
Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
E-m

nnavari

Pleas
Neur
journal homepage: www.elsevier.com/locate/neucom
An empirical study on budget-aware online kernel algorithms for
streams of graphs

Giovanni Da San Martino a, Nicolò Navarin b,n, Alessandro Sperduti b

a Qatar Computing Research Institute, HBKU, P.O. Box 5825, Doha, Qatar
b Department of Mathematics, University of Padova, via trieste 63, Padova, Italy
a r t i c l e i n f o

Article history:
Received 15 May 2015
Received in revised form
25 March 2016
Accepted 19 July 2016
Communicated by B. Hammer

Keywords:
Online learning
Graph kernels
Graph streams
Online passive aggressive
x.doi.org/10.1016/j.neucom.2016.07.029
12/& 2016 Elsevier B.V. All rights reserved.

esponding author.
ail addresses: gmartino@qf.org.qa (G. Da San M
n@math.unipd.it (N. Navarin), sperduti@math

e cite this article as: G. Da San Martin
ocomputing (2016), http://dx.doi.org
a b s t r a c t

Kernel methods are considered as an effective technique for on-line learning. Many approaches have
been developed for compactly representing the dual solution of a kernel method when the problem
imposes memory constraints. However, in the literature no work is specifically tailored to streams of
graphs. Motivated by the fact that the size of the feature space representation of many state-of-the-art
graph kernels is relatively small and thus it is explicitly computable, we study whether executing kernel
algorithms in the feature space can be more effective than the classical dual approach. We study three
different algorithms and various strategies for managing the budget. Efficiency and efficacy of the pro-
posed approaches are experimentally assessed on relatively large graph streams exhibiting concept drift.
It turns out that, when strict memory budget constraints have to be enforced, working in feature space,
given the current state-of-the-art on graph kernels, is more than a viable alternative to dual approaches,
both in terms of speed and classification performance.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The amount of data generated in different areas by computer
systems is growing at an extraordinary pace, mainly due to the
advent of technologies related to the web, ubiquitous services and
embedded systems that aim at monitoring the environment in
which they are immersed in. Data are, in some cases, generated at
a constant rate by sources that can potentially emit an unbounded
sequence of elements, i.e. data streams. The processing of data
streams requires special care from a computational point of view,
since only bounded time and memory resources might be avail-
able. Indeed, online algorithms may be required to scale linearly
with the number of data items and use a constant, a priori de-
termined, amount of memory (budget). An example of a learning
task on streams is binary classification, where the goal is to ap-
proximate a function  → { − }f : 1, 1 which partitions the input
domain  into two classes. When dealing with streams, it was
early recognized that they tend to evolve with time, giving rise to
the well known concept drift phenomenon [1], which consists in
the function ()f changing over time.

In this paper, we focus on graph streams, which involve a large
range of application tasks such as chemical compound or image
artino),
.unipd.it (A. Sperduti).

o, et al., An empirical study
/10.1016/j.neucom.2016.07.0
classification (see Sections 4.1.1 and 4.1.2, respectively), as well as
malware detection [2], where executables’ codes represent graph
nodes and control flow instructions and API calls represent edges,
and Fault Diagnosis in Sensor Networks [3]. Note that we assume
that the source generating the stream emits one graph at a time
(i.e., we do not have an edge stream as, for example, in [4]).

The traditional approach when dealing with structured data is
to transform the data into a suitable vectorial representation.
When the examples are graphs, the mapping is commonly referred
to as graph embedding [5]. The drawbacks of this approach are
that the embedding is task-dependent, and generally computa-
tionally expensive. Moreover, the dimensionality of the vector in
which the mapping is performed has to be fixed a priori (see e.g.
[6]), and it is the same for all examples ignoring the differences in
the intrinsic complexity of each graph.

A viable alternative to graph embedding is the application of
graph kernel methods, which is the approach we consider in this
paper. Kernel methods are considered state-of-the-art techniques
for classification tasks [7–10]. The class of kernel methods com-
prises all those learning algorithms that do not require an explicit
representation of the inputs but only information about the si-
milarity between them. The primal version of a kernel method
maps the data onto a vectorial feature space (possibly infinite-
dimensional): the similarity can be expressed as a dot product in
such space. Any kernel method has a correspondent dual version
in which each dot product in feature space is replaced by the
evaluation of a correspondent kernel function defined on the input
on budget-aware online kernel algorithms for streams of graphs,
29i

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
mailto:gmartino@qf.org.qa
mailto:nnavarin@math.unipd.it
mailto:sperduti@math.unipd.it
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
space. The great advantage of kernel methods is the fact that the
space and time complexity depends on the kernel function and not
on the size of the corresponding feature space. Consequently, the
size of the model, i.e. the space needed by the learning algorithm
for representing its current solution, is defined in terms of a subset
of input examples instead of a subset of features. It is recognized
that, when the model is expressed as a set of examples, its size
tends to grow proportionally to the number of instances emitted
by the stream [11]. Various approaches have been defined to limit
the size of the model [12–14]. However, their application to graph
data has been practically limited due to the fact that kernels for
graphs tend to be computationally very expensive [15–17]. Re-
cently a few kernels for graphs have been defined which are both
efficient and have very competitive performances on many
benchmark datasets [18,19,10]. Their complexity ranges from lin-
ear in the number of edges [18] to a logarithmic factor above linear
in the number of nodes [10], thus they might be ideal candidates
for being employed on data streams. One of their key character-
istics is that they lead to models that can be represented com-
pactly in the primal space. Thus, for these kernels, both techniques
defined for the primal and dual space can be effectively exploited.

The main goal of the paper is to study which of the two ap-
proaches is best suited for graph streams. We empirically study
the behavior of three different algorithms defined in the primal or
in the dual space, using the state-of-the-art graph kernels de-
scribed in [18,19,10] and with multiple techniques for managing
the budget. We show experimental results on reasonably large
real-world datasets and in the presence of a (controlled) concept
drift. The results suggest that, under specific budget constraints,
working in the primal space is faster and leads to better or com-
parable results with respect to the classic dual approach.

The paper is organized as described in the following. Section 2,
after introducing some notation, recalls important background
notions for understanding the paper: graph kernels, online
learning algorithms on a budget defined in primal or dual space.
Section 3 extends the previously presented online learning algo-
rithms to graph data and discusses several model-pruning
strategies to ensure that strict budget constraints are satisfied.
Section 4 studies the performances of the learning algorithms on a
budget with respect to the various model strategies and kernel
functions. Finally, Section 5 draws conclusions.
1 The kernel in [23] can be computed in ρ()−O n k 1 , where k is the size of the
considered subgraphs, on unlabeled graphs. However, in this paper we deal with
labeled graphs and the complexity of the kernel for this case is ()O nk .
2. Background

This section introduces the concepts and algorithms used in the
remainder of the paper. We start by introducing some notation in
Section 2.1. Section 2.2 briefly reviews kernel functions for graphs
outlining the fact that some of the state-of-the-art ones have both
low computational complexity and a compact representation as a
set of features. Motivated by this last observation, we describe
state-of-the-art kernel methods for online learning and budget
management techniques working in the dual space, in Section 2.3,
and online learning algorithms working directly in feature space,
in Section 2.4.

2.1. Notation

A graph ()G V E L, , is a triplet where V is the set of vertices, E the
set of edges and ()L a function mapping nodes to a set of labels A. A
proper subgraph = ()G V E L, ,2 2 2 of = ()G V E L, ,1 1 1 is a graph for
which ⊆V V2 1, = ∩ (×)E E V V2 1 2 2 . A directed acyclic graph (DAG) is
a graph where edges are directed and no directed cycle is present.
A proper rooted substructure of a DAG D is defined in this paper as a
subgraph of D obtained by considering a node v of D and all the
nodes which can be reached from v using the directed edges of D.
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
A tree is a directed acyclic graph where each node has at most one
incoming edge. A proper subtree rooted at node v comprises v and
all its descendants. We denote with ρ the maximum outdegree of a
graph.

2.2. Graph kernels

In order to apply a kernel method to graph data, an appropriate
kernel function must be provided. Such function, defined on any
pair of instances of a domain must be symmetric positive semi-
definite. Various similarity measures can be exploited to define a
kernel for graphs. For example, a similarity score can be given by
the number of subgraphs that two graphs G1 and G2 share. Un-
fortunately, the implementation of this simple idea is very ex-
pensive from a computational point of view since recognizing if a
subgraph g1 of G1 is isomorphic to a subgraph g2 of G2 requires to
solve a subgraph isomorphism problem, which is known to be NP-
Complete [15].

Most of the research on graph kernels proceeded by focusing
on a restricted class of substructures for which the membership to
a graph can be decided in polynomial time (e.g., walks [15,20,21],
shortest paths [16,22], subtree patterns [17], small-sized sub-
graphs [23]) with the aim of obtaining a feature space as large as
possible. However, the complexity of the cited algorithms spans
from ()O n3 to ()O n6 , 1 where n is the size (number of nodes) of the
graphs, which make them hardly applicable to on-line learning
tasks with strict time constraints.

