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Abstract

For classification, support vector machines (SVMs) have recently been introduced and quickly became the state of the art. Now, the

incorporation of prior knowledge into SVMs is the key element that allows to increase the performance in many applications. This paper

gives a review of the current state of research regarding the incorporation of two general types of prior knowledge into SVMs for

classification. The particular forms of prior knowledge considered here are presented in two main groups: class-invariance and

knowledge on the data. The first one includes invariances to transformations, to permutations and in domains of input space, whereas

the second one contains knowledge on unlabeled data, the imbalance of the training set or the quality of the data. The methods are then

described and classified into the three categories that have been used in literature: sample methods based on the modification of the

training data, kernel methods based on the modification of the kernel and optimization methods based on the modification of

the problem formulation. A recent method, developed for support vector regression, considers prior knowledge on arbitrary regions

of the input space. It is exposed here when applied to the classification case. A discussion is then conducted to regroup sample and

optimization methods under a regularization framework.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Pattern recognition is a very active field of research
intimately bound to machine learning. As part of this area,
classification aims at building classifiers that can determine
the class of an input pattern. An extensive amount of work
has been done in the past decades to develop classifiers that
can learn from data to perform recognition tasks. Typical
fields of application include image recognition such as
character recognition, text categorization, speech recogni-
tion, biometric applications, bioinformatics, fault detec-
tion, diagnostic applications, decision support, network
intrusion detection and so on. The classification problems
e front matter r 2007 Elsevier B.V. All rights reserved.
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can be divided into binary problems and multi-class
problems. Many classifiers like support vector machines
(SVMs) [62] consider the first case where the patterns can
be of two classes. For multi-class applications, there also
exist learning machines that can tackle directly multi-class
applications such as neural networks [4,33] or even multi-
class support vector machines (MSVMs) [68,21,8]. None-
theless, a very common approach consists in building a set
of binary classifiers, each one either trained to separate one
class from the others (the one-against-all method) or only
to distinguish between two classes (the one-against-one

method). Thus, this paper will focus on binary SVMs
without restricting the area of applications.
SVMs aim at learning an unknown decision function

based only on a set of N input–output pairs ðxi; yiÞ. None-
theless, in real-world applications, a certain amount of
information on the problem is usually known beforehand.
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For instance, in character recognition, if an image is
slightly translated or rotated it still represents the same
character. This prior knowledge indicates that one should
incorporate invariance to translations and rotations into
the classifier.

This paper gives a review of the current state of research
regarding the incorporation of two main types of prior
knowledge into the SVMs for classification. The different
forms of prior knowledge considered here are presented
hierarchically and divided into two main groups: class-
invariance and knowledge on the data. The first one
includes invariances to transformations, to permutations
and in domains of input space, whereas the second one
contains knowledge on unlabeled data, the imbalance of
the training set or the quality of the data. This review
chooses to present general methods that can be used for
different applications rather than to attempt to provide an
exhaustive list of application-specific prior knowledge with
its practical implementation into SVMs. However, some
interesting methods derived from an application-specific
point of view can still be used in other fields and thus
deserve to be presented. This paper focuses on the methods
and reuses a categorization from the literature based on the
component of the problem (the samples, the kernel or
the optimization program) which is modified to include the
prior knowledge rather than on the prior knowledge itself.
A regularization framework is then used to regroup the
sample and optimization-based methods.

The present paper aims at giving an up-to-date review
that synthesizes the existing methods. In the last decade,
authors considered the introduction of prior knowledge
into the SVMs and some reviews can be found in the
literature. A chapter of the well-known book [52] is
dedicated to the incorporation of invariances, but deals
only with transformation-invariances. Thus, the authors do
not present methods to include knowledge on the data or
class-invariance in a domain (which were not available at
the time). Nonetheless, they expose the three different ways
of exploiting prior knowledge on which relies our
categorization of the methods into three groups: sample
methods, kernel methods and optimization methods. In
[22], an overview of the works in the field is also given.
However, this overview focuses on invariant kernel
methods for pattern recognition in general. Here, we are
interested in different types of prior knowledge (not only
invariance) that can be included in the particular learning
machine known as SVM, either in the kernel or not. In
particular, this review focuses on and is limited to two main
types of prior knowledge: class-invariance and knowledge
on the data.

The paper is organized as follows. The SVM principles
and the different problem formulations (QP and LP) are
first introduced in Section 2, before giving a definition and
categorization of the types of prior knowledge that we
consider in Section 3. A review of the literature for the
incorporation of prior knowledge into SVMs is then
presented in Section 4 where the methods are classified
into three categories: sample methods (Section 4.1) based
on the modification of the training data, kernel methods
(Section 4.2) based on the modification of the kernel
and optimization methods (Section 4.3) based on the
modification of the problem formulation. This last subsec-
tion includes the presentation of a recently developed
approach considering prior knowledge on arbitrary regions
of the input space for support vector (SV) regression [38]
to propose its application to the classification case.
The links and differences between the methods are
discussed in Section 5 with the unifying framework before
the exposition of some perspectives regarding the combi-
nation of methods. Finally, the conclusion is given in
Section 6.
Notations. All vectors are column vectors written in

boldface and lowercase letters, whereas matrices are
boldface and uppercase, except for the ith column of a
matrix A that is denoted by Ai. The vectors 0 and 1 are
vectors of appropriate dimensions with all their compo-
nents, respectively, equal to 0 and 1. For A 2 Rd�m and
B 2 Rd�n containing d-dimensional sample vectors, the
‘‘kernel’’ KðA;BÞ maps Rd�m � Rd�n in Rm�n with
KðA;BÞi;j ¼ kðAi;BjÞ, where k : Rd�d ! R is the kernel
function. In particular, if x 2 Rd is a column vector then
Kðx;BÞ is a row vector in R1�n. The matrix X 2 RN�d

contains all the training samples xi, i ¼ 1; . . . ;N, as rows.
The kernel matrix KðXT;XTÞ will be written K for short.
The symbol h:; :i stands for the inner product (or dot
product).

2. SVMs for classification

The classifier is built from a training set of N samples:

ðx1; y1Þ; . . . ; ðxi; yiÞ; . . . ; ðxN ; yN Þ, (1)

where xi 2 Rd is the input vector corresponding to the ith
sample labeled by yi 2 f�1;þ1g depending on its class
(only binary problems are considered here). For the linear
case, the machine implements the decision function

f ðxÞ ¼ signðhx;wi þ bÞ (2)

of parameters w 2 Rd and b 2 R. This function determines
on which side of the separating hyperplane ðhx;wi þ b ¼ 0Þ
the sample x lies.
SVMs were first introduced as large margin classifiers

