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ABSTRACT

The relationship connecting the biomolecular sequence, the molecular structure, and the biological function is
of extreme importance in nanostructure analysis of a protein. Previous studies involving multiple sequence
alignment of biomolecules have demonstrated that associated sites are indicative of the structural and
functional characteristics of biomolecules, comparable to methods such as consensus sequences analysis.
In this paper, an association network structure is constructed from detected significant associated sites in
aligned p53 sequence ensemble. From the structure, pattern signatures are measured. These signatures are
then compared to selected functionality of the p53 proteins. The results indicate that the extracted site patterns
are significantly associated with some known properties of p53, a tumor suppressor. Furthermore, when the
sites are aligned with p63 and p73, the homologs of p53 without the same cancer suppressing property, using
the common domains, the sites significantly discriminate between the human sequences of the p53 family.
Therefore, the study confirms the importance of these detected sites that may indicate their differences in
cancer suppressing property.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Biological sequences when aligned can provide the common and
discriminatory information about the individual residue of the bio-
molecule family. It can also provide information from which knowl-
edge can be extracted that directs us towards the common functional
sites of the molecule. Identifying the relationships between the
sequences and their relationship to structure and biological function-
ality is an active area of research (for examples, see [6-8]). Identifying
the sequence patterns that infer the functional characteristics of the
biomolecule is vital in nanotechnology that represents the biomole-
cule as a nanostructure such as drug discovery [16].

Previous studies involving multiple sequence alignment of
related species have shown that associated patterns of the
sequences can reflect structural and functional characteristics of
the biomolecule [3,7,9,10,12]. In an aligned sequence ensemble of
proteins, associated sites represent sites with amino acid pairs
significantly observed together. Two types of associations can be
considered, the association between two sites (such as, say X and Y
sites) and the association among multiple sites (such as W
associated with X, Y, and Z sites). In this paper, a new method is
proposed as a novel association structure generated from the
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aligned sequence ensemble of the biomolecule's family. The
associations in the structure are evaluated using different levels,
using insights from granular computing [23,24]. It involves the
association testing of different sizes of a two-dimensional con-
tingency table analysis such that the statistical associations
between different outcome subsets can be evaluated (Fig. 2)
[4,5,11]. Sequence sites with statistically significant association
with other sites can then be used as pattern signatures [8,13].

In the proposed analysis, there are two phases. In the first
phase, the molecular sites in the multiple sequence alignment
are labeled into three different types depending on their site
association characteristics: conserved sites (C-sites) with con-
servation patterns, interdependent sites (D-sites) with associa-
tion patterns, and hypervariate sites (H-sites) that cannot be
classified into the previous types. Next, the importance of
these sites is evaluated by testing their significant association
to pre-targetted functionality of the biomolecule such as
known structural or functional patterns. In previous research,
the patterns derived from associated sites were capable of
inferring secondary and tertiary bonding structures [6], and
have been used for the recognition of the ribosome binding
sites in E. coli [15]. Similar sites can also have conformational,
biochemical, and taxonomical significance [3,29]. In other
studies, regions obtained from statistical patterns are shown
to correspond to exon sub-regions [8]| and the identification of
the three-dimensional molecular core sites [7].

0925-2312/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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2. Granular associations at different levels

One fundamental task of data analysis that is found to be
extremely useful is the discovery, description and quantification of
the associations embedded in a complex data type [26]. For
complex biomolecular sequence data, it is analogous to an analysis
of the nanostructure that represents the biomolecule. Typically,
the associations of an event can be analyzed considering the
observations from the complete outcome space. However, the
associations from a given dataset can be a global or a local
phenomenon (Fig. 2), that is, the associations can be local if only
a subset of the complete outcome space is involved. The two
phenomena between a local or a complete space can be quite
different and their information may convey different character-
istics. For example, when only a portion of the complete set of
outcomes is relevant, then a local analysis on a subset may
indicate a different magnitude that deviates from independence
in the associations. Fig. 2 illustrates the probability distribution
characteristics in terms of the local and global patterns may
deviate differently from the expected pattern event. The diagram
shows that at the global or a local level, the observation pattern
event can deviate differently from the two different null hypoth-
eses, denoted as H$ and H3 respectively. Information at one level
then may not exist at the other [4,5]. Therefore using multiple
levels of pattern analysis may provide a more complete basis for
data abstraction and analysis, and can be very valuable for knowl-
edge discovery in some datasets.