Recently, a few kernels with complexity O(m), where m is the
number of edges, or ()O n nlog , have been defined [18,19,10]. De-
spite their low complexity their performance is considered as
state-of-the-art on many benchmark datasets. Moreover, their low
complexity allow them to be applied to very large datasets. The
Weisfeiler–Lehman subtree kernel [18] considers the number of
subtree patterns (subtrees where every node in the original graph
may appear multiple times) up to a fixed height h. This kernel can
be computed in O(hm) time on a pair of graphs G1 and G2, where

= (| | | |)m E Emax ,1 2 . Note that the h is a kernel parameter and the
authors always use a constant value, so the complexity practically
is O(m). The Neighborhood subgraph pairwise distance kernel
(NSPDK) [19] decomposes a graph into pairs of small subgraphs of
radius at most h, up to a maximum distance d: every feature in the
explicit feature space represents two particular subgraphs being at
a certain distance. Here d and h are kernel parameters which, in
order to reduce the computational burden of the kernel evalua-
tion, in practice are kept constant [19]. Finally, the ODDST kernel, a
member of the Ordered Decompositional DAGs Kernel family for
graphs [10], decomposes a graph of n nodes into n DAGs. Each DAG
is obtained performing a breadth first visit of the graph, up to a
fixed height h set by the user, and removing the nodes inducing a
cycle. The features associated with a graph are the proper rooted
substructures of each DAG.

The set of non-zero features related to the Weisfeiler–Lehman
subtree, the Neighborhood subgraph pairwise distance and the
ODDST kernels, and consequently the associated models, tend to
have a compact representation. The number of features generated
for a graph is at most: nh for the Weisfeiler–Lehman subtree kernel

[18]; ρhn
2

d
for NSPDK, where ρn

2

d
is an upper bound on the number

of pairs of nodes that are at most at distance d; nρh for ODDST [10].
Note that the kernel parameters h, d are assumed to be con-

stant [18,19,10] and that, in many practical applications, ρ can be
considered as constant as well, thus the number of features
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1 2 3 4

fe

at
ur

es

h

of generated features, Chemical dataset

ODDST NSPDK d=1 FS

Fig. 1. Cumulative number of (different) features generated over the Chemical stream
according to the ODDST, NSPDK and FS kernels, for different h parameter values.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
generated by the different kernels is practically linear. This prop-
erty will be exploited by the online learning algorithms described
in Section 2.4.

Nonetheless, if we consider the size of the feature space in-
duced by the kernels on a whole dataset, the number of different
features that are generated may be very high. Fig. 1 shows the size
of the induced feature space for one of the datasets we will adopt
in the experimental part of the paper (see Section 4.3), for differ-
ent values of the h parameter, for the considered kernels.

2.3. Dual online kernel methods on a budget

The majority of online kernel methods on a budget are a variant
of the perceptron [24] and thus share a common structure. Let us
assume that the input stream is formed by pairs = ()e x y,t t t , where

∈xt is an input instance and = { − }y 1, 1t is its label.2 The goal
is to find a hypothesis  → { − }h: 1, 1 such that the expected
value of the adopted error measure on the stream is minimized. In
the version of the perceptron we introduce here, which we call
Dual since it is expressed in the kernel dual space (input space),
the hypothesis is represented by a subset M of the input instances
[12]. M is commonly referred to as the model. The following is a
general scheme of the Dual version of the perceptron:

Algorithm 1. A general Dual perceptron-style algorithm for online
kernel learning on a budget.
1:

2:
3:
4:
5:

6:
7:
8:
9:
10:

11:
12:
13:

2 As in
served on

Please
Neuroc
Input: β (algorithm dependent), B (budget size)

Initialize M: = {}M

for each round t do

Receive an instance xt from the stream
Compute the score of xt: τ() = ∑ ()=
| |S x y K x x,t i
M

i i i t1
Receive the correct classification of xt: yt

if β() ≤y S xt t (xt incorrectly classified) then
while | | + | | >M x Bt do

select an element ∈x Mj for removal
= ⧹{ }M M xj
end while

update the hypothesis: τ= ∪ {()}M M y x,t t t
end if

end for
14:
the standard online setting, we assume that the target value yt is ob-
ly after the system has predicted an output for xt.

cite this article as: G. Da San Martino, et al., An empirical study
omputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
In Algorithm 1, | |M represents the size of the model, i.e. the sum of
the size of the instances inM. In the same way | |xt is the size of xt. If
the input instances are vectorial data, their size is constant, thus in
order to add an element to M, it is sufficient to remove only one
instance from M, i.e. the while loop in Algorithm 1-line 8 is
executed exactly once. As it will be detailed in Section 3, this is not
the case in our scenario where the input instances are graphs and
their size is not constant. Note that Algorithm 1 tries to use as
much memory as it is allowed to (without exceeding the limit B):
line 8 shows that one example would be removed from the model
only if the algorithm, by inserting a novel example in the model,
exceeded the memory limit B. In all other cases, any new
erroneously-classified example is inserted in the model (line 12).
All we shall see, the same observation will apply to the two other
algorithms presented in this paper.

Many online algorithms can be seen as instances of
Algorithm 1. For example, by setting = ∞B , τ = 1, β = 1, we obtain
the dual perceptron [12]. The Online Passive-Aggressive algorithm
[13] tries to select a hypothesis with a unit margin on the ex-

amples. It is obtained with = ∞B , β = 1, { }τ = − ()
()Cmin ,i

S x
K x x
1

,
i

i i
,

where C is a user-defined non-negative parameter. In [14] it is
described an update rule which tries to project the new instance
onto the span of the current support set M. The resulting hy-
pothesis is compared to the one obtained by inserting the whole
instance into the model: if the difference between the two hy-
potheses is not greater than a user-defined threshold, then only
the projected instance is added to the model. Computing the
projection requires quadratic time and space with respect to the
size of the support set, thus severely limiting the application to
graph streams. Since the three algorithms assume = ∞B , no ele-
ments are removed from M. Thus, even if they try to minimize the
size of the model, they do not provide any strategy to ensure that
such size will not exceed any a priori given budget.

When the problem setting imposes a budget B on the size of
the model, various strategies can be employed for selecting which
elements should be removed from M. In [25] the elements to be
removed are chosen randomly. The Forgetron removes the oldest
example in M [26]: a decay factor is applied to the τ values in such
a way that the oldest examples in M have lower and lower impact
on the computation of ()S . Crammer et al. [27] proposed to remove
from M any redundant example, i.e. the example with least impact
on the margin of the hypothesis. This approach, however, is
computationally expensive and thus it is not suitable for proces-
sing high dimensional data streams. In [28] the Online Passive-
Aggressive algorithm [13] has been extended to handle budget
constraints. The idea is to modify the update rule such that the
resulting hypothesis, after decreasing the model size such that the
budget constraint is respected, has a small loss on the new ex-
ample and it is similar to the current hypothesis. They describe
three algorithms of increasing complexity and efficacy: BPA-S,
BPA-NN, BPA-P. Among these, BPA-S has linear space and time
complexity with respect to the model size.

2.4. Primal algorithms for online learning on a budget

By the properties of kernel functions, each kernel evaluation
corresponds to a dot product in an associated feature space. Then
Algorithm 1 has a corresponding version in feature space in which
the examples are represented by their projection in feature space

ϕ () ∈xt
s (with s being the size of the feature space). The hy-

pothesis is represented by a vector ∈w s [24], where the ele-
ments of M are replaced by their sum:

∑ τ ϕ= ()
()ϕ ()∈

w y G .
1G M

j j j

j

on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Fig. 2. Composition of the stream of graphs on chemical data. Four different target
concepts are obtained by using different threshold values (t) on the activity scores
of the compounding datasets.

Fig. 3. An example of graph construction from an annotated image.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
The score is computed as ϕ() = · ()S x w xt t t and the hypothesis is
updated as τ ϕ= + ()+w w y xt t t t t1 . Given the fixed size of w, the
standard perceptron does not take into account budget con-
straints. We refer to such version as Primal.

An algorithm, similar to the one just described, has been pre-
sented in [29]: the update step is a stochastic gradient descent rule
followed by a rounding step in which the small coefficients are set
to zero. Since zero features may not be explicitly represented, the
rounding phase allows us to reduce the model size. In [30] a fra-
mework for minimizing a convex loss function together with a
convex regularization term is presented. The update rule is con-
stituted by two phases: the first one is a subgradient step with
respect to the loss function and the second one looks for a vector
which maximizes the similarity to the one obtained in the first
phase while minimizing the regularization term. Various in-
stantiations are discussed: among these, the one making use of the
ℓ1 norm as a regularization term is interesting for this paper, since
it promotes sparse solutions. Note that the literature on online
learning algorithms working directly in feature space is incredibly
vast, but here we are interested in algorithms corresponding to
state-of-the-art dual approaches. Indeed, our purpose is to assess
the viability of primal approaches in the context of kernel
methods.