[62]. For a separable training set, the margin is defined as
the minimum distance between the points of the two
classes, measured perpendicularly to the separating hyper-
plane. Maximizing this margin is a way for a learning
algorithm to control the capacity and the complexity of the
machine, and to select the optimal separating hyperplane

amongst all the hyperplanes that separate the two classes of
the training set. The control of the capacity allows to
bound the generalization error [62] which is the probability
of misclassification for new test samples [46].
In its original form, the SVM learning leads to a qua-

dratic program which is a convex constrained optimization
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problem and thus has a unique solution. This is a large
advantage in comparison to other learning algorithms such
as the back-propagation for neural networks [48,4]. The
SVM problem can be formulated as follows: find the
parameters w (also called the weights) and b that maximize
the margin while ensuring that the training samples are well
classified. This can be written as the QP optimization
problem [9]

min 1
2
kwk2 ð3Þ

s:t: yiðhxi;wi þ bÞX1; i ¼ 1; . . . ;N, ð4Þ

whose solution corresponds to the saddle point of the
primal Lagrangian

LP ¼
1

2
kwk2 �

XN

i¼1

ai½yiðhxi;wi þ bÞ � 1�, (5)

where the aiX0 are the Lagrange multipliers. The problem
is equivalently solved by maximizing the dual Lagrangian
with respect to ai as

max LD ¼
XN

i¼1

ai �
1

2

XN

i;j¼1

aiajyiyjhxi; xji

s:t: aiX0; i ¼ 1; . . . ;N,

XN

i¼1

aiyi ¼ 0. ð6Þ

The resulting decision function is given [9] by

f ðxÞ ¼ sign
X
ai40

yiaihx;xii þ b

0
@

1
A, (7)

where the xi are the SVs, i.e. with non-zero correspond-
ing Lagrange multipliers ai. The SVs are the training
patterns that lie on the margin boundaries. An advan-
tage of this algorithm is its sparsity since only a small
subset of the training samples is finally retained for the
classifier.

In order to deal with non-separable data, the soft-margin
hyperplane is used. A set of slack variables xi is introduced
to allow errors or points inside the margin and a
hyperparameter C is used to tune the trade-off between
the amount of accepted errors and the maximization of the
margin:

min
1

2
kwk2 þ C

XN

i¼1

xi

s:t: yiðhxi;wi þ bÞX1� xi; i ¼ 1; . . . ;N,

xiX0. ð8Þ

This new formulation leads to the same dual problem (6)
but with the addition of an upper bound on the Lagrange
multipliers [9]:

0paipC; i ¼ 1; . . . ;N. (9)
For non-linear classification problems, the data are first
mapped into a higher dimensional feature space F by

Rd 3 x 7!
F

UðxÞ 2 F (10)

in which a separating hyperplane is built. This leads to the
decision function f ðxÞ ¼ signðhUðxÞ;wi þ bÞ, where w is
now a vector of F. To avoid the curse of dimensionality [9],
the ‘‘kernel trick’’ is used, which leads, for (7), to

f ðxÞ ¼ sign
X
ai40

yiaikðx;xiÞ þ b

0
@

1
A, (11)

where kðx; xiÞ ¼ hUðxÞ;UðxiÞi stands for the kernel func-
tion, or in matrix form

f ðxÞ ¼ signðKðx;XTÞDaþ bÞ, (12)

where D ¼ diagðy1; . . . ; yi; . . . ; yNÞ and a ¼ ½a1 . . . ai . . .
aN �

T .
For the training of a non-linear SVM, one only has to

replace the inner product hxi;xji in (6) by the kernel
function kðxi;xjÞ that corresponds to the inner product in
the feature space F. To be an admissible kernel, this
function must satisfy Mercer’s conditions (positive semi-
definiteness of the kernel matrix K) [9]. Typical kernel
functions used for classification are the linear, Gaussian
RBF or polynomial kernels.
The training of SVMs can also result in a linear program.

This is now presented, since some of the methods exposed
in the next section for the incorporation of prior knowledge
use this form of SVMs. Following the approach of [37], the
‘1-norm of the parameters a in (12) is minimized instead of
the ‘2-norm of the weights w as in (8). In practice, to
yield a linear program, a new set of variables a bounding
the ‘1-norm of the parameters are used. In matrix form,
the linear program corresponding to the soft-margin
SVM is

min
ða;b;n;aÞ

1Taþ C1Tn,

s:t: DðKDaþ b1ÞX1� n,

� apapa,

nX0. ð13Þ

In this formulation, no assumption on the symmetry or
positive definiteness of the kernel matrix K is needed [37].
The form of the resulting output function (12) remains
unchanged. Here, the sparsity is enforced by the minimiza-
tion of the ‘1-norm of the parameters a which makes some
ai vanish to zero. It has also been noticed [3] that,
compared to the original QP formulation, this approach
offers an increased sparsity of SVs.
One advantage of the SVMs is the form of the learning

problems, since many general optimization softwares such
as CPLEX, LOQO, Matlab linprog and quadprog are
capable of solving the linear and quadratic programs
derived from SVMs. Nonetheless, the scale of the problems
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led to develop specific methods such as chunking [29],
decomposition [41] or its extreme case known as the
sequential minimal optimization (SMO) algorithm [42], of
which modifications have been proposed [30]. Many
softwares, usually available on the Internet, have been
developed in the last years to speed up the training time or
to deal with large data sets such as SVMlight [25], libSVM
[6,15] and libsvmTL [47], HeroSVM [12,13] or core vector
machine (CVM) [60].

3. Prior knowledge for classification

This section starts by giving a definition of prior
knowledge as considered in this paper. Different types of
prior knowledge encountered in pattern recognition are
then regrouped under two main categories: class-invariance
and knowledge on the data. The tree-like diagram of Fig. 1
categorizes the types of prior knowledge from the most
general at the top to the particular at the bottom where
arrows point to suited methods. In particular, this review
focuses on two main types of prior knowledge: class-
invariance and knowledge on the data. The next section
provides the description and categorization of the suited
methods.

3.1. Definition

In this review, prior knowledge is defined as in [52] and
refers to all information about the problem available in
addition to the training data. Determining a model from a
finite set of samples without prior knowledge is an ill-posed
problem, in the sense that, for instance, a unique model
may not exist. Many classifiers incorporate the general
smoothness assumption that a test pattern similar to one of
the training samples tends to be assigned to the same class.
Also, choosing the soft-margin version of SVMs can be
seen as a use of prior knowledge on the non-separability of
the data or the presence of outliers and noise in the training
set. However, in both cases, these assumptions are
intrinsically made by the SV learning and are thus excluded
from the definition of prior knowledge in the remainder of
the paper. In machine learning, the importance of prior
knowledge can be seen from the no free lunch theorem [70]
which states that all the algorithms perform the same when
averaged over the different problems and thus implies
that to gain in performance one must use a specialized
algorithm that includes some prior knowledge about the
problem at hand.

3.2. Class-invariance

A very common type of prior knowledge in pattern
recognition is the invariance of the class (or the output of
the classifier) to a transformation of the input pattern.
Throughout this paper this type of knowledge will be
referred to as transformation-invariance. Incorporating the
invariance to a transformation Ty : x7!Tyx, parametrized
in y, into a classifier of output f ðxÞ for an input pattern x
corresponds to enforcing the equality

f ðxÞ ¼ f ðTyxÞ; 8x; y. (14)

However, local invariance is sometimes considered
instead. In this case, the invariance is only imposed around
a fixed value of y. For a transformation centered at y ¼ 0,
so that T0x ¼ x, local invariance can be enforced by the
constraint

q
qy

����
y¼0

f ðTyxÞ ¼ 0 (15)

thus limiting the variation of f for a variation of y. It must
be noted that f in (15) is considered to be the real-valued
output of the classifier, i.e. without the sign function in (7)
or (11).
Some methods are based on another approach, which is

to consider the class-invariance with respect to a domain of

the input space instead of a transformation. In this case, the
problem becomes finding f so that

f ðxÞ ¼ yP; 8x 2 P, (16)

where yP is the class label of the region P of the input
space. In practice, this approach is particularly useful to
provide prior knowledge in regions of input space that lack
training samples.
Another type of class-invariance found in pattern

recognition is the permutation-invariance, i.e. invariance
of the class to a permutation of elements in a structured
input. A typical application is a classifier invariant to
permutations of rows in matrix inputs. Since permutations
are no more than particular transformations, permutation-
invariance can also be considered as transformation-
invariance.

