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Cross-modality person re-identification is a challenging problem which retrieves a given pedestrian im-
age in RGB modality among all the gallery images in infrared modality. The task can address the lim-
itation of RGB-based person Re-ID in dark environments. Existing researches mainly focus on enlarging
inter-class differences of feature to solve the problem. However, few studies investigate improving intra-
class cross-modality similarity, which is important for this issue. In this paper, we propose a novel loss
function, called Hetero-Center loss (HC loss) to reduce the intra-class cross-modality variations. Specifi-
cally, HC loss can supervise the network learning the cross-modality invariant information by constrain-
ing the intra-class center distance between two heterogenous modalities. With the joint supervision of
Cross-Entropy (CE) loss and HC loss, the network is trained to achieve two vital objectives, inter-class
discrepancy and intra-class cross-modality similarity as much as possible. Besides, we propose a sim-
ple and high-performance network architecture to learn local feature representations for cross-modality
person re-identification, which can be a baseline for future research. Extensive experiments indicate the

effectiveness of the proposed methods, which outperform state-of-the-art methods by a wide margin.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Person re-identification is an image retrieval problem, aiming
to match pedestrian images across multi-cameras views [1]. Most
of the existing works [2-7] focus on matching RGB images. How-
ever, there are some limitations for the RGB based images re-
identification task. For example, criminals often gather information
in the day and execute crimes in the night. Fortunately, most the
recent surveillance cameras can capture infrared images at night,
which can provide valid information for some related tasks. In this
case, the traditional method cannot address this kind of problem
properly, because there is a huge gap between infrared (IR) images
and RGB images, as shown in Fig. 1. Comparing to RGB images,
IR images lose rich color information, which is important in RGB-
based person Re-ID methods. In addition, the spectrum between
IR and RGB images is different. So, the method for RGB-based per-
son Re-ID cannot be adopted in RGB-IR cross-modality person Re-
ID problem effectively [8].

To address this issue, some methods have been proposed in
this field. Wu et al. [8] released a large-scale cross-modality per-
son Re-ID dataset and proposed a deep one-stream architecture
named zero-padding network. In the training stage of zero-padding
network, Cross-Entropy (CE) loss function is used to supervise the
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network. Then Ye et al. [9] proposed a two-stream network archi-
tecture called TONE, in which CE loss and contrastive loss are used
for training. As a ranking loss, contrastive loss is complementary to
CE loss. Then, Ye et al. [11] used triplet loss instead of contrastive
loss to train an improved two-steam model named BDTR based on
TONE, because contrastive loss is of weak flexibility in the feature
embedding learning. Contemporarily, Dai et al. [10] also adopted
the joint supervision of triplet loss and CE loss to train a genera-
tive adversarial network named cmGAN which can learn modality-
invariant feature representation.

However, most of the above-mentioned methods focus on en-
larging inter-class discrepancy of features and ignore improving the
intra-class cross-modality similarity. The two objectives are equally
important for this issue. In this paper, we design a novel loss func-
tion specifically for the problem, called Hetero-Center (HC) loss,
which constrains the intra-class center distance between two het-
erogenous modalities. The loss function can force the network ex-
tracting the invariant modality-shared information rather than in-
constant modality-specific information from heterogeneous images
to form the feature descriptors. To achieve the two aims simulta-
neously, we adopt the joint supervision of the HC loss and CE loss
to train the network. Both of them can be minimized by standard
optimize algorithms, e.g. Stochastic Gradient Descent (SGD) [13].

Besides, we propose a network framework called Two-Stream
Local Feature Network (TSLFN) which learns local feature repre-
sentations to solve the problem. The architecture is divided into


https://doi.org/10.1016/j.neucom.2019.12.100
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2019.12.100&domain=pdf
mailto:yangdxng100@126.com
https://doi.org/10.1016/j.neucom.2019.12.100

98 Y. Zhu, Z. Yang and L. Wang et al./ Neurocomputing 386 (2020) 97-109

RGB camera |
in the day
IR camera

at night

2
I

Fig. 1. Examples of RGB images and infrared images in SYSU-MMO1 RGB-IR
[8] dataset.

two individual branches to extract features in two modalities. Each
branch contains a backbone network, which outputs a feature map
with rich image information. Then, conventional average pooling
layers are employed to uniformly split the feature maps into sev-
eral stripes for local feature extraction. To project the features from
different modalities into the same subspace, we use a share-weight
fully-connected layer for corresponding stripes in two branches.
The experiments demonstrate that TSLEN with HC loss achieves
state-of-the-art performance in this field, which far exceeds other
methods.

The main contributions of this paper can be summarized as fol-
lows:

1. We design a novel loss function (named HC loss) to constrain
the distance between two centers of heterogenous modality.
HC loss forces the network improving the intra-class cross-
modality similarity. With the joint supervision of HC loss and
CE loss, the network extracts modality-shared information to
form discriminative feature descriptors.

2. We present a network structure to learn local feature represen-
tation. To the best of our knowledge, it is the first attempt to
learn local feature representations in the field of cross-modality
person Re-ID. Due to its simple and effective architecture, the
network can be a strong baseline for future research.