As for the algorithms discussed in Section 2.3, a drawback of
the algorithms listed in this section is that, they do not provide any
strategy to ensure that the size of the model w will not exceed any
a priori given budget.
5:

6:
7:
8:
9:

10:

11:
12:
13:
3. Budget-aware algorithms for structured data

In this paper, we study three algorithms, together with differ-
ent strategies for managing the budget, for graph streams. Our first
proposal, Algorithm 1, needs a few adaptations before it can ap-
plied to graph data. Given the variable size of graph data we make
use of the following measure for computing the size of the model
in Algorithm 1:

∑| | = (| | + | | +)
()∈

M V E 1 ,
2G M

G G

j

j j

where the constant term 1 takes into account the occupancy of the
value τ yt t . The removal rule in Algorithm 1 is modified as follows:
when Gt has to be inserted, instances are removed from M until
| | + | | + | | + <M V E B1G Gt t , where | |M is computed according to Eq.
(2).

The time complexity of an online algorithm depends on the
number of graphs in M and the complexity of the kernel function
employed. In those settings in which the number of features as-
sociated with a kernel is not significantly greater than the size of
the input, the evaluation of the kernel function may be greatly
speeded up if it is performed as dot product of the corresponding
feature vectors. Examples of kernels having such property are
[18,19,10]. In the remainder of the section our observations will be
restricted to this class of kernels. The actual size of vectors ϕ ()G
can be much less than s if only non-null elements of ϕ ()G are
represented in sparse format. We will refer to the number of non-
null features of ϕ ()G as ϕ| () |G . These observations lead to the Pri-
mal/Dual algorithm (referred to as mixed in the following):

Algorithm 2. Mixed perceptron-style algorithm for online learn-
ing on a budget.
1:

2:
3:
4:

Plea
Neu
Input: β (algorithm dependent), B (budget size)

Initialize M: = {}M

for each round t do

Receive an instance Gt from the stream
se cite this article as: G. Da San Martino, et al., An empirical study on b
rocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.029i
u

Compute the score of Gt: τ ϕ ϕ() = ∑ ()· ()ϕ ()∈S G y G Gt G M j j j tj
Receive the correct classification of Gt: yt

if β() ≤y S Gt t (Gt incorrectly classified) then

update the hypothesis:

while σ ϕ σ ϕ+ | ()| + ∑ + | ()| >ϕ ()∈G G B1 1t G M jj

do
select an element ϕ () ∈G Mj and remove it:

ϕ= ⧹{ ()}M M Gj
end while

τ ϕ= ∪ { ()}M M y Gt t t
end if

end for
14:

Note that the model size is computed as σ ϕ∑ + | ()|ϕ ()∈ G1G M jj
,

where the constant 1 accounts for the τyt t value and s is the
memory occupancy of a feature: if ϕ ()G is represented in sparse
format as pairs (i, ϕ ()Gi), where ϕ ()Gi is the value of the i-th feature
of G, then σ = 2. As we will see in Section 3.1, while s might be
influenced by the budget management strategy employed, in all
the experiments performed in this paper with Algorithm 2 the
value s will remain unchanged.

Since in Algorithm 2 the projection ϕ ()G is not computed for
every kernel evaluation, Algorithm 2 is expected to be faster than
Algorithm 1. However, if ϕ| () | > | | + | |G V EG Gj j , which generally
holds, it uses more memory.

Finally, we introduce a budget online algorithm working in
feature space. The idea is to replace all elements of M with their
sum as in Eq. (1). However, by so doing, we lose the connection
between features and the instances they belong to. As a con-
sequence, during the update of the hypothesis it is no more pos-
sible to select a whole vector ϕ ()G for removal. Thus we propose to
remove single features from w when | | >w B (here | |w is the total
number of non-null features appearing in any example added to
the model).
dget-aware online kernel algorithms for streams of graphs,

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Table 1
Best AUROC value (7 standard deviation) for each dataset, algorithm, policy, kernel for 10k and 50k budget values.

Kernel Alg. Policy Chemical Image

10k 50k 10k 50k

FS Weight .681 7 .094 .746 7 .096 .914 7 .094 .913 7 .095
Primal Oldest .626 7 .092 .659 7 .093 .917 7 .092 .918 7 .090

F-score .644 7 .096 .669 7 .096 .916 7 .090 .919 7 .091
Mixed τ .554 7 .124 .561 7 .114 .908 7 .099 .901 7 .095

Oldest .513 7 .096 .533 7 .097 .907 7 .103 .912 7 .096
Dual τ .547 7 .127 .582 7 .115 .907 7 .093 .906 7 .094

Oldest .507 7 .098 .538 7 .098 .884 7 .117 .915 7 .090

NSPDK weight .707 7 .091 .762 7 .092 .907 7 .095 .907 7 .095
Primal oldest .641 7 .092 .693 7 .092 .909 7 .093 .910 7 .092

F-score .674 7 .092 .691 7 .090 .914 7 .091 .912 7 .094
Mixed τ .588 7 .126 .600 7 .114 .894 7 .100 .882 7 .113

Oldest .519 7 .101 .532 7 .102 .899 7 .106 .907 7 .091
Dual τ .583 7 .121 .581 7 .103 .892 7 .105 .890 7 .105

Oldest .520 7 .102 .571 7 .083 .877 7 .115 .918 7 .093

ODDST Weight .685 7 .094 .735 7 .097 .919 7 .088 .919 7 .088
Primal Oldest .620 7 .092 .674 7 .094 .919 7 .088 .9197 .088

F-score .661 7 .098 .693 7 .097 .919 7 .088 .919 7 .088
Mixed τ .572 7 .125 .574 7 .125 .909 7 .093 .905 7 .107

Oldest .513 7 .098 .527 7 .095 .910 7 .098 .917 7 .085
Dual τ .558 7 .134 .562 7 .129 .907 7 .096 .910 7 .095

Oldest .504 7 .097 .518 7 .097 .883 7 .120 .907 7 .098

Oldest policy, Chemical dataset, FS kernel

 0.5

 0.55

 0.6

 0.65

 0.7

0 1 2 3 4 5 6 7 8

A
U

R
O

C

h

B=10k

Primal Mixed Dual

0 1 2 3 4 5 6 7 8
h

B=50k

 100

 1000

 10000

 100000

0 1 2 3 4 5 6 7 8

Ti
m

e
(s

)

h

B=10k

Primal Mixed Dual

0 1 2 3 4 5 6 7 8
h

B=50k

Fig. 4. Average AUROC value computed over all stream instances for memory budgets =B 10k (top left) and =B 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the FS kernel parameter. Below each of the plots there is a second one with the corresponding running times. The plots refer to the Chemical stream
and the oldest budget maintenance policy.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5

Please cite this article as: G. Da San Martino, et al., An empirical study on budget-aware online kernel algorithms for streams of graphs,
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.029i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Weight/τ policies, Chemical dataset, FS kernel

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

0 1 2 3 4 5 6 7 8

A
U

R
O

C

h

B=10k

Primal Mixed Dual

0 1 2 3 4 5 6 7 8
h

B=50k

 100

 1000

 10000

 100000

0 1 2 3 4 5 6 7 8

Ti
m

e
(s

)

h

B=10k

Primal Mixed Dual

0 1 2 3 4 5 6 7 8
h

B=50k

Fig. 5. Average AUROC value computed over all stream instances for memory budgets =B 10k (top left) and =B 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the FS kernel parameter. Below each of the plots there is a second one with the corresponding running times. The plots refer to the Chemical stream
and the weight/τ budget maintenance policies.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
Algorithm 3. Primal perceptron-style online learning on a budget.
1:

2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

Please
Neuroc
Input: β (algorithm dependent)

Initialize w: = (…)w 0, , 00
for each round t do

Receive an instance Gt from the stream

Compute the score of Gt: ϕ() = · ()S G w Gt t t
Receive the correct classification of Gt: yt

IF β() ≤y S Gt t (Gt incorrectly classified) then
while σ ϕ| + ()| >w G Bt do

select a feature i and remove it from w
end while

update the hypothesis: τ ϕ= + ()+w w y Gt t t t t1
end if

end for
13:

The total memory occupancy of the model in Algorithm 3 re-
duces to σ| |w .