3.3. Knowledge on the data

Other forms of prior knowledge than class-invariance
concern the data more specifically and are thus of parti-
cular interest for real-world applications. In this review, the
three particular cases that most often occur when gathering
data are studied:
�
 Unlabeled samples are available with supposed class-
memberships.

�
 Imbalance of the training set is encountered when a high
proportion of samples is of the same class.

�
 Quality of the data may vary from one sample to
another.
Prior knowledge in relationship with these cases can
enhance the quality of the recognition if included in the
learning. Moreover, not taking into account the poor
quality of some data or a large imbalance between the
classes can mislead the decision of a classifier.
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Fig. 1. Two main types of prior knowledge that can be incorporated into SVM with the corresponding methods expressed by their number given in the

companion diagram of Fig. 2.

Fig. 2. Hierarchy of the methods for the incorporation of prior knowledge into SVM from the component of the problem which is modified at the top to

the methods at the bottom. For each method are given the main references, the number of the corresponding section and a reference number in a circle.
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4. Incorporating prior knowledge into SVM: a survey

In this section, a review of the methods for incorporating
prior knowledge into SVMs, however, restricted to class-
invariance and knowledge on the data, is given. These
methods are classified into three categories, as defined by
Schölkopf and Smola [52], depending on the means used to
include the prior knowledge and the component of the



ARTICLE IN PRESS
F. Lauer, G. Bloch / Neurocomputing 71 (2008) 1578–1594 1583
problem that is modified. As presented in Fig. 2, these three
groups of methods are:
�
 sample methods that incorporate the prior knowledge
either by generating new data or by modifying the way
they are taken into account;

�
 kernel methods that incorporate the prior knowledge in
the kernel function either by selecting the most
appropriate kernel or by creating a new kernel;

�
 optimization methods that incorporate the prior knowl-
edge in the problem formulation either by adding
constraints to the original problem or by defining a
new formulation which includes intrinsically the prior
knowledge.

The methods are detailed in the following. Further
discussions and links between the methods can be found
in the next section.

4.1. Sample methods

Two different approaches will be exposed in this section.
The first one is based on the generation of virtual samples,
while the second one aims at weighting the influence of
different samples. Whereas the virtual sample methods
focus on the incorporation of transformation-invariance,
the weighting of samples allows to include knowledge on
the data.

4.1.1. Virtual samples

In machine learning, the generalization ability of the
obtained model depends on the number of data at hand.
The more representative samples we have, the better we
learn. Based on this simple fact, the idea of creating new
samples to enlarge the training set was first introduced by
Poggio and Vetter [43] as virtual samples and in [1,2] as
‘‘hints’’. In [40], learning on an extended training set by
virtual samples was linked to regularization and it thus
showed a justification for the method.

The basic idea of the virtual samples approach [40] is to
incorporate a known transformation-invariance as defined
by (14). The new samples are generated from the training
data as follows:

ðxi; yiÞ7!ðTxi; yiÞ; i ¼ 1; . . . ;N. (17)

This method can be easily implemented in the context of
pattern recognition. For instance, in image recognition,
invariances to translations or rotations are often considered.

In the neural networks framework, hints introduced in
[1] are specific properties the output function f of the
network must satisfy such as oddness or invariance to a
transformation. An error measure em is defined to intro-
duce the mth hint Hm in the learning process. For instance,
for the invariance hint that implies that the samples xp and
xi are of the same class, we have

emðxpÞ ¼ ðf ðxpÞ � f ðxiÞÞ
2, (18)
which is zero when the two estimated classes are the same.
A set Xm of Nm new samples is generated and the overall
error Em for the hint Hm is estimated by Em ¼ 1=NmP

xp2Xm
emðxpÞ to test the accordance of f with the hint Hm.

It must be noticed that the training set itself can be
considered as a hint H0 for which e0ðxiÞ ¼ ðf ðxiÞ � yiÞ

2 and
the estimated overall error is E0 ¼ 1=N

PN
i¼1ðf ðxiÞ � yiÞ

2.
Originally applied to a neural network that minimizes
a least squares criterion, the learning process can be
summarized as

min
X

m

lmEm ¼
X

m

lm

Nm

X
xp2Xm

emðxpÞ, (19)

where lm is a weighting factor for the hint Hm.
In addition, in [49], the virtual SVM (VSVM) is introdu-

ced to incorporate transformation-invariance into SVMs.
The idea is to generate the virtual samples only from the
SVs since they contain all the information about the
problem. The virtual samples are thus called ‘‘virtual SVs’’
(VSVs). The proposed procedure requires two SVM
trainings. The first one extracts the SVs from the training
set while the second one is performed on a data set compo-
sed of the SVs and the VSVs.
In character recognition, the generation of virtual

samples became very popular and almost necessary to
achieve first-class performances. It is clear that an image
representing a character will still represent the same
character if, for instance, translated by one pixel. Thus,
one often looks for classifiers that can incorporate some
translation-invariance of the output as prior knowledge.
Whereas simple distortions such as translations, rotations
and scaling are generated by applying affine displacement
fields to images, elastic distortion, introduced in [57] to
imitate the variations of the handwriting, uses random
displacement fields. Other transformations, such as morph-
ing [28], were specifically developed and it appears that the
best results (at least on the MNIST database [34]) are
obtained by elastic distortions [57,32] even if it is based on
random displacement of pixels in the image. This highlights
the fact that more samples help to learn better even if they
are not absolutely accurate.
4.1.2. Weighting of samples

The weighting of samples allows to include other forms
of prior knowledge than transformation-invariance. It is
typically used to express knowledge on the data such as an
imbalance between classes, the relative quality of the
samples or prior knowledge on unlabeled samples. In
practice this amounts to weight the errors or to choose a
different trade-off parameter C for different samples.
Originally, different misclassification costs Ci were used

to deal with unbalanced data, i.e. providing much more
samples of a class than of the other [5,27]. Ci is set to a
higher value for the less represented class, thus penalizing
more the errors on this class. Besides, in [9], an equivalence
is shown between the soft-margin SVM using the ‘2-norm
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of the errors and a hard-margin SVM trained with a modi-
fied kernel matrix

K 0 ¼ K þ
1

C
I . (20)

This idea is extended in [64] to deal with unbalanced data
when different misclassification costs Cþ and C� are
assigned for the positive and negative classes. The kernel
matrix is then given by

K 0 ¼ K þD, (21)

where D is a diagonal matrix with components Dii ¼ 1=Cþ

for yi ¼ þ1 and Dii ¼ 1=C� for yi ¼ �1. This method
amounts to define an asymmetric margin keeping further
away from the decision boundary the class with a higher C.
Heuristics are proposed in [5] to tune Dii based on the
knowledge of unbalanced data: set Dii ¼ lnþ=N for yi ¼

þ1 and Dii ¼ ln�=N for yi ¼ �1, where nþ and n� are,
respectively, the numbers of positive and negative samples
in the training set of size N and where l is a scaling factor.