2. Related work

In the field of person Re-ID, most of the works focus on dealing
with the matching problem in RGB domains. Those methods could
be divided into three categories: hand-craft feature representation
[3,6,14-17,23], distance metric learning [18-22] and deep learning
[24-26,48]. A detailed literature review for RGB-based person Re-
ID can be found in [1]. However, the performance of the above
methods on RGB-IR cross-modality person Re-ID problem is poor,
because there is a large gap between RGB domains and IR domains.
To deal with the cross-modality retrieval problem, the following
approaches were proposed.

Wu et al. [8] firstly defined the problem of cross-modality per-
son Re-ID, and released a large-scale cross-modality person Re-
ID dataset, named SYSU-MMO1. To address the problem, they dis-
cussed the difference between three commonly used cross-domain
models: asymmetric FC layer, one-stream, and two-stream net-
work structures. Based on the discussions, they proposed an im-
proved one-stream network architecture named zero-padding net-
work, which converted images from RGB color space to gray color
space in the preprocessing phase. Then, a gray image was placed
in the first channel and a zero-padding image was placed in the
second channel. By contrast, an infrared image was placed in the

second channel and a zero-padding image was placed in the first
channel. The purpose of zero-padding network was to increase
domain-specific nodes in the network, which provided extra flexi-
bility for the network.

Ye et al. [9,11] pointed out that cross-modality person Re-ID
suffered from cross-modality and intra-modality variations simul-
taneously. Based on the point of view, Ye et al. [9] proposed a hi-
erarchical metric learning method called HCML for cross-modality
matching. The objective of HCML was to learn a kernel matrix. By
the matrix, features were projected into a subspace, in which the
two variations were minimized as much as possible. To learn the
matrixX, the formula of HCML contained two optimization terms,
which were modality-specific metric term and modality-shared
metric term. The aim of the first term was to constrain the fea-
tures extracted from the same modality as compact as possible,
which could reduce the intra-modality variations. For the second
term, the aim was to improve the discriminative power of the fea-
tures extracted from two modalities for pedestrian identity.

Besides, Ye et al. [9] proposed a two-stream convolution net-
work structure named TONE. In the training stage of TONE, the
joint supervision of contrastive loss and CE loss was adopted to
train TONE. Based on TONE framework, Ye et al. [11] proposed an
improved two-stream network structure named BDTR. The differ-
ence between the two networks was that BDTR used triplet loss
[27] to supervise the training of network instead of contrastive
loss. Since contrastive loss used a fixed margin for all negative im-
ages, which was quite restrictive for the feature distribution, dam-
aging its robustness for noisy samples in feature embedding learn-
ing [43]. Comparing with contrastive loss, triplet loss only forced
negative images to be farther away than positive images, which
was more robust for distortions.

Dai et al. [10] proposed a novel method termed as cm-
GAN, which achieved the advanced performances in the field.
The method was based on generative adversarial network (GAN)
[28,40], which consisted of a generator and a discriminator. In
c¢cmGAN, generator extracted features from two modalities, which
were input into the discriminator. The aim of the discriminator was
to distinguish whether the input features were from RGB modality
or infrared modality. In contrast, the aim of the generator was to
extract features which could not be correctly judged by the dis-
criminator. By training the two networks with opposite aims, cm-
GAN could learn modality-invariant feature representations. In the
training phase, cmGAN adopted the joint supervision of triplet loss
and CE loss as [11].

3. Methods
3.1. Problem description

In heterogenous images, the appearance of a person con-
sists of modality-shared information (e.g. contours, textures) and
modality-specific information such as colors. The former infor-
mation is the invariant information existing in two modalities,
which should be extracted by the network to form the feature
descriptor, due to its robustness for modality changes. The latter
information only exists in specific modality or is inconstant with
modality changes, which reduces the feature similarity between
two heterogenous samples of the same identity.

Since cross-modality person re-identification is a verification
problem, we compute the similarity of features extracted by the
network to match the pedestrian images between two modalities.
Hence, the aims of the network in the training procedure are to
enlarge the inter-class discrepancy and to improve the intra-class
cross-modality similarity. So, the features should contain modality-
shared information as much as possible to bridge the gap between
two modalities, which improves the intra-class cross-modality
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Fig. 2. The distribution of features extracted by the baseline model (its architec-
ture is the baseline model which will be mentioned in III section) only with CE
loss. The feature is from 770 RGB images and 300 infrared images of 8 identities
in SYSU-MMO1, whose dimension of features is reduced to 2 by t-SNE [42]. Points
with different colors denote features belonging to different identities. Points of dif-
ferent shapes denote features extracted from images of different modalities. The
red points with different shapes denote the feature centers of different modalities
in each identity.

similarity. However, traditional loss functions cannot supervise the
network to extract modality-shared information. For instance, CE
loss function is computed as