3. p53—Guardian of the genome and its homologs

Lane called the tumor suppressor protein p53 the “guardian of
the genome” and it was referred to as the cellular gatekeeper,
mainly because of its role related to human cancers [21]. Under
stress conditions, such as DNA damage (from ionizing radiation,
UV radiation, chemotherapeutic agents etc.), or heat shock,
hypoxia, and oncogene over-expression, wild type p53 is activated
and triggers diverse biological responses in cell cycle arrest, as
well as DNA repair, apoptosis, and cellular senescence. Hence p53
prevents the replication of damaged DNA and maintains the
integrity of the genome. On the other hand, the inactivation of
p53 due to mutations, deletion, or interaction with cellular and
viral proteins is a common event in the development of diverse
types of cancer. Indeed, p53 is frequently inactivated in about
45-50% of all types of cancer [17,19,22]. Under normal conditions,
the active p53 responds to the DNA damage in the cells and
prevents the proliferation of damaged cells. However, when p53 is
inactivated, it loses its biological function, permitting the prolif-
eration of the cells that carry the damaged DNA, possibly leading
to tumor formation. This molecule has then been actively studied
world-wide ever since.

The human p53 protein [20] is 393 amino acids long and has three
domains: an N-terminal transactivation domain (1-93), a sequence
specific DNA binding domain (102-292) and a C-terminal oligomer-
ization domain (323-393). In 1997 and 1998, the p73 and p63
respectively were identified as structural and functional homologs of
p53 [25], together all three molecules as the p53 family. The overall
domain structure of the family members is conserved, with similar
transactivation domain (TAD), DNA binding domain (DBD), and
oligomerization domain (OGD), even though their total lengths are
quite different. However unlike p53, the genes encoding p63 and p73
are rarely mutated in human cancer, and knock-out mice studies
[27,31] demonstrate developmental defects rather than a propensity
for tumor formation. Hence one objective in this study is to investigate
functional patterns related to the variability in the molecular sites that
may indicate their differences.

4. Methodology
4.1. First phase: construction of a sequence association structure

Assuming that common and discriminative properties reflected
from the p53 sequences from different species are important, the
sequences are aligned to facilitate the discovery of these patterns.
The first phase of our analysis then labels the aligned sites in the
p53 sequences into different types based on the aligned variation
and association characteristics. Three types of variability are
identified [9,29]:

® Associated sites (D-sites): These sites indicate the observed
amino acids in the aligned sites are significantly associated
with the amino acids of multiple other sites, reflecting a
complex interdependent relationship.

® [nvariant or conserved sites (C-sites): These sites indicate the
observed amino acids in the alignment are mostly the same,
reflecting a constant or small variability.

® Hypervariate sites (H-sites): These sites are those sites that
cannot be classified into one of the above.

Since D-sites are those with observed amino acids that can be
associated with the amino acids from multiple other sites in the
molecular alignment, the associated patterns can be considered as
convergent association pattern. The association relationships are
detected by using a suitable statistical test, using independence as
the null hypothesis. Given the aligned sequences, each aligned site
was tested for association with each of the other sites. In our case
and depending on the sequence data, we accept a site to have
convergent association when it is found to have statistically
significant association with more than one site (Fig. 1).

A statistical test can be used to evaluate the significance of the
association relationship between two distinct aligned sites. After
all the statistical evaluations are applied, the interrelationships
between the aligned sites in the molecule form a complex
association structure, analogous to a nanostructure of the mole-
cule. The analysis is then to identify meaningful network signa-
tures, so that further association with identified functional
properties can be evaluated. The goal is to relate whether a
functional pattern can be linked to specific sites of the molecule
from these pattern signatures. We hypothesize that in identifying
sites from the association structure, the underlying functional
relationships of the biomolecule may be revealed.