Another approach is developed in [71] in order to
incorporate prior knowledge on the quality of the training
data which may vary from one sample to another. The
method, known as weighted SVM (WSVM), proposes to
set a different cost Ci for each sample with respect to a
confidence value based on some knowledge of the data
acquisition or labeling procedure.

In [67], prior knowledge on unlabeled samples is
considered. Based on supposed class-memberships, pseu-
do-labels are assigned to these samples which are then
added to the training set with a different weight Ci in the
cost function. The incorporation of test samples as
unlabeled data in the training is introduced in [63] as
‘‘transductive learning’’. A transductive learning for SVMs,
in which the prior knowledge takes the form of the number
numþ of positive samples in the test set, has also been
proposed for text classification [26]. In this scheme, the test
samples are assigned a misclassification cost C� which is
different from the one used for the training samples and is
further refined for each class as C�þ and C�� in accordance
with the number numþ to deal with unbalanced data.

4.2. Kernel methods

The following presents five methods based on the direct
modification of the kernel function: the jittering kernels,
the tangent distance (TD), the Haar-integration kernels
(HI-kernels), the kernels between sets and the knowledge-
driven kernel design (KDKD). The first three methods aim
at building invariant kernels k that can provide the same
value for a sample x and its transformed Tx:

kðx; zÞ ¼ kðTx; zÞ (22)

thus leading to the transformation-invariance (14). Besides,
the kernels between sets introduce permutation-invariance
into the learning, which is another form of class-invariance.
The last method considers the problem of selecting the
kernel amongst admissible kernels with respect to prior
knowledge on the imbalance of the training set.

4.2.1. Jittering kernels

Jittering kernels were first developed for kernel
k-nearest-neighbors [10] and then presented for the
incorporation of transformation-invariance into SVMs
[11]. This approach is related to the VSV method (see
Section 4.1.1). Instead of considering an extended training
set with all the jittered forms (translated, rotated, etc.) of
the training samples, these forms are considered in the
kernel itself. Using the notation kij ¼ kðxi;xjÞ, the jittered
form kJ

ij of the kernel kij is computed in two steps [11]:
(1)
 Consider the sample xi and all its jittered forms, and
select the one, xq, closest to xj by minimizing the
distance between xq and xj in the space induced by the
kernel:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kqq � 2kqj þ kjj

p
. (23)
(2)
 Let kJ
ij ¼ kqj .
Using such a jittering kernel may provide an output
invariant to transformations. For instance, for a sample x
and a sample issued from a translation of this sample Tx,
the jittering kernel function can yield kðTx;xÞ ¼ kðx;xÞ.
The computation of such a kernel can be time consum-

ing. However, for an RBF kernel, only kqj needs to be
considered for the minimization since kqq and kjj are
constants and equal 1. Moreover it is argued that,
compared to the VSVM method, the jittering kernel can
still be faster for the training by making use of kernel
caching. Nonetheless, in testing phase, this kernel might be
slower since it requires to repeat the steps (1) and (2) for
each new test sample.

4.2.2. Tangent distance

Another approach to incorporate knowledge of trans-
formation-invariance is via the distance measurement, not
in the space induced by the kernel but in the input space. In
order to do so, one can implement a different distance
rðx; zÞ instead of the Euclidean distance commonly used in
radial basis kernels. For the Gaussian kernel, this yields

kðx; zÞ ¼ exp
�rðx; zÞ2

2s2

� �
. (24)

The use of another distance for transformation-invariance
has been extensively studied in [56] for neural networks
under the name of TD and originally incorporated in
SVMs as TD kernels by Haasdonk and Keysers [23]. The
main idea is to measure the distance not between the
samples x and z but between the sets Px and Pz. These sets
contain all the patterns generated by the transformation T

of the samples x and z that leaves the label unchanged.
Thus, the distance between a sample and its translation can
be made so that it equals zero.
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As simple image transformations can correspond to
highly non-linear transformations in the input space, the
TD uses linear approximations. Considering the transfor-
mation Tx as a combination of nL local and simple
transformations Lak

of parameter ak in ½amin
k ; amax

k �, it can
be linearly approximated by using the tangent vectors
‘ak
ðxÞ as

Tx � xþ
XnL

k¼1

ak‘ak
ðxÞ. (25)

The TD is thus defined as the minimal Euclidean distance
between the linearly approximated sets of all transformed
samples:

rðPx;PzÞ
2

¼ min
a1;...;anL ;b1 ;...;bnL

x� zþ
XnL

k¼1

ðak‘ak
ðxÞ � bk‘bk

ðzÞÞ

 !2

s:t: ak 2 ½amin
k ; amax

k �; bk 2 ½b
min
k ; bmax

k �,

k ¼ 1; . . . ; nL, ð26Þ

where bk and ‘bk
ðzÞ correspond to the parameter and the

tangent vector for the kth local transformation of z.
A similar approach was originally taken in [16] where a

joint manifold distance was defined by minimizing a
distance between sets of transformed samples. When the
transformation is approximated by a Taylor expansion,
this method is analogous to the TD method of [56]. In [45],
these concepts are considered under the name of object-to-
object distance, where an object corresponds to the set of
all transformed samples Px or Pz. Sample-to-object
distance is also considered, in which case the transforma-
tion of only one of the two samples is allowed. This
corresponds to a one-sided TD which is computed for a
sample x and an object Pz by

rðx;PzÞ
2
� min

b1;...;bnL

x� z�
XnL

k¼1

bk‘bk
ðzÞ

 !2

s:t: bk 2 ½b
min
k ; bmax

k �; k ¼ 1; . . . ; nL. ð27Þ

The sample-to-object (or one-sided TD) method can be
related to the jittering kernel method. They both amount to
compute the kernel kðx; zÞ between the sample x and the
closest pattern generated around the center z by a
transformation that does not change the class label. The
main difference lies in the implementation where the
sample-to-object distance can be considered as an analy-
tical form of the one used in jittering kernels, these latter
requiring to test every jittered form of the center. There-
fore, the sample-to-object method can be faster but
introduces restrictions on the class of admissible transfor-
mations [45].

Objects can also be coded by local distributions centered
at the samples. In this case they are called soft-objects. One
has then to define a similarity measure between a sample
and such an object. Here, tangent vectors can be used to
locally approximate the transformations [45] and lead to
the tangent vector kernels (TVK) introduced in [44].

4.2.3. Haar-integration kernels

Haar-integration has been introduced in [53] for the
construction of invariant features. In a similar approach,
Haar-integration has been used to generate invariant
kernels known as HI-kernels [24]. Consider a standard
kernel k0 and a transformation group T which contains
the admissible transformations (see [53] for a complete
definition). The idea is to compute the average of the kernel
output k0ðTx;T 0zÞ over all pairwise combinations of the
transformed samples ðTx;T 0zÞ, 8T ;T 0 2T. The HI-kernel
k of k0 with respect to T is thus

kðx; zÞ ¼

Z
T

Z
T

k0ðTx;T 0zÞdT dT 0 (28)

under the condition of existence and finiteness of the
integral (which can be satisfied, for instance, by discretiza-
tion of T). An interpretation of this kernel in the feature
space F can be given due to the following equality [24]:Z

T

UðTxÞdT ;

Z
T

UðT 0zÞdT 0
� �

¼

Z
T

Z
T

hUðTxÞ;UðT 0zÞidT dT 0 ¼ kðx; zÞ, ð29Þ

where the mapping U is defined by (10). In other words,
averaging over k0 Tx;T 0zð Þ is equivalent to computing the
inner product between the averages UðxÞ and UðzÞ of the
sets of transformed samples fUðTxÞjT 2Tg and
fUðT 0zÞjT 0 2Tg.