K e‘WyTix,-+by|.
Ly=—) log—«——, (1)
; Z?:] eVVjTXi+bj

where K denotes the batch size, x; denotes the features extracted
by i" sample belonging to the y;class, W; denotes the jth column
of the weights, and b is the bias term. From the definition of
Cross-Entropy, we can observe that the objective of Cross-Entropy
is to extract identity-specific information for classification. How-
ever, the loss function does not constrains the network to ex-
tract modality-shared information effectively to form the feature
descriptor, because some modality-specific information is also the
identity-specific information conducting the network to correctly
predict identity. For example, clothes color attribution is a strong
signal to predict the true label, which is probably extracted by
the network with the supervision of CE loss to form the descrip-
tors. However, the color attribution is inconstant with modality
changes, and the operation of extracting the information to form
the descriptors is contradictory with the aim of improving intra-
class cross-modality similarity. Therefore, CE loss cannot achieve
the vital objective, intra-class cross-modality as much as possible.
Analogously, most of the conventional loss functions cannot meet
the request of cross-modality person Re-ID.

To intuitively demonstrate the disadvantage of conventional
loss functions, in Fig. 2 we show typical feature distributions
with the supervision of CE loss. From the figure, we observe the
phenomenon that the features of different classes are separated
correctly. However, the feature distributions of different modal-
ities exist a huge gap in each class, which is reflected from the
considerable center distance between two modalities in the figure.

3.2. Hetero-Center loss

In this subsection, we propose our loss function to improve the
intra-class cross-modality similarity. Intuitively, we want to con-
strain the distance between two modality feature distributions in
each class. However, it is hard to compute the distance between

two feature distributions, so we penalize the center distance be-
tween two modality distribution instead of the distance between
two modality distribution. To this end, we propose Hetero-Center
(HC) loss as formulated in the following equation

u

Luc=Y_ [lleir = €i2ll3], (2)

i=1

where €1 = § YL %1 ). €2 =4 X)X, ; denotes the centers
of feature distribution of RGB modality and infrared modality in
the i class. U denotes the number of classes, M and N are the
numbers of RGB images and infrared images in the i class. ; 1 ;
and x; , ; denotes the jt RGB image and infrared image in theit"
class. Ideally, the centers of two modalities in every class are sup-
posed to be updated when the weights of the model are updated
in each epoch. In this case, we need to consider every sample to
learn the two centers of each class in each iteration, which re-
quests massive and unpractical computational cost.

To solve the problem, we conduct two efficient modifications
inspired by [12,29]. First, we compute two modality centers of each
class in a mini-batch rather than in the total training set. Conse-
quently, the constraint on center distance comes into force in the
mini-batch, instead of the entire training set. Second, to make the
constraints equivalent in different ranges, we propose an improved
mini-batch sampling strategy based on Ye et al. [11]. In each itera-
tion, we randomly choose L identity from the training set. Then, we
randomly select T RGB images and T infrared images of each cho-
sen identity to form a mini-batch, so its sizeis 2 x L x T = K. In
this way, the modality centers in a mini-batch are computed from
multiple features and the sample size of each class is the same,
which is important to avoid the perturbations caused by class im-
balance. And, due to the random sampling in multiple iterations,
the local constraint in the mini-batch has the same effect as the
global constraint in the entire training set.

Since HC loss only constrains the center distance in each class
to improve the intra-class cross-modality similarity, it cannot su-
pervise the network learning discriminative feature representation
to enlarge the inter-class discrepancy. By considering the two key
objectives for cross-modality person Re-ID, we adopt the joint su-
pervision of HC loss and CE loss. The overall loss function is given
as

L=Ls+ ALyc
K W}',l;_xﬁbyi u 21, 3

=~ 2tog s 0 3 e —eil] )
where A is a hyperparameter for balancing the two loss functions,
which is regarded as the weight of HC loss in the overall loss. Fig. 3
shows the feature distributions with different A, from which we
can intuitively observe the influence of HC loss in the course of
training. With the increase of A, the feature distributions of differ-
ent modality are pulled closer and the distance between two fea-
ture centers of different modalities is smaller, which means that
the learned feature representations are more consistent for differ-
ent heterogenous images and the network is more inclined to ex-
tract modality-shared information to form the feature representa-
tions. The trend demonstrates that the intra-class cross-modality
similarity is increased with the supervision of HC loss.

The overall loss can be optimized with standard optimization

algorithms (e.g. SGD), because the gradients of Ly with respect to
x; can be directly solved as

BLHC . BLHC aCH 2

OXi1j  0C 0% N(CH —€Ci2). (4)

By the same principle, the gradient of x; , ; can be also com-
puted. When the models achieve convergence, the network can
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Fig. 3. The feature distribution extracted by the baseline model with the joint supervision of CE loss and HC loss. The points with different colors and different shapes
denote features of different modality belonging to different identities. The red points denote the feature centers of different modalities in each identity. Different A leads to
different feature distributions. We can observe that with the increase of A, the feature distributions of different modality are pulled closer and the distance between two

feature centers of different modalities is smaller.

learn discriminative feature representations with two vital char-
acteristics, inter-class discrepancy, and intra-class cross-modality
compactness.