0/ VNI

Fig. 1. Significant site-site pattern (P1) and site with convergent association
patterns (S3).
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4.2. Selection of statistical test

In general, to evaluate associations between two aligned sites
in sequences of a large sample size, chi-square test based on the
construction of a two-dimensional contingency table can be
applied [2]. To evaluate the significance of the association relation-
ship between the sites, the null hypothesis is that the variables
between two sites are independent. Based on a predefined
significance level, the null hypothesis can be rejected such that
the two sites are accepted as associated. This test is similar to the
one used in [13], as they have the same null hypothesis and
distribution. When the sample size is small, other tests such as
Fisher's exact test can be used, resulting in sparse contingency
tables. With multiple testings for association relationship in the
alignment involving multiple site pairs, Bonferroni correction [1]
can be applied to control the familywise error rate:

a' =(a)/n

where « is the significance level and n is the number of
multiple tests.

4.3. Site pattern signatures using different sizes of two-dimensional
contingency table analysis

To address the problem of sparse contingency table, as well as
to detect different forms of granular associations discussed earlier,
different outcome subsets from the two-dimensional contingency
tables between two variables can be considered. Multiple levels of
data association are constructed by using different sizes of out-
come subspace in the two-dimensional contingency table. Three
levels of analysis can be considered:

® Full contingency table analysis (the R Method)
® ) x 2 contingency sub-table analysis (the R; , > Method)
® Single cell contingency table analysis (the Ry Method)

The standard full contingency table analysis (R Method)
evaluates the association relationship between two distinct sites
from an aligned sequence ensemble. After the contingency table
relating two sites in the aligned sequences is generated, Fisher's
exact test can be applied. The test detects the significance of the
association between the two selected sites. If the test statistic is
larger than the tabulated value at a pre-defined significance level,
then the association is accepted as significant.

The 2 x 2 contingency sub-table analysis of a two-dimensional
table (R; . » Method) evaluates the association between the outcome
subsets of, say X and Y of two distinct aligned sites, denoted as sub-X,
and sub-Y that was selected using relevant criteria. Note that since we

are evaluating the association of the amino acids between two sites in
the human p53 sequence, the sub-table analysis is analogous to
evaluating their frequencies based on a meaningful outcome subspace.

The criterion for selecting a 2 x 2 sub-table can be described as
follows:

® Select the outcomes (other than that from the human
sequence) with the highest marginal frequency.

® (Create a sub-table involving the amino acid type observed from
the human sequence, resulting in a 2 x 2 sub-table.

In a single cell contingency analysis method, the cell relating
between the observed amino acid type in the human sequence of
sites X and Y can be evaluated for significant association using
method described in [18,30]. The hypothesis test is applied to
identify significant deviation from independent associations. The
test statistic t is computed based on the normal distribution on the
difference between the observed and expected frequencies nor-
malized. It is defined as

t= (Obsxy_expxy)/( \/expxy)

where obs,, and exp,, are the observed and expected frequency
between the two amino acid types in the sample. The statistic t can
be adjusted when certain assumptions are not met using the
adjusted test statistic calculated from the marginal probabilities in
the contingency table [30]. To evaluate the statistical significance, if
the test statistic is larger than the tabulated value at a pre-defined
significance level, then the association is accepted as significant.

4.4. Second phase: evaluation of significant functional patterns
to pattern signatures

In the second phase, the association between defined pattern
signatures and a targeted functional characteristic of the p53
protein is evaluated.

Different types of statistical patterns generated previously are
classified into seven pattern signatures:

® (Conserved sites pattern (CS): It indicates sites with mostly
constant value observation. This is the pattern of the C-sites.

® R, . pattern (or R» . >): It indicates sites identified as signifi-
cantly associated using the described 2 x 2 contingency sub-
table method.

® R; pattern (or R;): It indicates sites identified as significantly
associated using the single cell contingency table method.

® (S+R5, > pattern: It indicates sites that are either conserved
(CS) or associated using the 2 x2 contingency sub-table
method.

® (S-+R; pattern: It indicates sites that are either conserved (CS)
or associated using the single cell contingency table method.

® R, . >+R; pattern: It indicates sites that are associated either
using the 2 x 2 sub-table or the single cell contingency table
method.

® (S+Ry, >+R; pattern: It indicates sites that are either con-
served or associated either using the 2 x 2 sub-table or the
single cell contingency table method.