Note that the elimination of the set M allows Algorithm 3 to
save a significant amount of memory while still being faster than
Algorithms 1 and 2.
cite this article as: G. Da San Martino, et al., An empirical study
omputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
3.1. Budget management

We have left unspecified how to select the examples/features
to be removed when the budget is full in Algorithms 1–3. As we
briefly discussed in Section 2.3, complex strategies, which would
require to solve an optimization problem, are usually expensive
from the computational point of view [27,28]. This is especially
true for the graph domain for two main reasons. Graph data are
generally high-dimensional thus making the solution of the opti-
mization problems even more computationally expensive. The
second reason is that, for instance the problem solved in [28, eq.
(7)] assumes that removing one example frees enough space for
the novel example to be inserted, which does not hold for graphs
since they are of variable size. Modifying the optimization problem
to account for the removal of a subset of examples would increase
the complexity of the problem, and the resulting method would
not respect the constraint of linear processing time imposed by the
setting considered in this paper. For such reasons, we focus in this
paper on heuristics for selecting the elements to be removed from
the model. Given the differences in how the model is represented
in the three algorithms, different strategies for pruning the model
can be applied. We have explored the following strategies for
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Oldest policy, Chemical dataset, NSPDK kernel

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

A
U

R
O

C

d

B=10k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

d

B=50k

h=0 h=1 h=2 h=3 h=4

 100

 1000

 10000

 100000

Ti
m

e
(s

)

d

B=10k
h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

d

B=50k
h=0 h=1 h=2 h=3 h=4

Fig. 6. Average AUROC value computed over all stream instances for memory budgets =B 10k (top left) and =B 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the NSPDK kernel parameters. Below each of the plots there is a second one with the corresponding running times. The plots refer to the Chemical
stream and the oldest budget maintenance policy. Missing values indicate that the corresponding execution has not terminated in 48 h.

3 Even though F-score is known not to take into account correlation between
features, we select that measure for computational reasons.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
Algorithms 1 and 2:

� “random”, examples are removed randomly with uniform
probability;

� “oldest”, the oldest examples are removed;
� “τ”, the examples with lowest τ values are removed. If more

than one example has such τ value, the candidate is randomly
selected.

Note that the implementation of the three strategies does not
increase the memory occupancy of the model.

Since any kernel method using the kernel functions in
[18,19,10] can be performed in the primal space, it is possible to
apply feature selection techniques, i.e. deleting non-informative
features, in order to reduce noise in the data and the size of the
model [31]. A typical approach is to compute a statistical measure
for estimating the relevance of each feature with respect to the
target concept, and to discard the less-correlated features. Before
describing the strategies for pruning the model for Algorithm 3,
we introduce an example of such measure, the F-score [31]. In the
traditional batch scenario, the F-score of a feature i is defined for
binary classification tasks as follows:
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
() =
(−) + (−)

∑ (−)

| | −
+

∑ (−)

| | − ()

+ −

∈
+

+
∈

−

−

+ −
Fs i

AVG AVG AVG AVG

f AVG

Tr

f AVG

Tr1 1 3

i i i i

j Tr i
j

i j Tr i
j

i

2 2

2 2

where AVGi is the average value of feature i in the dataset, +AVGi

(−AVGi) is the average value of feature i in positive (negative) ex-
amples, | |+Tr (| |−Tr) is the number of positive (negative) examples
and fji is the value of feature i in the jth example of the dataset.
Features that get small values of F-score are not very informative
with respect to the binary classification task.3 Eq. (3) cannot be
applied as is to a stream since instances arrive one at time. As a
minor contribution, we rewrite an incremental version of the F-
score. Let +

t (−
t) be the set of positive (negative) instances which

have been observed from the stream after having read t instances,
then the F-score ()Fs i t, can be rewritten by using the following
quantities:
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Weight/τ policies, Chemical dataset, NSPDK kernel

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

A
U

R
O

C

d

B=10k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

d

B=50k

h=0 h=1 h=2 h=3 h=4

 100

 1000

 10000

 100000

 1e+06

Ti
m

e
(s

)

d

B=10k
h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

d

B=50k
h=0 h=1 h=2 h=3 h=4

Fig. 7. Average AUROC value computed over all stream instances for memory budgets =B 10k (top left) and =B 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the NSPDK kernel parameters. Below each of the plots there is a second one with the corresponding running times. The plots refer to the Chemical
stream and the weight/τ budget maintenance policies. Missing values indicate that the corresponding execution has not terminated in 48 h.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
∑ ∑

∑ ∑

= | | () = () = ()

= | | () = () = ()

+ + +

∈

+

∈

− − −

∈

−

∈

+ +

− −

n f t f f t f

n f t f f t f

, ,

, , .

t t i
j

i
j

i
j

i
j

t t i
j

i
j

i
j

i
j

2, 2

2, 2

t t

t t

In fact, we have:

=
()

=
()

=
() + ()

+

+
+

+
−

−

−

+ −

+ −

AVG
f t

n
AVG

f t

n

AVG
f t f t

n n

,i t
i

t
i t

i

t

i t
i i

t t

, ,

,

and

() =
(−) + (−)

+ ()

+ −

+ −Fs i t
AVG AVG AVG AVG

D D
,

4
i t i t i t i t

t t

, ,
2

, ,
2

where

=
() − () + ()

−

=
() − () + ()

−

+
+ + + + +

+

−
− − − − −

−

D
f t AVG f t n AVG

n

D
f t AVG f t n AVG

n

2

1
,

2
1

.

t
i i t i t i t

t

t
i i t i t i t

t

2,
, ,

2

2,
, ,

2

By defining δ (+) =+ t 1 1 if the (+)t 1 th instance is positive;
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
otherwise δ (+) =+ t 1 0, and δ δ(+) = − (+)− +t t1 1 1 , the quan-
tities of interest can be updated incrementally as follows:

δ δ

δ

δ δ

δ

= + (+) (+) = () + (+)

(+) = () + ((+))

= + (+) (+) = () + (+)

(+) = () + ((+))

+
+ + + + + +

+ + +

+
− − − − − −

− − −

n n t f t f t t f

f t f t t f

n n t f t f t t f

f t f t t f

1 , 1 1 ,

1 1 .

1 , 1 1 ,

1 1 .

t t i i i
j

i i i
j

t t i i i
j

i i i
j

1

2, 2, 2

1

2, 2, 2

In order to incrementally compute the F-score, we need to keep
track, for each feature i, of the following quantities:

() () () ()+ − + −f t f t f t f t, , ,i i i i
2, 2, .

We have explored the following strategies for Algorithm 3:

� random strategy: features are removed randomly with uniform
probability. This strategy does not affect the size of the model,
which is thus obtained setting σ = 2 in Algorithm 3.

� weight: first, all the features of the example which are already
present in the model, are inserted. This maximizes the in-
formation of the algorithm without increasing memory occu-
pation. Next, for each feature left f of the example, the feature of
the model with lowest absolute wi value (the weight associated
with feature fi) is selected. Note that if all the features in the
model have their wi higher than f, then f is not inserted. The size
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Oldest policy, Chemical dataset, ODDST kernel

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

A
U

R
O

C

λ

B=10k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual
λ

B=50k

h=0 h=1 h=2 h=3 h=4

 100

 1000

 10000

 100000

Ti
m

e
(s

)

λ

B=10k
h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual
λ

B=50k
h=0 h=1 h=2 h=3 h=4

Fig. 8. Average AUROC value computed over all stream instances for memory budgets =B 10k (top left) and =B 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the ODDST kernel parameters. Below each of the plots there is a second one with the corresponding running times. The plots refer to the Chemical
stream and the oldest budget maintenance policy. Missing values indicate that the corresponding execution has not terminated in 48 h.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
of the model when this strategy is employed is obtained setting
σ = 2 in Algorithm 3.

� oldest strategy: similar to the weight strategy, but in this case we
remove the least recently used feature. We need to associate to
each feature the time in which that feature has been last in-
serted/modified. The size of the model is obtained setting σ = 3.

� F-score: it is similar to the weight strategy, the only difference
being that the wi value is replaced by the F-score, computed
according to Eq. (3). By using the incremental version of the
F-score, the correct size of the model is obtained by setting
σ = 5 in Algorithm 3, since we need to keep track of the index
i and the four valued necessary to incrementally update the F-
score.

Note that the F-score strategy has no correspondence for Mixed
and Dual algorithms. This strategy removes from the model the
features with the lowest associated F-score. F-score measures
the correlation of a feature with the target (þ1 or �1). Indeed, a
feature can appear in different examples, some positive and
some negative. If there is a strong correlation with either class,
the F-score of a feature will be high. On the contrary, Mixed and
Dual algorithms remove whole examples from the budget. Since
an example has a single label associated, that can be þ1 or �1,
it is not possible to compute correlation measures in this case.
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
4. Experimental results

In this section, we empirically compare Algorithms 1–3
with state-of-the-art kernel functions for graphs described in
Section 2.2 and various budget management strategies on two
graph datasets: the first one is composed of chemical compounds
and the second one is composed of images. Our purpose in this
section is to study the performances, both in terms of prediction
accuracy and running times, of the three algorithms as the
memory budget varies, and to determine which algorithm is more
appropriate for each setting.

We start by describing in Section 4.1 how the datasets were
obtained. Then, in Section 4.2, we introduce the experimental
setup and the adopted evaluation measure. Finally, the obtained
results are illustrated and discussed in Section 4.3.