3.3. Two-stream local feature network

A typical approach [26,30] in RGB-based person Re-ID is parti-
tioning pedestrians into horizontal stripes to extract local feature
which is concatenated to represent the body structure. Since the
body structure is an intrinsic property of pedestrian, its representa-
tion is invariant for modality changes. Thus, the information about
body structure is modality-shared, which can be used to learn the
modality-invariant feature representation.

To this end, we propose the Two-Stream Local Feature Network
(TSLFN), whose architecture is shown in Fig. 4. The network con-
tains two parts, feature extractor and feature embedding.

3.3.1. Feature extractor

Feature extractor captures information from heterogenous
images to form the final feature descriptor. As the inputs of
the network include RGB images and infrared images, we adopt

two individual branches to extract the information from the
two modalities. With consideration of limited data, each branch
contains a pre-trained backbone which inherits the architecture
of ResNet-50 [31] before the global average pooling layer with a
slight change. The difference is that we remove the last down-
sampling operation in ResNet-50, which can enlarge the areas of
reception fields to enrich the granularity of feature. This method
has been successfully implemented in [32,33]. Then, the feature
map outputted from the backbone is uniformly partitioned into
p stripes in the horizontal orientation. Each stripe is averaged
into a local feature vector. Afterward, we adopt a fully connected
(FC) layer to reduce the dimension of each local feature vector.
To bridge the gap between two modalities, corresponding fully
connected layer in two branches shares the same weights. For
each FC layer, we adopt a Leaky ReLU activation layer and a batch
normalization layer [34] to solve the internal covariate shift prob-
lem. In the testing stage, the images are input into corresponding
branches according to the modality. Then, each local feature vector
undergoes L2 normalization. At last, all the feature vectors are
concatenated to form the final feature descriptors. In the process
of testing, given a probe image, we extract the feature descriptor
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Fig. 4. The architecture of the proposed Two-Stream Local Feature Network (TSLEN) with the supervision of CE loss and HC loss. The network contains two branches for two
modalities. In each branch, the input images go forward the ResNet-50 backbone. Then, the feature map outputted from the backbone is split into p stripes by a conventional
average pooling layer. For each stripe, a weight-sharing FC layer reduces the dimension of features. Afterward, the dimension-reduced features are input into L2-Norm layers
and FC layers to compute HC loss and CE loss. In the testing phase, all the dimension-reduced features are concatenated to form the final descriptor.

of the probe and all the heterogenous gallery images. Because
the identities of training images and testing images (consisting
of gallery and probe images) do not overlap, we cannot directly
predict the labels of those gallery images. The next step is that
we rank the gallery images according to the Euclidean distance of
feature descriptors between the probe and all the gallery images.
In the ideal condition, the heterogenous intra-class gallery images
have the highest similarity. In the next section, we will use two
indicators to quantitatively evaluate the performance of models.

3.3.2. Feature embedding

The aim of feature embedding is to supervise the network
learning the feature representations, which achieves the two ob-
jectives: enlarging the inter-class discrepancy and improving the
intra-class cross-modality similarity as much as possible. So, we
adopt HC loss and CE loss to supervise the training of the net-
work. For HC loss, feature vectors go through L2 normalization be-
fore computing the loss value as Eq. (2). With regard to CE loss, a
local feature vector is inputted into a classifier, which is composed
of a FC layer and a softmax activation layer. There are p local fea-
ture vectors that need to be inputted to different classifiers with
independent parameters. Then, the classifiers predict the identity
of each feature vector, individually. For each branch, we compute
CE loss according to the predicted value by the classifier and the
identity of the input image. The loss for each branch is used to
update the parameters of the corresponding branch in the training
stage.

4. Experiments
4.1. Dataset description

As the first large-scale dataset for cross-modality person Re-ID,
SYSU-MMO1 is adopted to evaluate the effectiveness of our meth-
ods. It contains 287,628 RGB images and 15,792 IR images which
are captured by 6 cameras, including four RGB cameras (Cam 1, 2,
4, 5) and two infrared cameras (Cam 3, 6). The former group works

in light scenarios (day time) while the latter works when the envi-
ronment is dark (night time). Except for Cam 2 and Cam 3, all the
cameras are placed in different locations which can be divided into
indoor and outdoor scenes. Cam2 and Cam3 are placed in the same
indoor scenes. The dataset contains 491 available identities, each
identity is observed by at least one RGB camera and one infrared
camera. Due to the great variation among heterogenous modali-
ties, environments, human pose, and camera viewpoint changes,
the dataset is very challenging. Some examples from SYSU-MMO1
are shown in Fig. 1.

4.2. Evaluation protocol

The experiments adopt the evaluation protocol in [8,11]. The
training set consists of 22,258 RGB images and 11,909 infrared im-
ages of 395 persons. The testing set contains the RGB and infrared
images of 96 identities. During the testing phase, RGB images in
the testing set are for gallery set while infrared images are for the
probe set. We adopt two testing mode to fully evaluate our meth-
ods. The first mode is all-search mode, for which all the cameras
are used in the testing stage. The second mode is indoor-search,
for which the cameras placed in the indoor environment are used
to build the gallery set. Obviously, all-search mode is more dif-
ficult than indoor-search mode, due to the scene diversity. How-
ever indoor-search mode can evaluate the performance of cross-
modality retrieval better, and the mode is more similar to the ideal
condition without the drastic disturbance of environments. There-
fore, the two modes are used for evaluation.

