5. Discussion of the method

In LPK training, the gradient calculations have ignorable time
complexity compared with the SVM solver and these calculations
are made by using only the support vectors at the current
iteration. The key issue for faster convergence is to select good
gradient-descent step sizes (DðtÞ and mðtÞ in Algorithm 2), at each
iteration. Better step size values can be obtained by utilizing a line
search method such as Armijo’s rule but this process needs
additional calls to the SVM solver. Clearly, the time complexity for
each iteration increases but the algorithm converges in fewer
iterations. In our experiments, we use Armijo’s rule to determine
the step sizes at each iteration and the algorithm converges in a
few iterations (generally 5–10). A more detailed convergence
analysis is performed in Section 6.4.

We describe LPK for binary classification problems but the
same idea can easily be applied to regression estimation and
novelty detection problems [1] by changing the dual optimization
problem (8) solved at each iteration and calculating the gradients
with respect to the new objective function. The gradient
formulations obtained for binary classification problems can be
used by just replacing Uij with ðaþi �a

�
i Þða

þ

j �a
�
j Þ for regression

estimation and with aiaj for novelty detection.
Using local projection matrices in different regions of the input

space enables us to extract information about the relative
importance of features in each region. The features with high
magnitude weights in local projection matrices give more
information in the corresponding region of the input space. The
features with very small weights can also be discarded to perform
feature selection locally.

Coupled learning of a data projection rule and a classification
algorithm has also been studied by Weinberger et al. [19] and
Globerson and Roweis [20]. In these studies, a Mahalanobis
distance metric used in nearest neighbor classification is learned
by directly considering the classification accuracy. Tao et al. [21]
propose a supervised learning method that performs learning and
feature extraction together for tensor data. The discriminant
parameters and the projection matrix are optimized using an
alternating approach. Our proposed LPK is more similar to Pereira
and Gordon [22] in that the optimization of the projection matrix
and the classifier (SVM as in our case) performed jointly. They use
a global projection matrix over the whole input space, but we
introduce a data-dependent projection by using a gating model
for choosing the projection matrix.
6. Experiments

In this section, we evaluate the performance of the proposed
method on visualization and classification tasks on benchmark
data sets. We implement the main body of our algorithm in
MATLAB and solve the optimization problems with MOSEK
optimization software [23]. We stop the algorithm when the
objective function value of the current iteration is not less than
ð1�tÞ times the objective function value of the previous iteration.
The parameter t is set to 0.001 in our experiments (see Section
6.4). To compare, we use MATLAB implementation of LFDA [9]
with default parameters.

6.1. Data visualization

We compare PCA, LFDA, and our proposed LPK for data
visualization on small benchmark data sets, namely Iris, Thyroid

Disease, Letter Recognition, and Image Segmentation from the UCI
machine learning repository [24]. On these multiclass data sets,
we merge certain classes, as done by Sugiyama et al. [9], to obtain
multimodal two-class problems. In PCA and LFDA methods, we
extract two dimensions by using the first two principal directions.
In LPK method using SVM with the linear kernel, we use two
regions (p¼2) with the linear gating model and project data
points to one dimension (r¼1) in each region.

On Iris, we combine Setosa and Virginica into a single class to
obtain multimodality. Fig. 3 shows the two-dimensional projected
feature spaces found by each method. Both PCA and LFDA
preserve within-class modality but could not achieve a clear
between-class separation. However, our proposed LPK achieves a
clear between-class separation while preserving within-class
modality.

On Thyroid Disease, we merge Hypothyroidism and Hyperthyr-
oidism classes into one class. As we can see from Fig. 4, all three
methods obtain similar results but LPK has better separation
between within-class modalities.

On Letter Recognition, we construct a two-class data set by
combining ‘A’ and ‘C’ letters into one class versus ‘B’ letter in
another class. LFDA achieves a good separation between clusters
whereas PCA is not able to separate the samples from ‘B’ and ‘C’
letters (see Fig. 5). LPK also achieves good separation between
different classes but it could not separate letters ‘A’ and ‘C’ as well
as LFDA. This is mainly because of the discriminative nature of
LPK, the main goal is to separate different classes rather than
preserving multimodality in one class.

On Image Segmentation, we combine Brickface and Sky classes
into one class and treat Foilage as another class. Fig. 6 shows that
PCA and LFDA are not able to separate Brickface and Foilage
classes, whereas LPK obtains three different clusters for each class
while maintaining a good between-class separation.