4.1. Dataset description

4.1.1. Chemical dataset
We have created graph streams combining two graph datasets

available from the PubChem website (http://pubchem.ncbi.nlm.
nih.gov). PubChem is a source of chemical structures of small or-
ganic molecules and their biological activities. It contains the
bioassay records for anti-cancer screen tests with different cancer
on budget-aware online kernel algorithms for streams of graphs,
29i

http://www.pubchem.ncbi.nlm.nih.gov
http://www.pubchem.ncbi.nlm.nih.gov
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Weight/τ policies, Chemical dataset, ODDST kernel

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75
A

U
R

O
C

λ

B=10k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual
λ

B=50k

h=0 h=1 h=2 h=3 h=4

 100

 1000

 10000

 100000

Ti
m

e
(s

)

λ

B=10k
h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual
λ

B=50k
h=0 h=1 h=2 h=3 h=4

Fig. 9. Average AUROC value computed over all stream instances for memory budgets =B 10k (top left) and =B 50k (top right) for algorithms Primal, Mixed and Dual with
respect to the values of the ODDST kernel parameters. Below each of the plots there is a second one with the corresponding running times. The plots refer to the Chemical
stream and the weight/τ budget maintenance policies. Missing values indicate that the corresponding execution has not terminated in 48 h.

4 http://labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
cell lines. Each dataset belongs to a certain type of cancer screen.
For each compound an activity score is reported. The activity score
for the selected datasets is based on increasing values of
�LogGI50, where GI50 is the concentration of the compound re-
quired for 50% inhibition of tumor growth. A compound is classi-
fied as active (positive class) or inactive (negative class) if the
activity score is, respectively, above or below a specified threshold.
By varying the threshold we were able to simulate a drift on the
target concept. Our dataset is a combination of the “AID: 123” and
“AID: 109” datasets from PubChem. In “AID:123”, growth inhibition
of the MOLT-4 human Leukemia tumor cell line is measured as a
screen for anti-cancer activity. The dataset comprises 40,876
compounds, each one represented by a graph, tested at 5 different
concentrations. The average number of nodes for each graph in
this dataset is 26.8, while the average number of edges is 57.68. In
“AID:109”, growth inhibition of the OVCAR-8 human Ovarian tu-
mor cell line is measured as a screen for anti-cancer activity on
41,403 compounds. The average number of nodes for each com-
pound is 26.77, while the average number of edges is 57.63. For
each dataset, we used two different threshold values to simulate
the concept drift: the median of the activity scores and the value
such that approximately 3/4 of the compounds are considered as
dataset to be inactive (negative target). Finally, the stream has
been obtained as the concatenation of “AID: 123” with threshold 1,
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
“AID: 109” with threshold 1, “AID: 123” with threshold 2, “AID: 109”
with threshold 2 (Fig. 2). We call this stream Chemical. Note that
the stream is composed of four different concepts and comprises a
total of 164,558 graphs. Overall, the maximum number of nodes in
a graph of the stream is 229, the maximum node outdegree is
6 and the alphabet size is 202. In order to assess the dependency
of the results from the order of concatenation of the datasets, we
created a second stream as: “AID: 123” with threshold 1, “AID: 123”
with threshold 2, “AID: 109” with threshold 1, “AID: 109” with
threshold 2. Since the results were very similar to the ones ob-
tained for the first dataset, for the sake of space, we do not report
here the results for this second stream. It should be stressed that
the selected datasets represent very challenging classification
tasks, independently of the value selected as the activity score
threshold.

4.1.2. Image dataset
We created a stream of graphs from the LabelMe dataset.4 The

dataset comprises a set of images whose objects are manually
annotated via the LabelMe tool [32]. The images are divided into
several categories. We have removed those images having less
on budget-aware online kernel algorithms for streams of graphs,
29i

http://www.labelme.csail.mit.edu/Release3.0/browserTools/php/dataset.php
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Running Times, ODDST kernel, Chemical dataset

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4

se
c

h

B=10k

Primal F-score
Primal weight
Primal oldest
Mixed oldest

Mixed τ
Dual oldest

Dual τ

 0 1 2 3 4
h

B=50k

Fig. 10. Average computational times of algorithms Primal, M ixed and Dual on the Chemical dataset for the ODDST kernel.

Chemical dataset

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 100 1000 10000 100000 1e+06

A
U

R
O

C

sec

B=10k

Primal F-score
Primal weight
Primal oldest
Mixed oldest

Mixed τ
Dual oldest

Dual τ

 100 1000 10000 100000 1e+06

sec

B=50k

Fig. 11. Comparison among computational times and AUROC of algorithms Primal, Mixed and Dual on the Image dataset with budget 10k and 50k for all the considered
policies and kernels.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
than 3 annotations. We have selected six categories among the
ones having the largest number of images: “office” (816), “home”
(928), “houses” (1294), “urban_city” (865), “street” (1069), “nature”
(370). In total we considered 5342 images.

We then transformed each image into a graph: the annotated
objects of the image become the nodes of the graph. The edges of
the graph are determined according to the Delaunay triangulation
[33]. The basic idea of the Delaunay triangulation is to connect
spatially neighboring nodes. Fig. 3 gives an example of the con-
struction of a graph from an image. The average number of nodes
per graph is 14.37 and the average number of edges is 63.61.

The stream is made up of six parts (each part representing a
different concept), for each of them one of the categories is
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
selected as the positive class while the remaining ones represent
the negative class; in order to simulate concept drifts each one of
the 5342 images appears six times in the stream: once with a
positive class label, and 5 times with negative class label. The total
number of examples composing the stream is 32,052, the max-
imum number of nodes of a graph is 201, the maximum node
degree is 46 and the alphabet size is 65.

4.2. Experimental setup

For all the considered algorithms (Primal, Mixed and Dual), the β
and τ values were instantiated as β = 1, { }τ = − ()

()Cmin ,i
S x

K x x
1

,
i

i i
, as

described in [28] for the BPA-S algorithm. We chose BPA-S among
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Oldest policy, Image dataset, FS kernel

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

A
U

R
O

C

B=1k

Primal Mixed Dual

B=10k

 0.6
 0.65

 0.7
 0.75

 0.8
 0.85

 0.9
 0.95

 1

0 1 2 3 4 5 6 7 8
h

B=50k

0 1 2 3 4 5 6 7 8
h

B=100k

 10

 100

 1000

 10000

 100000

 1e+06

Ti
m

e
(s

)

B=1k

Primal Mixed Dual

B=10k

 10
 100

 1000
 10000

 100000
 1e+06

0 1 2 3 4 5 6 7 8
h

B=50k

0 1 2 3 4 5 6 7 8
h

B=100k

Fig. 12. Average AUROC value computed over all stream instances for memory budgets =B 1k (top left), =B 10k (top right), =B 50k (bottom left) and =B 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the FS kernel parameter. Below the first set of plots there is a second one with the corresponding
running times. Plots refer to the Image dataset and the oldest budget maintenance policy.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎12
the three BPA algorithms presented in [28], because: (i) the results in
the original paper show that, while being the fastest algorithm, the
accuracy with respect to the other BPA versions does not degrade
significantly; (ii) using (also) BPA-P or BPA-NN would have increased
significantly the total time required for the experimentation.

The C parameter has been tested in the set {.01, .1, }1.0 for both
Chemical and Image datasets. By varying the C value, the results of
the comparison between the three algorithms do not change.
Therefore we report here only the results related to C¼ .01. In or-
der to increase the robustness of the results, the three algorithms
have been tested with three different graph kernels:
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
� the Weisfeiler–Lehman subtree kernel (FS) [18] with parameter
values = { }h 0, 1, 2, 3, 4, 5, 6, 7, 8 ;

� the Neighborhood subgraph pairwise distance kernel (NSPDK)
[19] with parameter values = { }h 1, 2, 3, 4 , = { }d 1, 2, 3, 4, 5, 6 .

� the ODDST kernel [10] with parameter values
λ = { }.8, 1, 1.2, 1.4, 1.6, 1.8 , = { }h 1, 2, 3, 4 .