4.2.4. Kernels between sets

In [31], a kernel between sets of vectors is proposed. The
idea is to classify the samples defined as sets of d-
dimensional vectors xi and now written as

w ¼ fx1; . . . ;xi; . . . ;xng, (30)

where n is the size of the set. This representation allows to
intrinsically incorporate invariance to permutations of
vectors xi in the set. For instance, in image recognition, a
vector xi ¼ ½x; y; g�T represents a point of the image
identified by its coordinates ðx; yÞ and a gray-level g.
A sample w is then composed of all the points correspond-
ing to an image. It is clear that the ordering of the vectors
inside this sample is irrelevant for the image classification.
Thus, the recognition algorithm must include an invariance
to permutations of vectors inside a sample, which is
included here in the kernel.
The kernel between two sets w and w0 is defined as

Bhattacharyya’s affinity between the distributions p and p0

fitted to the sets w and w0:

kðw; w0Þ ¼ kðp; p0Þ ¼

Z ffiffiffiffiffiffiffiffiffi
pðxÞ

p ffiffiffiffiffiffiffiffiffiffi
p0ðxÞ

p
dx. (31)

The approach here is to consider w and w0 as i.i.d. samples
from unknown distributions p and p0 from a parametric



ARTICLE IN PRESS
F. Lauer, G. Bloch / Neurocomputing 71 (2008) 1578–15941586
family P. The kernel requires to fit the distributions p and
p0 to the sets as an intermediate step, which ensures
permutation-invariance [31]. When P is chosen as the
family of multivariate normal distributions Nðl;RÞ, p and
p0 are fitted by setting l and R to their maximum likelihood
estimates given by the sample mean and the empirical
covariance matrix.

So far, the distributions are fitted in the input space Rd ,
which might be limited (for instance, d ¼ 3 for image
recognition). However, the method is extended in [31] with
an additional kernel k : Rd � Rd ! R defined between the
vectors x in order to consider p and p0 as distributions on
the feature space induced by k. In this case, a regularized
estimate of the covariance matrix, involving the computa-
tion of eigenvectors in the feature space by kernel principal
component analysis (KPCA) [51], is used.

Another similar approach, independently developed at
the same time, can be found in [69], where a positive
definite kernel is defined over sets of vectors represented as
matrices. Considering two matrices of identical sizes A ¼
½Uða1Þ; . . . ;UðanÞ� and B ¼ ½Uðb1Þ; . . . ;UðbnÞ�, where ai and
bi are vectors of Rd and Uð:Þ is defined by (10), the
proposed kernel between these matrices with column order
invariance is given by

kðA;BÞ ¼
Yn

i¼1

cosðyiÞ, (32)

where the yi stand for the principal angles in the feature
space. In [69], a method is proposed to compute the
principal angles in feature space using only inner products
between columns of the input matrices. This extension
allows to introduce an additional kernel as in the method
of [31] in order to deal with non-linear cases without
requiring to explicitly compute the feature map.
4.2.5. Knowledge-driven kernel selection

All previously described methods involving a modifica-
tion of the kernel aim at building invariant kernels. The
following method applies to unbalanced training sets and
the cases where prior knowledge indicates that the negative
class includes a wide variety of samples with only a few
available for training. For instance, in face recognition,
when the positive class includes the training images of a
particular man, the training set cannot contain all the
possible faces of the other men for the negative class.

In image retrieval, this problem has been tackled in [66]
by a KDKD procedure. The authors highlight the fact that,
when the training set is small, the data cannot effectively
represent the true distributions of the positive and negative
classes, especially the negative one. Based on this prior
knowledge, the kernel is designed so that, in the feature
space, the positive samples are tightly clustered while the
negative samples are pushed away from the positive ones,
anywhere, but scattered.

In practice, the kernel k is designed by maximizing the
ratio between the scatter trðSF

npÞ of the negative samples
(xi 2 Dn) and the scatter trðSF
p Þ of the positive ones

(xi 2 Dp), with respect to the mean mF
p of the positive ones:

Jðk; hÞ ¼
trðSF

npÞ

trðSF
p Þ

, (33)

where the matrices SF
np and SF

p are defined by

SF
np ¼

X
xi2Dn

ðUðxiÞ �mF
p ÞðUðxiÞ �mF

p Þ
T, ð34Þ

SF
p ¼

X
xi2Dp

ðUðxiÞ �mF
p ÞðUðxiÞ �mF

p Þ
T, ð35Þ

where UðxiÞ is defined by (10). The traces of the matrices
can be computed from the kernel function as described in
[66] and the criterion has continuous first and second order
derivatives with respect to the kernel parameters as long as
the kernel function has. However, non-linear optimization
techniques are required to solve the problem.
The maximization of ratio (33) can be used to find the

optimal kernel function amongst a set of admissible
kernels, but also to tune the parameters of a previously
chosen kernel.

4.3. Optimization methods

This section presents methods that incorporate prior
knowledge directly in the problem formulation: invariant
kernels, semidefinite programming machines (SDPM),
invariant simpleSVM (ISSVM), knowledge-based linear
programming (KBLP), non-linear knowledge-based linear
programming (NLKBLP) and p-SVM. Though it may be
argued that the first one belongs to the category of kernel
methods, it is derived from a regularization approach
minimizing a composite criterion. It is thus categorized as
an optimization-based method. The first three methods of
the list aim at incorporating transformation-invariance,
whereas the KBLP method considers class-invariance in
polyhedral regions of the input space. From a method
originally formulated for SV regression, an extension of
KBLP to arbitrary non-linear domains, NLKBLP, is
proposed in Section 4.3.5 for classification. The last
method exposed in this review, p-SVM, concerns permuta-
tion-invariance for SVMs that classify sets of elements
instead of vectors.

4.3.1. Invariant kernels

Regularization of the cost function has been extensively
used for neural networks [19,4], allowing to incorporate
prior knowledge on a property of the function to estimate
(usually the smoothness). But the implicit inclusion of
regularization in SVMs, equivalent to regularization net-
works [58,14], might explain why few articles studied the
application of regularization techniques for the incorpora-
tion of other forms of prior knowledge into SVMs.
However, in the case of classification, the addition of
a term to be minimized in the cost function for this pur-
pose has been considered. Nonetheless, it results in a
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modification of the kernel rather than a modification of the
optimization problem as exposed in the following.

The authors of [50] incorporated local invariance in the
sense of (15) and proposed invariant kernels. Defining the
tangent vectors by

dxi ¼
q
qy

����
y¼0

Tyxi (36)

allows to include the local invariance (15) in the learning of
a linear SVM by minimizing

1

N

XN

i¼1

ðwTðdxiÞÞ
2 (37)

and thus making the weight vector w as orthogonal as
possible to the tangent vectors. For the original QP
formulation and a linear kernel, the regularized cost
becomes

JðwÞ ¼ ð1� gÞkwk2 þ g
XN

i¼1

ðwTðdxiÞÞ, (38)

where g 2 ½0; 1� controls the trade-off between the standard
SVM (g ¼ 0) and a full enforcement of the orthogonality
between the hyperplane and the invariance directions
ðg! 1Þ. Let us define C g as the square root of the
regularized covariance matrix of the tangent vectors:

C g ¼ ð1� gÞI þ g
XN

i¼1

dxi dxT
i

 !1=2

. (39)

Then, minimizing the regularized cost (38) under the
original constraints (4) leads to a standard SVM problem
[50], yielding the output function

f ðxÞ ¼
XN

i¼1

aiyihC
�1
g xi;C

�1
g xi þ b. (40)

Thus, a linear invariant SVM is equivalent to a standard
SVM where the input is first transformed via the linear
mapping x7!C�1g x.