For each mode, there are two settings to form the gallery set,
single-shot setting, and multi-shot setting. The difference between
the two settings is the image quantity of each identity in the
gallery set. One image of each identity is randomly selected to
constitute the gallery set in the single-shot setting, while in the
multi-shot setting, each identity contains ten images in the gallery
set. Since Cam 2 and Cam 3 are placed in the same scenes, probe
images captured by Cam 3 ignore the gallery images of Cam 2 in
the testing phase. For each image in the probe set, we compute
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Table 1
Comparison with state-of-the-art works on SYSU-MMO1 datasets.

Method All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot

R1 R10 R20 mAP R1 R10 mAP R1 R10 R20 mAP R1 R10 R20 mAP
HoG + Euclidean [35] 2.76 18.25 3191 424 3.82 22,77 37.63 2.16 3.22 24,68 4452 7.25 4,75 29.06 49.38 3.51
HoG + KISSME [2] 2.12 1621 29.13 3.53 2.79 1823 3125 1.96 3.11 2547 4647 743 4.10 29.32 5059 3.61
HoG + LFDA [36] 2.33 18.58 3338 435 3.82 2048 3584 2.20 2.44 24.13 4550 6.87 3.42 2527 4511 3.9
LOMO + CCA [37] 2.42 18.22 3245 419 2.63 19.68 34.82 215 4.11 30.60 52.54 8.83 4.86 3440 5730 447
LOMO + CDFE [38] 3.64 23.18 37.28 4.53 4.70 28.22 43.05 2.28 5.75 3435 5490 1019 7.36 4038 6033 5.64
LOMO + GMA [41] 1.04 1045 2081 254 0.99 10.50 21.06 1.47 1.79 17.90 36.01 5.63 1.71 18.11 36.17 2.88
GSM [39] 5.29 33.71 5295 8.00 6.19 37.15 55.66 4.38 9.46 48.98 7206 1557 1136 5134 7341 9.03
Asymmetric FC [8] 9.30 4326 60.38 10.82 13.06 52.11 69.52 6.68 1459 5794 78.68 2033 20.09 6937 8580 13.04
Two-stream [8] 11.65 4799 6550 12.85 1633 5835 74.46 8.03 1560 61.18 81.02 2149 2249 7222 8861 13.92
One-stream [8] 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 1694 63.55 82.10 2295 2262 71.74 87.82 15.04
Zero-padding [8] 1480 54.12 7133 1595 19.13 61.40 10.89 2058 6838 85.79 2692 2443 7586 91.32 18.64
TONE + HCML [9] 1432 53.16 69.17 16.16 - - - - - - - - - - -
BCTR(AlexNet) [11] 16.12 5490 7147 1915 - - - - - - - - - - -
cmGAN(ResNet-50) [10]  26.97 67.51 80.56 27.80 31.49 72.74 2227 3163 7723 89.18 4219 37.00 80.94 92.11 32.76
BDTR(ResNet-50) [11] 2732 66.96 81.07 2732 - - - 31.92 7718 89.28 4186 - - - -
eBDTR(ResNet-50) [44] 27.82 6734 8134 2842 - - - 3246 77.42 89.62 4246 - - - -
D2RL(ResNet-50) [45] 28.9 70.6 824 29.2 - - - - - - - - - - -

DPMBN(ResNet-50) [46]  37.02 7946 89.87 4028 - -
HPILN(ResNet-50) [47] 4136 8478 9451 4295 47.56 88.13

Baseline(w/o S) 2434 68.37 8259 26.67 28.18 72.72
Baseline(w S) 2852 7239 8526 3037 3418 77.02
Baseline(w S) + HC 41.06 8440 9390 41.88 46.01 88.17
TSLEN(w/o S) 3720 81.99 9150 3881 40.74 85.30
TSLEN(w S) 46.78 86.13 93.18 46.13 53.18 90.30
TSLFN(w S) + HC 5696 91.50 96.82 5495 62.09 93.74

4447 87.12 95.24 5451

95.98 36.08 4577 91.82 9846 56.52 53.05 93.71 98.93 47.48
85.97 20.19 2548 76.64 90.95 3730 28.01 8097 92.60 26.86
88.47 2351 27.79 7692 90.53 38.89 3242 83.82 94.66 28.58
95.60 33.99 44.04 90.74 97.58 5429 5336 94.18 98.85 44.90
93.93 31.86 3948 8544 9420 49.79 4552 90.24 96.98 40.06
9584 39.10 4739 87.09 9408 5576 57.14 93.03 97.70 46.91
97.85 48.02 59.74 92.07 9622 6491 69.76 9585 9890 57.81

the feature similarity between the infrared image and every RGB
image in the gallery set to match the pedestrian. We use the Eu-
clidean distances to measure their similarity. Ideally, images of the
same identity have the highest similarity. We introduce Cumulative
Matching Characteristic curve (CMC) and mean Average Precision
(mAP) to quantitatively evaluate the methods. Each experiment is
repeated ten times with the random testing set to get average per-
formance.