All the proposed algorithms have the same upper bound B on
memory usage (budget), and the memory occupancy of the
algorithms is calculated for Dual as in Eq. (2), for Mixed as of
line 9 of Algorithm 2 and for Primal as described in line 8 of
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Weight/τ policies, Image dataset, FS kernel

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

A
U

R
O

C

B=1k

Primal Mixed Dual

B=10k

 0.6
 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0.95
 1

0 1 2 3 4 5 6 7 8
h

B=50k

0 1 2 3 4 5 6 7 8
h

B=100k

 10

 100

 1000

 10000

 100000

 1e+06

Ti
m

e
(s

)

B=1k

Primal Mixed Dual

B=10k

 10
 100

 1000
 10000

 100000
 1e+06

0 1 2 3 4 5 6 7 8
h

B=50k

0 1 2 3 4 5 6 7 8
h

B=100k

Fig. 13. Average AUROC value computed over all stream instances for memory budgets =B 1k (top left), =B 10k (top right), =B 50k (bottom left) and =B 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the FS kernel parameter. Below the first set of plots there is a second one with the corresponding
running times. The plots refer to the Image dataset and the weight/τ budget maintenance policies.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13
Algorithm 3 (note that the size of the model for Primal also
depends on the budget management strategy). We experimented
with budget values between 10,000 and 50,000 memory units
(assuming each memory unit can store a floating point or integer
number) for the Chemical dataset, and between 1000 and 100,000
for the Image dataset. Higher values, for both datasets, were not
tested since the time needed for the Dual Algorithm to terminate
became excessive (more than 48 h).

As for the strategies for managing the budget, we focused on
the “oldest” and “τ” ones for Dual and Mixed algorithms. We fo-
cused on the “oldest” and “weight” strategies for Primal algorithm
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
(where we recall that “weight” is similar in spirit to “τ” in the
Primal setting). Moreover, we considered also the “F-score” strat-
egy for the Primal algorithm.

The random strategy has not been implemented because it
tends to have worse performances [28].

The class distribution on the streams is unbalanced, therefore
the Area Under the Receiver Operating Characteristic (AUROC) and
the Balanced Accuracy [31] were adopted as performance mea-
sure. The AUROC measure is equal to the probability that a clas-
sifier will rank a randomly chosen positive instance higher than a
randomly chosen negative one, thus it avoids inflated performance
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Oldest policy, Image dataset, NSPDK kernel

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

R
O

C

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

d

B=50k

h=0 h=1 h=2 h=3 h=4

d

B=100k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

Ti
m

e
(s

)

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

d

B=50k

h=0 h=1 h=2 h=3 h=4

d

B=100k

h=0 h=1 h=2 h=3 h=4

Fig. 14. Average AUROC value computed over all stream instances for memory budgets =B 2.5k (top left), =B 10k (top right), =B 50k (bottom left) and =B 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the NSPDK kernel parameters. Below the first set of plots there is a second one with the
corresponding running times. The plots refer to the Image dataset and the oldest budget maintenance policy. Missing values indicate that the corresponding execution has
not terminated in 48 h.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎14
estimates on imbalanced datasets. Since the results computed
with Balanced Accuracy are very similar to the ones computed
with the AUROC, we report only the latter, being the AUROC more
popular than the Balanced Accuracy.

The plots in Figs. 4–9, 12–17 and Table 1 regarding the AUROC
measure are obtained as follows: for each run (Dataset/Kernel/
parameters combination) the AUROC measure is sampled every 50
examples. Then we compute the average over all samples and
obtain a single value. We chose not to show the behavior of each
algorithm during a single run because we have performed more
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
than 300 runs. The running times are computed on a machine
with two Intel(R) Xeon(R) CPU E5-4640@ 2.40 GHz equipped with
256 GB of RAM. Notice that the executions use a single core and a
very limited amount of RAM.

4.3. Results and discussion

The aim of the experiments is to compare correspondent
budget management strategies for Primal, Dual and Mixed: (i)
oldest for the three algorithms; (ii) weight for Primal and τ for
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Weight/τ policies, Image dataset, NSPDK kernel

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

R
O

C

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

d

B=50k

h=0 h=1 h=2 h=3 h=4

d

B=100k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

Ti
m

e
(s

)

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

d

B=50k

h=0 h=1 h=2 h=3 h=4

d

B=100k

h=0 h=1 h=2 h=3 h=4

Fig. 15. Average AUROC value computed over all stream instances for memory budgets =B 2.5k (top left), =B 10k (top right), =B 50k (bottom left) and =B 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the NSPDK kernel parameters. Below the first set of plots there is a second one with the
corresponding running times. The plots refer to the Image dataset and the weight/τ budget maintenance policies.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 15
Mixed and Dual. For each of the above correspondent budget
strategies, we observe the performances of the three algorithms,
for each combination of kernel function and kernel parameters, as
the budget varies. Section 4.3.1 reports the experiments on the
Chemical dataset. Section 4.3.2 reports the experiments on the
Image dataset. Finally, Section 4.3.3 draws general conclusions on
the experiments.

4.3.1. Experiments on the chemical dataset
Figs. 4–10 report the results for one kernel, one specific budget

management policy, two budget values, =B 10k and =B 50k. Each
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
figure is divided into 4 subfigures: the ones on the left side refer to
budget =B 10k, the ones on the right refer to budget =B 50k; the
two figures on top report the AUROC measure, while the two on
the bottom report running times. One point in a plot represents
the AUROC/running time over all Chemical dataset for one con-
figuration of the kernel parameters. Note that running times are in
logarithmic scale.

Figs. 4 and 5 refer to the FS kernel with oldest and weight
budget management policy, respectively. Note that, by increasing
h, the representation in memory of an example does not
change for Algorithm 1, while it requires more memory for
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Oldest policy, Image dataset, ODDST kernel

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

R
O

C

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

λ

B=50k

h=0 h=1 h=2 h=3 h=4

λ

B=100k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

Ti
m

e
(s

)

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

λ

B=50k

h=0 h=1 h=2 h=3 h=4

λ

B=100k

h=0 h=1 h=2 h=3 h=4

Fig. 16. Average AUROC value computed over all stream instances for memory budgets =B 2.5k (top left), =B 10k (top right), =B 50k (bottom left) and =B 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the ODDST kernel parameters. Below the first set of plots there is a second one with the corre-
sponding running times. The plots refer to the Image dataset and the oldest budget maintenance policy. Missing values indicate that the corresponding execution has not
terminated in 48 h.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎16
Algorithms 2–3 since the number of features increases. Figs. 6 and
7 refer to the NSPDK kernel (with the same budget values). Each
point refers to a combination of the h and d parameters of the
kernel (the values are grouped with respect to the h parameter).
Figs. 8 and 9 are similar but show the results referring to the ODDST

kernel (values are again grouped with respect to the h parameter).
Consider that, on this dataset and with no memory budget con-
straint on the model, the ODDST kernel generates a model with a
total of 91,467 features with h¼3 (the higher the h parameter, the
more features are generated). Such number is the size of w (∥ ∥w)
and thus the size of the vectorial representation of the model.
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
Table 1 reports, for each combination of dataset, algorithm,
kernel, policy and budget values 10k and 50k, the best AUROC
value among the tested parameters. The table allows to easily
compare different policies and different algorithms.

If we consider the Chemical dataset, the highest value for Primal
algorithm is .762 (NSPDK, weight policy, budget 50k), while the
best AUROC value for Algorithm Dual and Mixed are .583 and .600
respectively. Concerning the F-score policy of the Primal algorithm,
since it does not have corresponding policies for Mixed and Dual
algorithms, we decided to omit all F-score plots. However, we re-
port the results related to this policy in Table 1. In the Chemical
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Weight/τ policies, Image dataset, ODDST kernel

 0.5

 0.6

 0.7

 0.8

 0.9

 1

A
U

R
O

C

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

0.81 1.2 1.4 1.6 1.8 0.8 1.8 0.8 1.8 0.8 1.8 0.8 1.8

λ

B=50k

h=0 h=1 h=2 h=3 h=4
0.81 1.21.41.61.80.8 1.80.8 1.80.8 1.80.8 1.8

λ

B=100k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

Ti
m

e
(s

)

B=2.5k

h=0 h=1 h=2 h=3 h=4

Primal Mixed Dual

B=10k

h=0 h=1 h=2 h=3 h=4

 1
 10

 100
 1000

 10000
 100000
 1e+06

0.81 1.2 1.4 1.6 1.8 0.8 1.8 0.8 1.8 0.8 1.8 0.8 1.8

λ

B=50k

h=0 h=1 h=2 h=3 h=4
0.81 1.21.41.61.80.8 1.80.8 1.80.8 1.80.8 1.8

λ

B=100k

h=0 h=1 h=2 h=3 h=4

Fig. 17. Average AUROC value computed over all stream instances for memory budgets =B 2.5k (top left), =B 10k (top right), =B 50k (bottom left) and =B 100k (bottom
right) for algorithms Primal, Mixed and Dual with respect to the values of the ODDST kernel parameters. Below the first set of plots there is a second one with the corre-
sponding running times. The plots refers to the Image dataset and the weight/τ budget maintenance policies.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 17
dataset, this policy does not improve the predictive performance
of the Primal algorithm, where the weight policy is consistently the
best performing one. Analyzing the plots we can see that the
Primal algorithm (Algorithm 3) is not only competitive but it al-
ways outperforms Dual and Mixed in both the weight and oldest
policies. Table 1 shows that, practically in all cases, a higher budget
increases the classification performance on the Chemical dataset,
implying that Dual and Mixed would probably need a significantly
higher budget to reach the performances of Primal with =B 10k.