In order to extend directly the approach to non-linear
kernels [7], one would have to compute the matrix C g in the
feature space F by

C g ¼ ð1� gÞI þ g
XN

i¼1

dUðxiÞdUðxiÞ
T

 !1=2

, (41)

where UðxiÞ is defined by (10), and use the new kernel

kðxi;xÞ ¼ hC
�1
g UðxiÞ;C

�1
g UðxÞi ¼ UðxiÞ

TC�2g UðxÞ (42)

which is impossible to do directly because of the high
dimensionality of F and the implicit nature of F. None-
theless, two methods were proposed in [7] but still
suffer from computational problems when applied to
large data sets or when more than one invariance is
considered.

This approach for the incorporation of invariance can be
related to the virtual sample method that simply adds the
transformed samples to the training set (see Section 4.1.1)
and some equivalence between the two methods can be
shown [35]. However, the invariant SVM does not only
make the class invariant to the transformation but also the
real value of the output (which can be considered as a class-
conditional probability) [7].

4.3.2. Semidefinite programming machines (SDPM)

In [20], another formulation for the large margin
classifier is developed for the incorporation of transforma-
tion-invariance. The aim is to find an optimal separating
hyperplane between trajectories rather than between
points. In practice, the trajectories, defined as sets of the
type fTyxi : y 2 Rg, are based on training samples xi and a
differentiable transformation T of parameter y to which the
class is known to be invariant. The problem can be solved
by approximating T by a transformation ~T polynomial in y
that can be a Taylor expansion of the form

Tyxi � ~Tyxi ¼
Xr

j¼0

yj 1

j!

djTyxi

dyj

����
y¼0

� �
¼ ~X

T

i h, (43)

where the ðrþ 1Þ � d-dimensional matrix ~X i contains the
derivative components and h ¼ ½1 y y2 . . . yr

�T. For this
type of transformations, the problem of finding the optimal
separating hyperplane between trajectories can be formu-
lated as

min 1
2
kwk2 s:t: yiw

T ~X
T

i hp0; 8y 2 R; i ¼ 1; . . . ;N.

(44)

For this problem, the authors of [20] propose an equivalent
semidefinite program (SDP) [61], for which efficient
algorithms exist. They also show that the resulting expan-
sion of the optimal weight vector w� in terms of ~X i is
sparse. Moreover, not only the examples ~X i are determined
but also their corresponding optimal transformation
parameter y�i . Thus, the so-called SDPM extends the idea
of virtual samples (Section 4.1.1), since truly virtual
samples that are not in the training set are used as SVs.
However, practical issues regarding the application of

SDPM to non-linear classification with kernels remain
open.

4.3.3. Invariant simpleSVM

The authors of [36] propose a general framework for the
incorporation of transformation-invariance into the learn-
ing based on a modification of the problem formulation.
For the hard-margin SVM, the problem reads as

min
g;b

1
2
kgk2H

s:t: yiðgðTyxiÞ þ bÞX1; i ¼ 1; . . . ;N ; y 2 Y, ð45Þ

where the function g lies in the Hilbert space H of
admissible functions. This setting allows to ensure that not
only the training sample xi ¼ T0xi, but also the admissible
transformations of this sample Tyxi are classified as
belonging to class the yi. To solve the problem, the method
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requires a discretization of the parameter space Y based
on the assumption that only a finite number of values
for y will yield SVs. This is reasonable since for the hard-
margin SVM, only samples that lie exactly on the margin
borders are SVs. In this case, a dual form of the
problem with a finite number of Lagrange multipliers
aiðyÞ can lead to the solution. However, for the soft-
margin case, any sample lying inside the margin corre-
sponds to an SV. Thus, the trajectory of a transformation
that goes through the margin would yield an infinite
number of SVs.

As highlighted in [36], this method can include other
methods that incorporate invariance as follows:
�
 the virtual samples approach (see Section 4.1.1)
is recovered after a discretization of the parameter
space Y;

�
 the TD-based methods (Sections 4.3.1 and 4.2.2) are
recovered by approximating the transformation Tyxi by
a first order polynomial;

�
 the SDPM (Section 4.3.2) is recovered if the transforma-
tion Tyxi is approximated by a transformation poly-
nomial in y, such as a Taylor expansion.

In this framework, the authors proposed an efficient
algorithm called ISSVM based on the simpleSVM algo-
rithm developed in [65]. However, this algorithm requires
the discretization of the parameter space Y for the non-
separable case, which is not necessary for SDPM which
considers all y in R.

4.3.4. Knowledge-based linear programming (KBLP)

The following methods consider the incorporation of
prior knowledge into SV learning by the addition of
constraints to the optimization problem. In this frame-
work, class-invariance inside polyhedral regions has been
introduced for linear classification in [17] and was then
extended to the non-linear case via a reformulation of the
kernel in [18]. These two methods are regrouped under the
name KBLP.

The learning machine considered here uses the linear
programming formulation (13) and the prior knowledge
that all the points x on a polyhedral domain P ¼
fxjBþxpdþg are positive samples ðy ¼ þ1Þ. This form of
knowledge can be written as the implication

Bþxpdþ ) wTxþ bX1 (46)

with, for a domain of dimension n, Bþ 2 Rn�d , x 2 Rd and
dþ 2 Rn. Implication (46) can be transformed for a linear
SVM in an equivalent system of linear inequalities having
the solution u 2 Rn [17]:

BT
þuþ w ¼ 0; dT

þu� bþ 1p0; uX0. (47)

For prior knowledge on negative samples ðy ¼ �1Þ, we
have

B�xpd� ) wTxþ bp� 1, (48)
which is equivalent to

BT
�u� w ¼ 0; dT

�uþ bþ 1p0; uX0. (49)

This result is then extended for SVMs with non-linear
kernels by assuming that x ¼ XTt is a linear combina-
tion of the training samples. For the positive class, the
‘‘kernelized’’ prior knowledge becomes

KðBT
þ;X

TÞtpdþ ) aTDKt þ bX1. (50)

With the diagonal matrix D ¼ diagðy1; . . . ; yi; . . . ; yNÞ and
a defined as in (12), the following system of linear
inequalities is equivalent:

KðXT;BT
þÞuþ KDa ¼ 0; dT

þu� bþ 1p0; uX0. (51)

These inequalities can then be easily incorporated to the
linear program (13). With the introduction of N þ 1 slack
variables z ¼ ½z1; . . . ; zi; . . . ; zN �

T and z, this leads to the
addition of N þ 1 linear constraints (not counting uX0 and
zX0) as

min
ða;b;nX0;a;uX0;z;zX0Þ

1Taþ C1Tnþ m11Tzþ m2z

s:t: DðKDaþ b1ÞX1� n,

� apapa,

� zpKðXT;BT
þÞuþ KDapz,

dT
þu� bþ 1pz, ð52Þ

where m1 and m2 are two trade-off parameters between the
training on the data and the learning of the prior
knowledge.
Similar constraints can be derived for prior knowledge

on negative samples and added to the problem [18]. As
prior knowledge on a polyhedral set only requires the
addition of a set of linear constraints, knowledge on many
regions for the two classes can be easily combined and
included to the problem.
It must be noticed that the three kernels appearing in

(52) could be distinct kernels and do not need to be positive
semidefinite.