4.3. Implementation details

The experiments are deployed on an NVIDIA GeForce 1080Ti
GPU with Pytorch. The pedestrian images are resized to 288 x 144.
Random cropping and random horizontal flip are used for data
augmentation. The batch size is 64. To realize our proposed sam-
pling strategy, the quantity of identity in a batch is set to 4. So,
in a batch, each identity contains 8 RGB images and 8 infrared
images. The output feature map of the backbone is equally split
into p = 6 stripes. The dimension of feature is reduced to 512 by
the first FC layer. Thus, the dimension of the final descriptor is
6 x 512 = 3072. To balance the two loss functions, A is set to
0.5. SGD with momentum is adopted for optimization, in which
the momentum is set to 0.9. We use decayed learning rate sched-
ule. The learning rate is set to 1 x 10~2 in the first 30 epochs and
is decayed to 1 x 10~ after the 30th epoch.

4.4. Comparison with state-of-the-art methods

We compare the proposed methods with traditional hand-
crafted feature based methods and deep learning based meth-
ods. The handcrafted feature based method includes HoG [35] and
LOMO (3] features with different metrics: KISSME [2], LFDA [36],
CCA [37], CDFE [38], GMA [41]. And the deep learning based meth-
ods are GSM [39], Zero-padding [8], TONE+HCML [9], BCTR/BDTR
[11], cmGAN [10], eBDTR [44], D2RL [45], DPMBN [46], HPILN [47].
For the comparative methods, we directly copy the results from the

original papers and ‘-’ denotes the corresponding results are not
reported in the original paper. The backbone used in those meth-
ods has been written in brackets. What should be mentioned is
that we compare our methods with BDTR on ResNet-50 reported
in [44].

The comparative results on Rank-1, 10, 20 accuracy of CMC and
mAP are shown in Table 1. The results of six rows on the bot-
tom show the performance of the proposed methods. “TSLFN(w
s) + HC” refers to the Two-Stream Local Feature Network with
the joint supervision of Cross-Entropy loss and Hetero-Center loss,
which is the full version of the proposed methods. The denotations
of the other five rows are explained in the next subsection. From
Table 1, we clearly observe the superior performance of the pro-
posed method, which greatly outperforms the existing methods in
all modes. Specifically, in the most difficult mode, all-search single-
shot mode, the performance of our method exceeds [10] in term
of Rank1, 10, 20 and mAP by +29.99%, 23.99%, 16.26%, and 27.15%,
respectively.

4.5. Ablation experiments

Our method consists of two parts, HC loss, and TSLFN. In addi-
tion, the proposed sampling strategy can improve the performance
of the model supervised by CE loss. To prove the effectiveness
of each component, we conduct several ablation experiments. In
each experiment, unrelated settings are consistent. The results are
shown in Table 1.

“baseline (w/o S)” refers to TSLFN with p = 1, meaning that it
does not partition the feature map outputted by the backbone. So,
the baseline network extracts global features from input images,
instead of local features. What’ more, the model is only supervised
by CE loss function and we adopt the sampling strategy proposed
in [11], instead of our proposed sampling strategy. “baseline (w S)”
refers to the baseline network with CE loss, in which we adopt the
sampling strategy in the training stage. “baseline(w s)+HC” refers
to the baseline network with the joint supervision of HC loss and
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Fig. 5. Parameter analysis. (a) the performance of TSLFN with different weights A of HC loss in the overall loss function. (b) the impact of A on baseline, in which the value
range of A is different from (a). (c) the performance of TSLFN with different number of T. (d) the performance trends of TSLFN with different values of «.

CE loss, in which our sampling strategy is used to train the model.
“TSLFN (w/o S)” refers to the Two-Stream Local Feature Network
with p = 6, in which the proposed sampling strategy and HC loss
are not used in the training stage. “TSLFN (w S)” refers to TSLFN
with the sampling strategy in the training phase, but we do not
use the supervision of HC loss to train the model.

The comparative results between baseline and TSLFN show the
performance of TSLFN outperform the baseline, which indicates
TSLFN is effective for cross-modality person Re-ID. Moreover, the
comparative results between baseline and baseline + HC loss,
TSLEN and TSLFN+HC demonstrate that HC loss is conducive to
address the task. The results prove that HC loss can supervise the
network to extract modality-shared information and improve the
intra-class cross-modality similarity. Notice that the value of A in
baseline + HC is set to 1 while A in TSLFN + HC is set to 0.5,
because a local feature vector contains less modality-shared infor-
mation than a global feature vector. In this case, the value of A
achieving the optimal performance of baseline model is improper
for TSLFN. The comparative results between baseline(w/o s) and
baseline (w s), TSLFN(w/o s) and TSLFN(w s) demonstrate the sam-
pling strategy is not only applicable for HC loss but also for CE
loss.