6.2. Face recognition

We also compare PCA and LPK on the Olivetti face recognition
data set in order to see the performance of LPK in a real-life
scenario with a very high dimensional feature space. Olivetti

data set consists of 10 different 64�64 grayscale images
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Fig. 3. Data visualization for Iris data set.
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Fig. 4. Data visualization for Thyroid Disease data set.
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Fig. 5. Data visualization for Letter Recognition data set.
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of 40 subjects. We construct a two-class data set by combining
male subjects (36 subjects) into one class versus female
subjects (four subjects) in another class. In both methods, we
project data points to a two-dimensional space. PCA extracts
these two dimensions by using the first two principal direc-
tions, and LPK using SVM with the linear kernel divides the
original feature space into two regions (p¼2) with the linear
gating model and projects data points to one dimension (r¼1)
in each region.

Fig. 7(a) illustrates the projection obtained by PCA. We can see
that PCA is not able to separate classes due to its unsupervised
nature. Eigenfaces obtained from the first two principal
eigenvectors are also shown on the two corners and they look
like two male subjects.
LPK finds a better two-dimensional projected space as shown
in Fig. 7(b). LPK is able to achieve a nearly perfect separation
between classes except a single image. If we look at the face image
produced from gating model parameters, fv1,v2gAR4096�1, we can
see that the gating model puts more emphasis on eyes, eyebrows,
nose, and mouth to assign the weights to the local projection
spaces for a given data instance. The face image obtained from the
first local projection matrix, W1AR4096�1, is very much like a male
subject with relatively higher weights on eyebrows and nose. The
face image of the other local projection matrix, W2AR4096�1, looks
like a female subject with relatively higher weights on eyes and
mouth. LPK identifies the important parts of the face images
without using any prior information while trying to optimize the
separation between classes in a supervised manner.
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Fig. 6. Data visualization for Image Segmentation data set.
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Fig. 7. Data visualization for Olivetti data set. (a) PCA: two eigenface images obtained from the first two principal eigenvectors are shown in the corners. (b) LPK (p¼2 and

r¼1): the face images obtained from the local projection matrices, W1 and W2, are shown in the corners. We also produce a face image from the gating model parameters,

fv1 ,v2g, in order to see which features are important when dividing the input space into local regions. Only the image marked % is misclassified.

Table 1
Classification data sets used in the experiments.

Data set Dimensionality # of instances

Waveform 21 1500

Usps-eo 256 1500

Usps-sl 256 1500
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6.3. Classification accuracy

We evaluate the performance of PCA, LFDA, and LPK on
classification tasks using large benchmark data sets. Table 1 lists
the properties of the data sets. Waveform from the UCI repository
is selected due to its multimodal structure and the first two
classes are combined into a single one. Usps-eo (Usps-sl) is
generated from Usps data set (16� 16 grayscale digit images)
by combining even (small: ‘0’–‘4’) numbers and odd (large: ‘5’–‘9’)
numbers into different classes.

Our experimental methodology is as follows: Given a data
set, a random one-third is reserved as the test set and the
remaining two-thirds is resampled using 5�2 cross-validation
to generate 10 training and validation sets, with stratification.
Note that GPK algorithm discussed in Section 2 is equivalent to
LPK with p¼1. We also train SVMs after reducing dimensionality
with PCA or LFDA using the same kernel in GPK and LPK
(the linear kernel in our experiments). The validation sets of all
folds are used to optimize C by trying values 0.01, 0.1, 1, 10, and
100. The best configuration (the one that has the highest
average accuracy on the validation folds) is used to train the
final SVMs on the training folds and their performance is
measured over the test set. So, for each data set, we have 10
test set results; we display their averages and one standard
deviation error bars.
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On Waveform (see Fig. 8), SVM trained after PCA and LFDA
obtains nearly the same average accuracy results (around 89 per
cent) after two dimensions. GPK achieves similar accuracy results
with only one dimension. If we use local projection matrices with
LPK (p¼2 or 3), the average classification accuracy increases to 92
per cent using few dimensions. Because dimensionality reduction
is done separately in different regions, we can work with much
fewer dimensions attaining significantly higher accuracy. For
example, when r¼2 or 3, LPK (p¼2 or 3) stores significantly fewer
support vectors than SVM trained after PCA and LFDA while
achieving significantly higher accuracy. Fitting a simpler model
while attaining higher test accuracy is a clear indication of better
generalization. SVM without any dimensionality reduction
obtains 88.34 per cent average accuracy.