4.3.5. Non-linear knowledge-based linear programming

In the framework of regression and kernel approxima-
tion of functions, Mangasarian and his coworkers pro-
posed a new approach based on a non-linear formulation
of the knowledge [38] to overcome the lacks of the
previously described KBLP method. It is presented here
to allow its extension to classification and thus to class-
invariance inside an input domain. The prior knowledge
can now be considered on any non-linear region of the
input space and takes the general form

gðxÞp0 ) f ðxÞXhðxÞ, (53)

which is equivalent to

f ðxÞ � hðxÞ þ vTgðxÞX0; 8x (54)

for vX0 [38]. In this formulation, f ; g; h are arbitrary
non-linear functions. Indeed the demonstration of the
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equivalence requires f ; g;�h to be convex but only for the
implication (53) ) (54). The implication (54) ) (53), in
which we are interested, holds for any f ; g; h. Nonetheless,
inequality (54) must be verified 8x and thus cannot directly
be included in the linear program as a finite set of
constraints. To overcome this, a discretization of the know-
ledge is performed over a set of points fxpg � fxjgðxÞp0g,
yielding a finite set of constraints.

For the classification case, we can set f ðxÞ to the real
value of the output of the classifier (the bracketed
expression in (12) without the sign function) f ðxÞ ¼
Kðx;XTÞDaþ b and hðxÞ ¼ þ1. Of course, if the region
considered is known to belong to the negative class instead
of the positive class, the setting becomes f ðxÞ ¼ �Kðx;XTÞ

Da� b and hðxÞ ¼ �1. Associating slack variables zp to the
Np points of discretization fxpg gives the NLKBLP

min
ða;b;nX0;a;vX0;zpX0Þ

1Taþ C1Tnþ m
XNp

p
zp

s:t: DðKDaþ 1bÞX1� n,

� apapa,

f ðxpÞ � hðxpÞ þ vTgðxpÞ þ zpX0,

p ¼ 1; . . . ;Np. ð55Þ

A difference between this method and the polyhedral
method is that the constraints are applied on an arbi-
trary discretized domain. With a polyhedral domain,
the constraints hold on the whole domain (without
discretization).

It is thus possible to include prior knowledge such as the
class-membership of an arbitrary region into SV learning.
For each region a set of constraints is added to the linear
program. The method is thus only limited by computa-
tional power.

4.3.6. Permutation-invariant SVM (p-SVM)

The paper [55] focuses on the issue of Section 4.2.4, i.e.
to build a classifier separating sets of vectors (here in
matrix form) that incorporates permutation-invariance
(here between rows of matrices). But the approach is
rather different from the ones of [31,69]. Here, the
permutation-invariance is not incorporated in the kernel
but in the learning machine itself. To do so, an SVM with
matrix inputs Z i 2 Rm�d instead of vectors xi is considered
by defining a function p : Rm�d � Rm�d ! R as

pðA;BÞ ¼
Xd

j¼1

hAj ;Bji ¼
Xd

j¼1

Xm

k¼1

AjkBjk (56)

and the norm of a matrix as kAk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

j¼1kAjk
2

q
. The

training of such an SVM can still be written as (8) by
replacing the vector w by a matrix W in Rm�d and replacing
the inner product hxi;wi in the constraints by pðZ i;WÞ.
Similarly, the class of a sample Z is given by
f ðZÞ ¼ signðpðZ;WÞ þ bÞ. The margin M of this classifier
can be defined as the minimal value for yiðpðZ

i;WÞ þ bÞ
over the training set, since maximizing M would lead to a
better separation of the training data.
The main steps of the proposed procedure to train a

permutation-invariant SVM (p-SVM) [55] are as follows:
(1)
 compute the radius R and centroid of the smallest
hypersphere enclosing all training data;
(2)
 solve the SVM on the training data composed of
matrices;
(3)
 find the permutation of rows for each training sample
that both minimizes the radius R and maximizes the
margin (with a chosen trade-off parameter);
(4)
 permute the rows of the training matrices accordingly;

(5)
 repeat from step (1) until some criterion is met.
For all these steps, efficient algorithms, of which the
description can be found in [55], exist. The idea here is to
permute the rows of training matrices so as to minimize the
bound on the generalization error based on the ratio
between the radius of the data and the margin. The class of
a test sample Z is then determined by f ðZÞ computed for
the permutation of rows of Z that yields the larger margin.

5. Discussions

This section starts with some general remarks on the
main directions for the incorporation of prior knowledge
into SVM. Then, a technical discussion on particular
aspects of the methods is proposed to highlight the links
between the methods. Notably, a unifying framework from
an implementation point of view is given in Section 5.2.1.

5.1. General issues

In this overview of the methods, the approaches to
incorporating prior knowledge into SVM are classified into
the three categories defined in [52]: sample methods, kernel
methods and optimization methods.
Sample methods are often chosen in practice for their

simplicity of use. On the contrary, kernel methods may
suffer from computational issues. However, most of the
current research aim at building invariant kernels. One
reason is that these kernels may also be directly applied to
other kernel-based classifiers such as KPCA [51] or kernel
Fisher discriminant analysis (KFDA) [39].
Also, most of the work focuses on one particular type of

prior knowledge: class-invariance to a transformation of
the input. This can be explained by the availability of this
type of prior knowledge in many of the pattern recognition
problems such as image recognition and all its various
applications. However, on a smaller scale, other forms of
invariances are also studied when, for instance, considering
structured inputs such as matrices. In this setting invar-
iance to permutations of rows as proposed by [31,69,55]
can be crucial for the problem. The methods proposed by
[17,18] and their extension based on [38] allow to include
some class-invariance knowledge on regions of the input
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space, which might be interesting if, for instance, these
regions lack training samples.

Methods that incorporate knowledge on the data, such
as the WSVM [71], are also interesting since they allow to
include knowledge on the experimental setup used to
provide the training data. From a practical point of view, it
is clear that, in real-world applications, the process of
gathering data may suffer from a weak or variable
accuracy. Being able to track this and learn in accordance
is an important issue. As an example, the labeling of images
in handwriting recognition is not always exact and can
sometimes differ with respect to the person who is asked to
label a pattern. As highlighted in [59], a certain amount of
errors made by the classifiers are due to images that
humans have difficulty in identifying them because of
cursive writing, degradation and distortion due to the
quality of the scanner or the width of the tip of the writing
instrument. These problems are present and identifiable in
most of the common databases (see [59] for an analysis on
the MNIST, CENPARMI, USPS and NIST SD 19
databases) and should be taken into account to be able
to improve the performances of the recognition systems.

5.2. Technical discussions

In the following, a regularization framework is used
to regroup both the sample and optimization methods.
A comparison of the invariant kernel methods is then
proposed to show the different spaces in which the distance
measures are considered by the different methods. The end
of this section is dedicated to the perspective of combining
the methods.