5. Discussion
5.1. Impact of A

In this section, we conduct several experiments to investigate
the influence of A, which controls the weight of HC loss in the
overall loss function. In those experiments, we vary A from 0.1
to 0.6, using 0.1 as the interval. The performances of different
A on SYSU-MMO1 with all-search single-shot mode are shown in
Fig. 5(a). We can observe that about 0.5 is the optimal value of
A. Besides, when the value of XA is greater than 0.6, we find that
the performance of model drops sharply. We speculate that the
content of modality-shared information in local feature is not
enough so that the network cannot pull two modality centers
closer to optimize HC loss in a correct direction, which may result
in overfitting.

To verify that local features lead to the decline of the perfor-
mance when A is set to a large value, we inquire about the impact
of A on the baseline network as controls. The baseline network
learns global feature representations, instead of local features. In
the experiments on the control group, the unrelated settings are
kept consistent with the experimental group and we vary A from
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Fig. 6. The comparative results with different distance metrics and constraints. (a) shows the comparative results between cosine similarity and Euclidean metric, (b)
demonstrates the performance difference between strong constraints and weak constraints.

0.1 to 1, using 0.1 as the interval. The results are shown in Fig. 5(b),
and we can observe the phenomenon that the performance of the
baseline model is improved with the increase of A, which is dif-
ferent from TSLEN. Since the baseline model extracts global fea-
tures and its performance is not declined with the increase of A,
the phenomenon proves our inference.

5.2. The number of T

In this subsection, we conduct several experiments to investi-
gate the influence of T in the sampling strategy for the perfor-
mance of model. In those experiments, the batch size is fixed to
64. So, the number of RGB images and infrared images in each
batch are 32. To ensure the sample quantity of each class is equal
in a batch, the value of T is only set to 2, 4, 8, since the sam-
ple quantity of some class is less than 16. Because when A is set
to 0.5, TSLFN with T = 2, 4 cannot achieve convergence, we set
A=0.1 for those experiments. The reason for the non-convergence
may be that the computed center with too few samples cannot
truly reflect the center of the modality when the number of sam-
pled images T is set to a small value. In this case, setting a too
big value of A may be inappropriate. The experimental results are
shown in Fig. 5(c). However, what should be mentioned is that,
when A=0.1, the model with T = 8 cannot get the best perfor-
mance according to Fig. 5(a). The setting of the best performance
of the model is A=0.5, T = 8. In this situation, we can observe that
the performance is improved as the increase of T, because the cen-
ters of modality in each class can be computed correctly when T is
set to a large value.

5.3. The risk of overfitting

To investigate whether HC loss brings the extra risk of overfit-
ting. we add a relaxation term in the definition of HC loss. The
formula of modified HC loss is as

U
2
Lic =Y [lleir —€iall; — ] . (5)
i=1
where o denotes the margin of HC loss, [x]; denotes max(x, 0).
When the distance between two modality centers is less than «,
the value of HC loss is zero. Thus, with the increase of «, HC loss
is easier to achieve the minimum value, the risk of overfitting is

lower. The original HC loss can be regarded as the modified HC loss
with « = 0. So, we vary « from 0.1 to 1, using 0.1 as interval, to
evaluate the risk of overfitting. The experimental results are shown
in Fig. 5(d), and we observe the performance of model is decreased
with the improvement of «, which indicates adopting the supervi-
sion of HC loss does not lead to overfitting of the model.

5.4. Comparison among the distance metric

In HC loss, we measure the distance between two modality cen-
ters by Euclidean metric. So, the proposed formula of HC loss can
be defined as

1K
Lhc =5 > D(ciq, €ia), (6)
i1

where D(c; 1, ¢i2) = llciq — c,;2||§. To investigate the impact of dis-
tance metrics, we use cosine similarity instead of Euclidean metric
in HC loss. The following equation is the definition of cosine simi-
larity used in HC loss,

__ Ga-Gi2
liciall - licizal

We compare the performance of HC loss between Euclidean
metric and cosine similarity on all-search single-shot mode, and
the results are shown in Fig. 6(a). The comparative results indi-
cate that Euclidean metric is more suitable than cosine similarity
for HC loss, partly because cosine similarity only constrains the di-
rection of two center vectors while Euclidean metric constrains the
distance between two centers.

D(ci1. €2) =1 (7)

5.5. Comparison between strong and weak constraints

In HC loss, we constrain the center distance between two
modality feature distributions. In the subsection, we constrain both
the variance and the center to further reduce the difference be-
tween two modality distributions, which is known as the strong
constraint. On the contrary, the weak constraint denotes HC loss.
The strong constraint is defined as

K
2 2
Luc = Y [llein — €iall3 + via —vi2ll; — @], (8)

+
i=1
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Fig. 7. The impact of p. We demonstrate the performance of TSLFN with different
p. When p =1, TSLEN is degraded to the baseline model.

where v;  and v; , are the variances of two modality distributions
in a mini-batch.

We conduct experiments to compare the performance of two
constraints. In these experiments, other unrelated settings are con-
sistent. We report the comparative results between strong and
weak constraint on all-search single-shot mode in Fig. 6(b). From
the comparative results, we observe that the performance of strong
constraints is slightly lower than the performance of weak con-
straints. Moreover, the computational cost for strong constraints is
more expensive than it for weak constraints.