It is assumed that knowledge about the functional character-
istic of a site may not be completely known with many other
factors affecting it. Therefore patterns of relationship may not be
deterministic and could only be revealed probabilistically. The goal
here is to analyze the significance of the association between the
identified pattern signatures and a targeted functionality. If the
association is significant, it then relates the sites with the pattern
signature to the functional characteristic.
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The statistical significance between the pattern signatures and
the functional patterns is evaluated using a test of independence
based on the sample distribution of the sites. Using a two-
dimensional contingency table analysis method, the variables
between a functional pattern (whether it is revealed on a site or
not) and a network signature are evaluated. The chi-square statis-
tical test is applied based on a pre-defined significance level. The
null hypothesis assumes that the pattern signature and a functional
pattern are independent and the alternate hypothesis otherwise.
From the contingency table, the observed and expected frequencies
are calculated and compared. The chi-square statistic is evaluated
with one degree of freedom. The relationship is considered statis-
tically significant if > > N,, where N, is the tabulated threshold
value and «a is the predefined significance level.

5. Experimental studies using the p53 protein alignment

The amino acid sequences used in the experiments are
obtained from the UniProtKB database (http://www.uniprot.org).
The database stored 34 different species of p53 sequences, three
species of p63 sequences and 3 sequences of p73 sequences,
among them including the human sequences.

In the first phase of the analysis, the multiple sequence alignment
of 34 p53 sequences is obtained, using the ClustalW (Version 2.1)
program [14]. The default settings are used, producing a total of 393
aligned sites. The alignment and the subsequent analysis indicate 115
sites as conserved sites (C-sites) with the CS pattern signature. The
remaining 278 (393-115) aligned sites are identified as either the D-
sites or the H-sites.

The three levels of association analysis, R, R, . >, and Ry, are
then applied. Due to the small sample size and Rg generates largely
sparse contingency tables, the method is excluded from further
analysis. Using a 5% significance level and with the Bonferroni
correction, the proposed R, , > method identifies 107 D-sites and
the R; method identifies 28 D-sites.

In the second phase of the analysis, functional characteristics are
selected to evaluate whether they have significant relationship with
the proposed pattern signatures. These evaluations are discussed
below.

5.1. Analysis 1: comparing pattern signatures to P53/P63/P73 protein
family

Since p53 has different tumor suppressing properties from its
homologs in cancer patients, the differences can be indicated by
the differences in the human sequence of the aligned sites
between p53, p63 and p73, with respect to the observed amino
acids. The human sequences of p53, p63, and p73 are aligned
according to their common domains. The amino acid patterns are
further characterized into 5 different types:

® Type I: The amino acids in the human sequence of p53, p63,
and p73 are all the same.

® Type II: The amino acids in the human sequence of p53, p63,
and p73 are all different.

® Type III: The amino acid in the human sequence of p53 is
different from that of p63 and p73.

® Type IV: The amino acid in the human sequence of p63 is
different from that of p53 and p73.

® Type V: The amino acid in the human sequence of p73 is
different from that of p53 and p63.

Since Type III amino acid pattern differentiates p53 from the
other two homologs of p63 and p73, this functional pattern is the
most important in terms of how the protein functions are different

with respect to tumor suppressing property. Fig. 3 shows that
D-sites are mostly associated with Type Il pattern (which dis-
criminates between p53 and its homologs). In Table 1, it shows
that the pattern signatures of CS, R; .. 5, CS+Ry, and R, .  +R; were
stronger and statistically significant with 1% significance level. The
R, . »+R; pattern signature is more significant than the individual
effect of either R, ., or Ry (Table 1). The D-sites are positively
associated with Type III patterns significantly, but not determinis-
tically. C-sites with CS pattern signature are negatively associated
with it (Table 2). Even though only half of the (R;+R; . ) patterns
observe Type Il differences, it is a substantial increase as com-
pared to the non-(R;+R,.>) patterns and is highly significant.
However, when the CS pattern signature is considered with the
other patterns (CS+R;., and CS+R;,>+R;y), the chi-square
value decreases drastically and is also weaker, indicating an
interactive effect.