Unfortunately, setting >B 50k for these algorithms on the
Chemical dataset is unfeasible because of computational times, as
it is possible to see from Fig. 10 reports the average time in seconds
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
needed for the three considered algorithms, instantiated with the
ODDST kernel, to process the Chemical dataset with =B 10k and
50k.

The figure shows that there is a clear gap between the com-
putational times of Algorithms Primal, Mixed and Dual. Similar
considerations can be drawn for NSPDK and FS kernels. With
budget 10k, the time needed by the Primal algorithm to process a
single example is on average (= { … }h 0 4) .004 s, while for the Dual
algorithm the required time is .2 s. The gap grows when setting
the budget to 50k. In this case the Primal algorithm needs on
average .006 s, while for the Dual algorithm already with h¼0 the
required time per example is .05 s (almost ten times slower than
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

Running Times, NSPDK kernel, Image dataset

 10

 100

 1000

 10000

 100000

 1e+06

 0 1 2 3 4

se
c

h

B=10k

Primal F-score
Primal weight
Primal oldest
Mixed oldest

Mixed τ
Dual oldest

Dual τ

 0 1 2 3 4
h

B=50k

Fig. 18. Average computational times of algorithms Primal, Mixed and Dual on the Image dataset for the NSPDK kernel.

Image dataset

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 10 100 1000 10000 100000

A
U

R
O

C

sec

B=10k

Primal F-score
Primal weight
Primal oldest
Mixed oldest

Mixed τ
Dual oldest

Dual τ

 10 100 1000 10000 100000 1e+06

sec

B=50k

Fig. 19. Comparison among computational times and AUROC of algorithms Primal, Mixed and Dualon the Image dataset with budget 10k and 50k for all the considered
policies and kernels.

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎18
Primal), with h¼1 it is .39 s. With h¼3 and 4 the experiments did
not complete in 48 h, meaning that the processing of each ex-
ample required more than 1 s on average. The Mixed algorithm has
computational times similar to the Primal ones, but with con-
siderably worse predictive performance.

To summarize the results, Fig. 11 shows, for each algorithm, the
classification performance in relation to the running time, for
budget 10k and 50k. The plots report one point for each algorithm,
kernel and parameters combination. We can see that the Primal
algorithm has many points in the upper/left part of the plot,
meaning that it is able to achieve high predictive performances in
a relatively small amount of computational time. Mixed and Dual
algorithms are all over the lower part of the plot, meaning that
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
they have worse predictive performances and higher running
times than Primal.

4.3.2. Experiments on the image datasets
The same experimental setting described for the Chemical da-

taset is replicated here for the Image dataset. Figs. 12–17 show, for
each set of corresponding management policies, the performance
of the kernels with respect to their parameters. We tested different
values for the budget size, ranging from 1k to 100k. In Fig. 12 we
can see that, for small budget values, the Primal algorithm is the
best performing one with the oldest budget management policy.
When the budget grows (i.e. for =B 100k) Mixed and Dual perform
slightly better than Primal. Fig. 13, referring to the same kernel
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 19
with weight policy, depicts a similar scenario. In this case, Primal
performs slightly better than Dual and Mixed in all the considered
budget sizes.

In Figs. 14 and 15 we started from a budget value of =B 2.5k,
since the NSPDK generates more features than FS (as detailed in
Section 2.2). When considering the oldest policy, Primal performs
best for budget values up to 10k. In the case of weight policy,
Primal always performs better than Dual and Mixed. More in
general, it is possible to see that the performance of Dual and
Mixed increases proportionally to the budget, while Primal per-
forms best with budget 10k, thus its performance does not im-
prove if more budget is available (note nonetheless that the per-
formance does not decrease significantly). Apparently, in the case
of FS and NSPDK kernels, the classification performances of the
different algorithms depend critically on the budget size. Fig. 16
analyzes the situation with ODDST kernel and oldest policy. Also in
this case, Primal algorithm is the better performing one with every
budget value. However, with higher budgets, the other algorithms
show comparable performances. Also in this case, the higher the
budget the better the predictive performances of Mixed and Dual.
The scenario is similar when considering the weight/τ policies in
Fig. 17.

The running times of the different kernels on the Image dataset
are in general lower with respect to the Chemical one. Fig. 18 re-
ports the running time required by the FS kernel with budget
10,000. As for the Chemical dataset the Primal and Mixed algo-
rithms are considerably faster than the Dual algorithm.

Fig. 19 shows the predictive performance in relation to the
computational time required from the different algorithms in the
Image dataset. The Primal algorithm is the fastest, with some
points at the leftmost margin of the plots. Also from a predictive
performance point of view, we see that the algorithm with the
highest AUROC is Primal for both budget values. With =B 50k the
Mixed and Dual algorithms achieve similar performances, although
with a higher runtime.

To summarize, given a budget management policy, under a
certain budget size Primal algorithm is the best performing one,
and over that size Dual and Primal (and in some cases Mixed) show
very similar performances. However, there is a significant differ-
ence in the computational times required by the different algo-
rithms, with Primal and Mixed being considerably faster than Dual.

4.3.3. Discussion
We can draw some final remarks concluding our experimental

analysis. First it is worth to point out that our analysis refers only
to those kernels which allow for an explicit feature space re-
presentation. Such kernels are only a subset of the existing graph
kernels. However, they are the ones currently having state-of-the-
art predictive performances. While the Dual algorithm can re-
present more compactly the model than the Primal approach
when the feature space associated to the kernel is very large, this
implies a loss in efficiency when computing the score for a new
graph: the kernel value between the input graph and all the
graphs in the model have to be computed from scratch. As the
values of Figs. 10 and 18 indicate, that makes the application of the
Dual algorithm to graph streams practically infeasible, especially
when strict time constraints have to be satisfied. The Mixed algo-
rithm is able to significantly speed up the score computation by
storing the explicit feature space representation of each graph in
the model. As a consequence, the size of the model may increase
significantly, thus reducing the total number of graphs that can be
kept in it: Dual algorithm is able to store in memory approximately
250 graphs of the chemical datasets with budget 10,000, while
Mixed algorithm only 100 graphs. On the contrary, Primal algo-
rithm keeps in the model only the most informative features, and
thus it is able to retain information of all graphs inserted in the
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
model while preserving a very good efficiency. According to our
experiments, there is a budget value which determines whether
the Primal or the other approaches are preferable. While such
threshold value can be observed in our experiments for the Image
dataset, due to the inefficiency of Dual and Mixed, we were not
able to identify it for the Chemical dataset (where Primal always
outperforms the other approaches).
5. Conclusions and future work

In this work we analyzed the trade-off between efficiency and
efficacy of various versions of online margin kernel perceptron
algorithms when dealing with graph streams and under the as-
sumption of fixed memory budgets. One of them efficiently ex-
ploits the explicit representation of the feature space (via hash
tables) of different state-of-the-art graph kernels recently defined
in the literature.

Experimental results on real-world datasets show that, under a
threshold budget size, working in feature space is preferable both
in terms of classification performance and running times. In a
future work we will investigate the dependency between such
budget value and the size of the feature space associated to the
kernel, the policy for pruning the model and the nature of the
dataset.
Acknowledgments

This work was supported by the University of Padova under the
strategic project BIOINFOGEN.
Appendix A. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.neucom.2016.07.
029.
References

[1] R. Klinkenberg, Learning drifting concepts: example selection vs. example
weighting, Intell. Data Anal. 8 (2004) 281–300.

[2] M. Eskandari, S. Hashemi, A graph mining approach for detecting unknown
malwares, J. Vis. Lang. Comput. 23 (3) (2012) 154–162.

[3] C. Alippi, S. Ntalampiras, M. Roveri, A cognitive fault diagnosis system for
distributed sensor networks, IEEE Trans. Neural Netw. Learn. Syst. 24 (8)
(2013) 1213–1226, http://dx.doi.org/10.1109/TNNLS.2013.2253491.

[4] C.C. Aggarwal, On classification of graph streams, in: SDM, 2011, pp. 652–663.
[5] J. Gibert, E. Valveny, H. Bunke, Embedding of graphs with discrete attributes

via label frequencies, Int. J. Pattern Recognit. Artif. Intell. 27 (03).
[6] A.M. Bianucci, A. Micheli, A. Sperduti, A. Starita, Application of cascade correlation

networks for structures to chemistry, Appl. Intell. 12 (1–2) (2000) 117–146.
[7] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines

and Other Kernel-based Learning Methods, 1 ed., Cambridge University Press,
2000.

[8] T. Hofmann, B. Schlkopf, A.J. Smola, Kernel methods in machine learning, Ann.
Stat. 36 (3) (2008) 1171–1220.

[9] G. Da San Martino, A. Sperduti, Mining structured data, IEEE Comput. Intell.
Mag. 5 (1) (2010) 42–49.