5.2.1. Sample and constrained methods in a regularization

framework

Though stemming from different approaches, many of
the presented methods can be seen in a regularization
framework from the way they are implemented. Actually
Table 1

Setting for the regularization framework with respect to the different methods

Method JPK

Virtual samples
C
PNV

i¼1

~xi

Asymmetric margin ðCþ �CÞ
P
i2P

xi þ ðC
� �CÞ

P
i2N

x

WSVM PN
i¼1

ðCi � CÞxi

Unlabeled samples PNU

i¼1

Ci
~xi

KBLP
m1
PN
i¼1

zi þ m2z

NLKBLP
m
PNp

p

zp
both sample and constrained methods amount to minimize
a composite criterion JC with additional constraints:

min JC ¼ JSVM þ JPK

s:t: cSVMp0,

cPKp0, ð57Þ

where JSVM and cSVM correspond to the usual SVM
criterion and constraints (8), whereas JPK and cPK are
added to the problem to include the prior knowledge. Their
settings for the different methods are derived in the
following and summarized in Table 1.
All virtual sample methods (Section 4.1.1) basically add

new samples to the training set, which simply corresponds
to augmenting the size of the training set N by the number
of virtual samples NV in the optimization problem (8).
Separating the training samples xi from the virtual samples
~xi in the writing yields the setting of Table 1 for (57).
Though originally developed for different purposes and

from different points of view, all the methods based on
weighting (Section 4.1.2) can be written as a standard SVM
problem with the parameter C set to a different value Ci for
each sample. For asymmetric margins, Ci can only take
two values Cþ and C� depending on the class of the sample
xi: positive (for i in P ¼ fi : yi ¼ þ1g) or negative (for i in
N ¼ fi : yi ¼ �1g). Considering C as an average weight
allows to write the problem as in (57) with the settings of
Table 1 for asymmetric margin methods and the WSVM.
Besides, the method of [67] for the incorporation of
unlabeled samples can be seen as a mixture of virtual
samples and weighting by considering the NU unlabeled
samples as extra samples ~xi weighted by Ci.
The KBLP and NLKBLP problems (Sections 4.3.4 and

4.3.5) are directly formulated as in (57), except for JSVM

and cSVM, which correspond now to the criterion and
constraints used by the linear programming form of SVM
(13). Because of the required discretization of the domain
of knowledge, the NLKBLP method can be seen as adding
virtual samples to the training set. In this case, the samples
cPKp0

~yiðh ~xi;wi þ bÞX1� ~xi ; i ¼ 1; . . . ;NV

i

~yiðh ~xi;wi þ bÞX1� ~xi

�zpKðXT;BTÞuþ KDapz; dTu� bþ 1pz

f ðxpÞ � hðxpÞ þ vTgðxpÞ þ zpX0; p ¼ 1; . . . ;Np
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Table 2

Invariant kernel functions

Method Kernel function Specificity

Jittering kernels kðx; zÞ ¼ kðx; ẑÞ ẑ ¼ arg min
z2Z

kUðxÞ �UðzÞkF

One-sided TD (sample-to-object) kðx; zÞ ¼ kðx; ẑÞ ẑ ¼ arg min
z2Pz

kx� zk

Two-sided TD (object-to-object) kðx; zÞ ¼ kðx̂; ẑÞ ðx̂; ẑÞ ¼ arg min
ðx;zÞ2Px�Pz

kx� zk

Haar-integration kðx; zÞ ¼ k0ðx; zÞ k0ðx; zÞ ¼ hUðzÞ;UðxÞi

Z contains all the jittered forms of z.
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are not generated by transformations of other samples as
usual, but chosen in the input space by discretization of a
region that might actually contain no sample. An interest-
ing point is that though basically corresponding to the
same problem from an optimization viewpoint, the VSVM
(Section 4.1.1) and NLKBLP methods are radically
different. The first one aims at improving the boundary
between two regions with training samples that are close
but that belong to different classes. The second one
becomes of particular interest when enhancing the decision
function in a region of input space that lacks training
samples but on which prior knowledge is available.

The methods of Section 4.3.1 for the incorporation of
invariances conform obviously to this framework since
they are initially formulated as the minimization of a
composite criterion. However, as they correspond in
practice to a modification of the kernel, they do not
appear in Table 1, which focuses on the practical
implementation of the methods.

5.2.2. Kernel methods: invariance via distance measure, but

in which space?

Most of the kernel methods presented in Section 4.2
implement transformation-invariance by modifying the
computation of the distance between the patterns. These
methods are summarized in Table 2. It can be noticed that
while the jittering kernel minimizes a distance in the feature
space F, the TD and the sample-to-object or object-to-
object distances are considered in the input space. On the
other hand, the HI-kernel does not look for a minimal
distance, but rather computes the distance in F between
averages over transformed samples.

5.3. Combinations of methods

Combining methods from different categories with
respect to our classification seems possible since they act
on different parts of the problem. For example, nothing
prevents us from using a jittering kernel on an extended
training set with prior knowledge on polyhedral regions of
input space. But this does not exclude combinations of
methods of the same category. Actually all the methods
of Table 1 can be combined since they all amount to the
addition of a term in the criterion and optionally some
constraints. Such combinations become interesting when
two methods are used for different purposes. Consider the
example of character recognition for which we have seen
that generating virtual samples by a known transformation
such as translation helps the classifier to be invariant to
translations. Also, random transformations such as elastic
distortions lead to even better results [57] by incorporating
invariance to small random variations of the image. But
elastic distortion may sometimes yield very distorted
images that become unrecognizable [32] and can mislead
the classifier. This drawback could be diminished by
combining elastic distortions with a WSVM and associat-
ing a smaller confidence to the virtual samples than to the
original training ones. Thus, the combination of virtual
samples and weighting of samples can be used to
incorporate invariance to an approximately known trans-
formation. The weights Ci associated to the virtual samples
are then a confidence measure of the transformation that
generated these samples.
However, the combination of methods leads to an

increase of the algorithm complexity. The methods must
be chosen with care by looking at their complementarity in
order to yield a respectable improvement.

6. Conclusion

The fundamentals of the support vector machines
(SVMs) for classification have been presented together
with the different formulations of the optimization
problem resulting from the training of such machines.
A review of the literature concerning the incorporation of
prior knowledge into SVMs has been exposed. The
methods are classified, with respect to the categorization
of [52], into three categories depending on the implementa-
tion approach (via samples, in the kernel or in the problem
formulation). Two main types of prior knowledge that can
be included by these methods have been considered: class-
invariance and knowledge on the data. Most of the work in
this field has been focused so far on transformation-
invariance, either via the kernel function or via extended
training sets. Nonetheless, a recent approach considers
prior knowledge on a polyhedral domain of the input space
for which the class is known. It has been extended here for
arbitrary regions and results in the addition of linear
constraints to the optimization problem, thus providing an
easy means to code knowledge on multiple regions for the
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two classes. Finally, a regularization framework has been
used to regroup both the sample and constrained methods
from an implementation point of view.

Being able to include expert knowledge in the learning
will be a key element in the future for the increase of
classifiers performance on benchmark data sets and
practical applications. Further research might explore
other forms of prior knowledge together with optimized
algorithms for their implementations. Also, the combina-
tion of different types of knowledge might be explored for
practical applications. In addition, an interesting problem
not covered in this review, though it may be regarded as the
inclusion of prior knowledge, is the classification of
structured inputs such as graphs or strings. Regarding this
issue, the reader can refer to the book [54] and the
references therein that provide a framework for building
kernels for structured data.
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