5.6. The number of parts

In the subsection, we evaluate the number of parts p which de-
termines the granularity of local feature. When p = 1, TSLFN de-
generates into baseline network which extracts global feature from
input images. whose performance is reported in Table 1. To reduce
the influence of irrelevant variable, we adopt CE loss to train the
models with different p, as the optimal A is different for different
p. The experimental results are shown in Fig. 7.

105

We can observe that the performance of the network improves
as p increases at first, because the narrower granularity of local
features leads to the fact that network pays more attention to the
detail. However, the performance drops when p is greater than
6, partly because the network cannot extract efficient information
with such small granularity to form a discriminative feature de-
scriptor.

5.7. The effectiveness of the proposed sampling strategy

The sampling strategy is proposed to realize HC loss, and we
find that it can effectively avoid overfitting and improve the per-
formance, especially for the model learning local feature represen-
tation. To investigate the impact of the sampling strategy for local
feature learning, we use the models adopting our sampling strat-
egy as the experimental group and the model using the sampling
strategy proposed in [11] as the control group. In those experi-
ments, we vary the number of parts p, using 2 as the interval.

To demonstrate the effectiveness of the sampling strategy, we
only use CE loss function to train the models. The comparative re-
sults are shown in Fig. 8. From the experimental results, we ob-
serve two phenomenon. First, the proposed sampling strategy is
more effective comparing with the original sampling strategy [11].
Second, the benefit of the sampling strategy is enhanced with the
increase of p.

5.8. The comparison between HC loss and center loss

HC loss and center loss [29] are different, in the aspect of their
aims and realization. Center loss penalizes the distance between
the intra-class sample and its corresponding intra-class center to
make the intra-class sample compact. However, HC loss constrains
the center distance between two modality distributions, which can
pull the two modality distributions close to reduce cross-modality
difference. For cross-modality person re-identification, improving
cross-modality similarity is more important than reducing intra-
class discrepancy, because the aim of cross-modality person re-
identification is that, given a query image, the trained model can
retrieval the heterogenous gallery images of the same identity
according to the feature similarity between the query and each
gallery images. In this case, HC loss is more pertinent than cen-
ter loss to the problem.
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Fig. 8. The impact of the sampling strategy. We compare the performance of TSLFN with our sampling strategy and the original sampling strategy in [11]. (a) and (b) are
the comparative results on different indicators, in those figures, “w/o s” denotes the original sampling strategy, “w s” denotes our sampling strategy.
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(c). Feature distribution of center loss (left figure) and HC loss (right figure) with 2 =0.1.

Fig. 9. Feature distributions between center loss (left figure) and HC loss (right figure). We illustrate the changes of feature distribution with the increase of A, from 0.001
to 1. In those figures, we observe that the center distance between two modalities with the supervision of center loss is bigger than the supervision of HC loss with the
same A.
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Fig. 10. The comparison between HC loss and center loss on baseline and TSLFN. (a) and (b) are the comparative results of different indicators (rank-1 and mAP) on baseline,
(c) and (d) are the comparative results of different indicators on TSLFN. In the figures, we observe that HC loss outperform center loss by a large margin and the margin is
improved with the increase of A.
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To intuitively show the difference, we illustrate the feature dis-
tribution supervised by center loss and HC loss in Fig. 9. In the
Figure, we observe that cross-modality difference of feature with
center loss is bigger than that with HC loss, which is reflected by
the comparison of the center distance between the two feature dis-
tributions.

What's more, to prove that HC loss is more suited to the
task than center loss, we conduct the experiments to directly
compare the performance between the two methods. The exper-
iments adopt SYSU-MMO1 dataset with the difficult mode, all-
search single-shot mode. In the experiments, the learning rate o
of center in center loss is set to 0.3, because we find that too big
value of o cause non-convergence of models in the training phase.
What’s more, the increase of o does not bring the improvement
of model performance, which is also observed in [29]. For fairness
and comprehensiveness, we compare the performance of the two
methods on different network structures, baseline and TSLFN. And,
we also compare the performance of the two loss functions with
different A. We vary A from 0.1 to 1 in the experiments of base-
line, and vary A from 0.1 to 0.5 in the experiments on TSLFN. The
experimental results are shown in Fig. 10, which demonstrates the
performance of our methods exceeds center loss by a large margin.

6. Conclusions

In this work, we propose a novel loss function called Hetero-
Center (HC) loss for cross-modality person Re-ID task. With the
joint supervision of CE loss and HC loss, the model directly learns
feature representations achieving the vital aim, inter-class dis-
crepancy and intra-class cross-modality similarity simultaneously.
Moreover, we propose a network architecture named Two-Stream
Local Feature Network (TSLFN) to learn discriminative local feature
representations from heterogenous images. The framework has ad-
vanced performance and simple structure, proving itself as an ex-
cellent baseline for future work. Extensive experiments strongly
demonstrate the effectiveness of the proposed methods, which
greatly outperform state-of-the-art works.
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