5.2. Analysis 2: comparing pattern signatures to the three-
dimensional location of the P53 molecule

The 3-dimensional molecular structure for the DNA binding
domain (DBD) is available in the PDB protein data bank (PDB ID:
1TUP) and can be displayed using the PyMOL software (www.
pymol.org). The association testing between the pattern signatures
and their site locations (whether in the exterior or interior) shows
that none of the pattern signatures by itself is significantly
associated, but when the C-sites and the D-sites are considered
together, it shows an association with the molecular locations with
5% significant level. It shows that the combined sites with CS,
R, .2, Ry patterns all contributed to the association of the loca-
tions. The D-sites (with R, . » and Ry patterns) are mostly situated

60

B R1 method
[0 R2x2 method

20
10- i
0-

Type | Type Il Type

|

Type IV Type V
Sequence Differences

Fig. 3. Number of D-sites discriminating among the human sequence of p53, p63
and p73. Note that D-sites most distinguish p53 from its homologs (Type III
sequence difference).

Table 1
Associations between pattern signatures and Type Il sequence differences.

Pattern signatures P-value Association with Type III patterns ,2-Value

cs? 0.0001 Negatively associated 29.618
Rs.o" 0.0001  Positively associated 19.088
Ry 0.0732  Not significant 3.210
CS+Ry .2 0.2618  Not significant 1.259
CS+Ry? 0.0001  Negatively associated 17.713
Ry .2+Ry (D-sites)® 0.0001  Positively associated 24.147
CS+Rz.2+Ry 0.7244  Not significant 0.124

¢ Indicates at least 99% confidence level.
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Table 2

Observations between significant pattern signatures and Type III sequence differences.

Pattern signatures Type III observations Non-Type III observations Total P-values Comments

CS pattern (C-sites) 14 109 123 < 0.0001 CS pattern is largely associated with non-Type III

Non-CS pattern 104 166 270

Total 118 275 393

(R1+Rz « 2) pattern (D-sites) 63 60 123 <0.0001 Even though only half of the (R;+R; . 2)
patterns observe Type III differences, it is a
substantial increase and is highly significant

Non-(R;+Rz 2) 70 200 270

pattern(D-sites)
Total 133 260 393
Table 3

Site patterns and mutation frequency.

Total mutation Average

Sites No. of sites frequency of all sites mutation frequencies
D-sites (R; +R; . 2) pattern 44 2039 46.34
C-sites (CS pattern) 111 10,827 97.54
H-sites 30 1265 42.16

Region 1

Fig. 4. Identified D-site regions in the 3D structure of the p53 protein core domain. They are indicated in black. All, except region 4, are in the exterior of the molecule.

in five regions. They are: region 1 (from 112:G to 115:H), region 2
(from 189:A to 192:Q), region 3 (from 200:N to 214:H), region 4
(from 233:H to 236:Y) and region 5 (from 261:S to 264:L) in the
human p53 sequence. All these regions are in the exterior of the
molecule, except region 4, which is in the interior of the molecule
(Fig. 4). It could be explained that D-sites, which are statistically
associated with multiple other sites, are likely more related to the
exterior properties of the molecule.

5.3. Analysis 3: comparing D-sites (R; and R . » patterns)
to mutation frequency

The mutation frequency for the amino acids in the human
sequence p53 is available from the UMD TP53 mutation
database [28]. It is noted that mutation rate is highest in the
DNA binding domain (from site 102 to 292). Six sites have
extremely high mutation frequency and are considered as
mutation hotspots. They are excluded in the following analysis.
The mutation frequencies calculated for the different site
patterns are then depicted in Table 3. The table clearly shows
that the mutation frequencies, both the total and the average
frequencies for C-sites are much higher than that of the D-sites

or the H-sites. It could be explained by that D-sites are more
tightly linked to the other sites, and therefore less likely to be
mutated. This explanation is consistent with the evaluation in
Analysis 2.

6. Conclusions

Clearly, there are many analysis that could be done than those
indicated here. The experimental studies on p53 protein confirm
that the proposed evaluation is useful to identify association pattern
signatures based on the characteristics of the network structure of
the alignment. The proposed association analysis extracts statisti-
cally significant information based on the outcome subspaces using
different sizes of the two-dimensional contingency table. The
experiments on p53 show that the method identifies associated
patterns as Ry, and R; pattern signatures. The analysis further
reveals that the defined pattern signatures can be compared to
targeted structural and functional patterns of the molecule, allow-
ing probabilistic uncertainty. In summary, the extracted association
pattern signatures have proven to be useful in relating to some
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structural and functional characteristics. It is also useful in specifi-
cally identifying the sites that the associations occur.
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