On Usps-eo (see Fig. 9), SVM trained after LFDA obtains an
average accuracy around 79 per cent for all dimension values
tried. However, SVM trained after PCA obtains better average
accuracies after five dimensions and 86.10 per cent average
accuracy with 15 dimensions. GPK and LPK (p¼3) obtains more
than 87 and 90 per cent average accuracy, respectively, for all
dimension values tried. GPK and LPK achieve significantly higher
accuracies and store significantly fewer support vectors than SVM
trained after PCA for all configurations. SVM without any
dimensionality reduction obtains 87.58 per cent average accuracy.

On Usps-sl (see Fig. 10), SVM trained after PCA has more than
70 per cent average accuracy after 14 dimensions whereas SVM
trained after LFDA gets around 68 per cent average accuracy. GPK
achieves average accuracy more than 75 per cent. When we use
local projection matrices (p¼2 or 3), the average accuracy
increases to more than 86 per cent. LPK achieves 11 per cent
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Fig. 9. Classification result
higher accuracy than GPK and stores only 5 per cent of training
instances as support vectors. SVM without any dimensionality
reduction obtains 76.36 per cent average accuracy.

We also compare the classification performances of these
methods on Olivetti (see Fig. 11). We use a different methodology
for this data set. We select two images of each subject randomly
and reserve these total 80 images as the test set. Then, we apply 8-
fold cross-validation on the remaining 320 images by putting one
image of each subject to the validation set at each fold. In order to
get rid of singularity problems in LFDA method, we project data
instances into a 100-dimensional space with PCA before applying
LFDA. SVM trained after PCA could not achieve more than 96 per
cent average accuracy whereas SVM trained after LFDA gets
around 98 per cent average accuracy. GPK achieves average
accuracy more than 98 per cent with four and five dimensions. LPK
(p¼2 or 3) achieves more than 98 per cent average accuracy after
two dimensions ðrZ2Þ. For example, LPK (p¼2 and r¼4) obtains
99.69 per cent average accuracy. LPK stores nearly the same
amount of support vectors as SVM trained after LFDA but achieves
higher average accuracy. SVM without any dimensionality
reduction obtains 99.06 per cent average accuracy.
6.4. Convergence analysis

We perform convergence analysis of LPK on Waveform and
Olivetti data sets. We train LPK (p¼2, r¼1, and C¼100) with the
linear kernel for 25 iterations and record the objective function
value, training and test set accuracies, and the percentage of
support vectors at each iteration.
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Fig. 12 shows that LPK converges on Waveform data set after
five iterations. If we use the stopping condition based on the
objective function value with t¼ 0:01 or 0.001, LPK stops
respectively after 9 and 13 iterations (shown with a square and
a circle).

A similar behavior is also seen on Olivetti data set (see Fig. 13).
We see that even t¼ 0:01 is too conservative. Note that on both
data sets, LPK does not overfit even if we allow all 25 iterations.
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Fig. 12. Convergence analysis of LPK on Waveform data set.
7. Conclusions

In this work, we introduce a method for learning local
projections coupled with a kernel-based learning algorithm. The
proposed method has three main ingredients: (a) the gating
model assigns weights to projection matrices for a data instance,
(b) the local projection matrices perform dimensionality reduc-
tion separately in each region constructed by the gating model,
(c) the kernel-based learning algorithm combines these locally
constructed features.

The training of these three components are coupled, are all
supervised, and the parameters of components are optimized
together by using an alternating optimization scheme. The result
of combining these three components is a local projection kernel

which performs a locality preserving projection while considering
the accuracy of the discriminant formed using such kernels. For
binary classification tasks, the mathematical details of the
proposed framework with linear gating are given. We discuss
how the same derivation can be extended to regression estima-
tion and novelty detection problems.
The proposed method, LPK, is tested and compared with two
other algorithms, PCA and LFDA, for data visualization and
classification tasks on benchmark data sets. On visualization
tasks, LPK is able to maintain the multimodality of a class by
placing clusters of the same class on the same side of the
hyperplane while preserving a separation between them. This
property is a direct result of using a gating model in LPK. On
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Fig. 13. Convergence analysis of LPK on Olivetti data set.
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classification tasks, LPK achieves better results than PCA and LFDA
by attaining both higher test accuracy and storing fewer support
vectors due to the coupled optimization of the discriminant and
the local projection matrices used in dimensionality reduction.
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