[10] G. Da San Martino, N. Navarin, A. Sperduti, A tree-based kernel for graphs, in:
Proceedings of the Twelfth SIAM International Conference on Data Mining,
2012, pp. 975–986.

[11] F. Aiolli, G. Da San Martino, A. Sperduti, A. Moschitti, Fast on-line kernel
learning for trees, in: Proceedings of the 2006 IEEE Conference on Data
Mining, IEEE Computer Society, Los Alamitos, CA, USA, 2006, pp. 787–791.

[12] J. Kivinen, A.J. Smola, R.C. Williamson, Online learning with kernels, IEEE
Trans. Signal Process. 52 (8) (2004) 2165–2176.

[13] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, Y. Singer, Online passive-
aggressive algorithms, J. Mach. Learn. Res. 7 (2006) 551–585.

[14] F. Orabona, J. Keshet, B. Caputo, Bounded kernel-based online learning, J.
Mach. Learn. Res. 10 (2009) 2643–2666.
on budget-aware online kernel algorithms for streams of graphs,
29i

http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref1
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref1
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref1
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref2
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref2
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref2
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref6
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref6
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref6
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref7
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref7
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref7
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref8
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref8
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref8
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref9
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref9
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref9
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref12
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref12
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref12
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref13
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref13
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref13
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref14
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref14
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref14
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

G. Da San Martino et al. / Neurocomputing ∎ (∎∎∎∎) ∎∎∎–∎∎∎20
[15] T. Gärtner, P. Flach, S. Wrobel, On graph kernels: hardness results and efficient
alternatives, in: Lecture Notes in Computer Science, 2003, pp. 129–143.

[16] K.M. Borgwardt, H.-P. Kriegel, Shortest-path kernels on graphs, in: Proceedings
of the Fifth IEEE International Conference on Data Mining, IEEE Computer
Society, 2005, pp. 74–81.

[17] P. Mahé, J. Vert, Graph kernels based on tree patterns for molecules, Mach.
Learn. 75 (1) (2009) 3–35.

[18] N. Shervashidze, K. Borgwardt, Fast subtree kernels on graphs, in: Y. Bengio, D.
Schuurmans, J. Lafferty, C.K.I. Williams, A. Culotta (Eds.), Advances in Neural
Information Processing Systems, vol. 22, Curran Associates, Inc., 2009, pp.
1660–1668.

[19] F. Costa, K.D. Grave, Fast neighborhood subgraph pairwise distance kernel, in:
Proceedings of the 27th International Conference on Machine Learning (ICML-
10), June 21–24, 2010, Haifa, Israel, 2010, pp. 255–262.

[20] H. Kashima, K. Tsuda, A. Inokuchi, Marginalized kernels between labeled
graphs, in: T. Fawcett, N. Mishra (Eds.), ICML, AAAI Press, 2003, pp. 321–328.

[21] K.M. Borgwardt, N.N. Schraudolph, S. Vishwanathan, Fast computation of
graph kernels, in: B. Schölkopf, J. Platt, T. Hoffman (Eds.), Advances in Neural
Information Processing Systems 19, MIT Press, 2007, pp. 1449–1456.

[22] M. Heinonen, N. Välimäki, V. Mäkinen, J. Rousu, Efficient path kernels for
reaction function prediction, in: BIOINFORMATICS 2012 – Proceedings of the
International Conference on Bioinformatics Models, Methods and Algorithms,
Vilamoura, Algarve, Portugal, 1–4 February, 2012, 2012, pp. 202–207.

[23] N. Shervashidze, S.V.N. Vishwanathan, T.H. Petri, K. Mehlhorn, K.M. Borgwardt,
Efficient graphlet kernels for large graph comparison, in: D. van Dyk, M.
Welling (Eds.), Proceedings of the Twelfth International Conference on Arti-
ficial Intelligence and Statistics (AISTATS), vol. 5 of JMLR: Workshop and
Conference Proceedings, CSAIL, Clearwater Beach, Florida, USA, 2009, pp. 488–
495.

[24] F. Rosenblatt, The perceptron: a probabilistic model for information storage
and organization in the brain, Psychol. Rev. 65 (6) (1958) 386–408.

[25] G. Cavallanti, N. Cesa-Bianchi, C. Gentile, Tracking the best hyperplane with a
simple budget Perceptron, Mach. Learn. 69 (2–3) (2007) 143–167.

[26] O. Dekel, S.S. Shwartz, Y. Singer, The Forgetron: a kernel-based perceptron on
a fixed budget, in: Advances in Neural Information Processing Systems, vol. 18,
MIT Press, Cambridge, MA, 2006, pp. 1342–1372.

[27] K. Crammer, J. Kandola, Y. Singer, Online classification on a budget, in: S.
Thrun, L. Saul, B. Schölkopf (Eds.), Advances in Neural Information Processing
Systems, vol. 16, MIT Press, Cambridge, MA, 2003, pp. 225–232.

[28] Z. Wang, S. Vucetic, Online passive-aggressive algorithms on a budget, J. Mach.
Learn. Res. – Proc. Track 9 (2010) 908–915.

[29] J. Langford, L. Li, T. Zhang, Sparse online learning via truncated gradient, J.
Mach. Learn. Res. 10 (2009) 777–801.

[30] J.C. Duchi, Y. Singer, Efficient online and batch learning using forward back-
ward splitting, J. Mach. Learn. Res. 10 (2009) 2899–2934.

[31] Y.-W. Chen, C.-J. Lin, Combining SVMs with various feature selection strategies,
in: I. Guyon, M. Nikravesh, S. Gunn, L. Zadeh (Eds.), Feature Extraction, vol. 207
of Studies in Fuzziness and Soft Computing, Springer, Berlin, Heidelberg, 2006,
pp. 315–324.

[32] B. Russell, A. Torralba, LabelMe: a database and web-based tool for image
annotation, Int. J. Comput. Vis. 77 (1) (2008) 157–173.

[33] P. Su, R.L.S. Drysdale, A comparison of sequential Delaunay triangulation al-
gorithms, in: Proceedings of the eleventh annual symposium on Computa-
tional geometry – SCG, ACM Press, New York, New York, USA, 61–70, 1995.
Please cite this article as: G. Da San Martino, et al., An empirical study
Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.07.0
Giovanni Da San Martino received his Bachelor's and
Master's Degrees in Computer Science from the Uni-
versity of Pisa in 2003 and 2005, respectively. He re-
ceived his Ph.D. degree in Computer Science from the
University of Bologna in 2009. In 2009 he spent a
period at the University of Bristol supported by a fel-
lowship from the Department of Pure and Applied
Mathematics of the University of Padova. He has had
two Post doctoral Research Fellowship from the Uni-
versity of Padova. Currently he is a Scientist at the Qatar
Computing Research Institute (Hamad Bin Khalifa
University) in Doha, Qatar. His research interests in-

clude pattern recognition, kernel methods, natural
language processing and swarm intelligence.
Nicoló Navarin received his BSc (2008) and MSc (2010)
in Computer Science from the University of Padova. He
received his Ph.D. in computer science from the Uni-
versity of Bologna in 2014. In 2013, he was a visiting
researcher at the Albert Ludwigs University of Freiburg,
Germany. His research interests include Machine
Learning, kernel methods, learning for structured data,
and bioinformatics. Currently he is a postdoc in Com-
puter Science at the Department of Mathematics, Uni-
versity of Padova.
Alessandro Sperduti has a Ph.D. in Computer Science
from the University of Pisa. Since 2002 he is Professor
in Computer Science at the University of Padova. He has
been chair of the Data Mining and Neural Networks
Technical Committees of IEEE CIS, and Associate Editor
of IEEE TNNLS. He is currently Action Editor for the
journals AI Communications, Neural Networks, Theo-
retical Computer Science (Section C). He is in the edi-
torial board of IEEE Intelligent Systems Magazine. His
research interests include machine learning, neural
networks, learning in structured domains, data and
process mining.
on budget-aware online kernel algorithms for streams of graphs,
29i

http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref17
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref17
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref17
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref24
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref24
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref24
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref25
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref25
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref25
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref28
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref28
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref28
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref29
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref29
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref29
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref30
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref30
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref30
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref32
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref32
http://refhub.elsevier.com/S0925-2312(16)30774-3/sbref32
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029
http://dx.doi.org/10.1016/j.neucom.2016.07.029

	An empirical study on budget-aware online kernel algorithms for streams of graphs
	Introduction
	Background
	Notation
	Graph kernels
	Dual online kernel methods on a budget
	Primal algorithms for online learning on a budget

	Budget-aware algorithms for structured data
	Budget management

	Experimental results
	Dataset description
	Chemical dataset
	Image dataset

	Experimental setup
	Results and discussion
	Experiments on the chemical dataset
	Experiments on the image datasets
	Discussion

	Conclusions and future work
	Acknowledgments
	Supplementary data
	References

