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a b s t r a c t 

Conformal prediction uses the degree of strangeness (nonconformity) of data instances to determine the 

confidence values of new predictions. We propose a conformal prediction based active learning algo- 

rithm, referred to as CPAL-LR, to improve the performance of pattern classification algorithms. CPAL-LR 

uses a novel query function that determines the relevance of unlabeled instances through the solution 

of a constrained linear regression model, incorporating uncertainty, diversity, and representativeness in 

the optimization problem. Furthermore, we present a nonconformity measure that produces reliable con- 

fidence values. CPAL-LR is implemented in conjunction with support vector machines, sparse coding al- 

gorithms, and convolutional networks. Experiments conducted on face and object recognition databases 

demonstrate that CPAL-LR improves the classification performance of a variety classifiers, outperforming 

previously proposed active learning techniques, while producing reliable confidence values. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Conformal prediction (CP) was proposed by Vovk, Shafer and

ammerman [1] based on the principles of algorithmic random-

ess and transductive inference. CP uses the degree of strangeness

nonconformity) of new data instances to determine the confi-

ence values of new predictions. 

The CP framework yields a set of predicted class labels with

uaranteed error rate, a property referred to as validity . Moreover,

nlike Bayesian methods [2] , CP is only based on the assumption

hat the data are independent and identically distributed, i.e. , no

nowledge on the prior is required. The applications of confor-

al prediction include: breast cancer diagnosis, clinical diagnosis

nd prognosis of depression, arrhythmia detection, and robust face

ecognition [3–6] . 

Transductive conformal prediction for active learning has been

eported in the literature [7,8] . Ho et al. [7] proposed the query

y transduction, which sequentially selects the most uncertain

nstances from an unlabeled pool. The disadvantage of transduc-

ive inference is computational inefficiency, which restricts its

pplicability. 

Inductive conformal prediction emerged as an alternative to

ransductive inference [1,9–11] . The application of inductive con-

ormal predictors (ICP) to decision trees is studied in [10] .

apadopoulos et al. [9] use uncertainty to perform active learn-
∗ Corresponding author. 

E-mail address: smatiz@udel.edu (S. Matiz). 

n  

[  

s  

ttps://doi.org/10.1016/j.neucom.2020.01.018 

925-2312/© 2020 Elsevier B.V. All rights reserved. 
ng within the CP framework improving the performance of neural

etworks. 

Active learning has been extensively applied in domains

ike classification, image segmentation and information retrieval

12–15] . Active learning can be roughly divided into two cate-

ories: online and pool based. In online active learning, the learner

rocesses data instances sequentially, as they are observed, and the

odel has to decide whether or not to query the observed instance

o update the hypothesis. Pool based active learning is further di-

ided into serial query based active learning and batch mode active

earning. In a serial query based active learning system, the classi-

er is updated after every single query [16–18] . This approach is

ime consuming since the model needs to be retrained frequently.

atch mode active learning techniques address this issue by select-

ng multiple instances at a time from the unlabeled pool for anno-

ation [12,19,20] . This work focuses on batch mode active learning

ith applications to image classification. 

Batch mode active learning based on both uncertainty and di-

ersity has been shown to improve the performance of pattern

lassification algorithms [12,14,20–25] , avoiding the selection of

imilar instances that do not provide additional information. Sev-

ral approaches based on similarity measures have been proposed

o measure diversity [12,26] . For instance, Brinker [12] proposes

 diversity criterion based on the cosine angle distance between

wo different instances. Gu et al. [26] employ the Gaussian ker-

el to measure the similarity between two instances. Xu et al.

19] apply clustering to measure diversity. Shi et al. [14] combine

patial coherence with clustering to improve the performance of

https://doi.org/10.1016/j.neucom.2020.01.018
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2020.01.018&domain=pdf
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α� +1 , . . . , α� + r . 
remote sensing image classification. Chakraborty et al. [24] com-

bine entropy with diversity in a single query function, solving

the active leaning problem using quadratic optimization. However,

query functions based only on uncertainty and diversity may lead

to the selection of outliers that are not representative of the data. 

Uncertainty and information density (representativeness) have

been combined in a single query function to select instances that

are informative and also representative [15,27–31] . Li and Guo

[28] propose a systematic way for measuring and combining un-

certainty and representativeness of unlabeled instances for active

learning. Wang et al. [30] combine clustering with active/semi-

supervised learning to select instances that are representative and

discriminative. Du et al. [31] derive a robust multi-label active

learning algorithm based on the maximum correntropy criterion,

merging uncertainty and representativeness in a single optimiza-

tion problem. 

Machine learning algorithms, such as support vector machines

(SVMs), sparse coding, and convolutional neural networks (CNNs),

have recently gained interest in a variety of problems in im-

age processing and computer vision, including face recognition,

classification, and image denoising [32–41] . Support vector ma-

chines have received ample treatment being both theoretically

well founded and showing excellent generalization performance

in practice [32,33] . Sparse coding algorithms incorporating class

label information in the objective function have been show to

produce state-of-the-art results for image classification [34,42] .

Moreover, CNNs have led to a series of breakthroughs in im-

age classification. LeCun et al. [37] developed a multilayer CNN,

referred to as LeNet-5, for classification of handwritten digits.

Krizhevsky et al. [43] propose a classic CNN architecture, referred

to as AlexNet, showing significant improvements upon previous

methods for image classification. 

Despite these advances, traditional pattern classification algo-

rithms produce simple predictions, without any associated con-

fidence values. Therefore, they require modifications, or addi-

tional techniques to be implemented in conjunction with them

[44–46] to perform active learning, since confidence values and a

measure of uncertainty are required for that purpose. Moreover, as

uncertainty measures differ from each other across different types

of classifiers, it becomes difficult to implement the same active

learning technique over different classification algorithms without

performing modifications. 

In light of the above, we propose a conformal prediction based

active learning algorithm, referred to as CPAL-LR. Different from

previous work on active learning, which is mostly based on query

functions that linearly combine different selection criteria [12,26] ,

the proposed approach uses a novel query function that deter-

mines the relevance of unlabeled instances through the solution

of a constrained linear regression model, incorporating uncertainty,

diversity, and representativeness in the optimization problem. By

using the CP framework, CPAL-LR offers two advantages: (1) it is

flexible across different pattern classification algorithms, since CP

produces uncertainty measures that are normalized, regardless of

the type classifier being used, (2) in addition to performance en-

hancement, CPAL-LR produces reliable confidence values. 

The contributions established in CPAL-LR are threefold: first, we

propose a novel query function that determines the relevance of

unlabeled instances through the solution of a constrained linear

regression model; second, we present a nonconformity measure

that produces reliable confidence values. Third, we derive an ac-

tive learning algorithm within the CP framework. 

This paper is organized as follows. First, an introduction to con-

formal prediction and active learning is provided in Section 2 . The

CPAL-LR algorithm for active learning is described in Section 3 . Fur-

thermore, the proposed query function and nonconformity mea-

sures are presented. Experiments conducted on two face databases,
he Extended YaleB database [47] and the AR face database [48] ,

nd one object recognition database, Caltech101 [49,50] , are pre-

ented in Section 4 . Moreover, the quality of the CPAL-LR confi-

ence values is demonstrated through experimentation. 

. Background 

.1. Conformal prediction 

CP uses the nonconformity of new data instances to determine

he confidence values of new predictions. For an arbitrary signif-

cance level ε ∈ [0, 1], CP yields a set �ε containing the cor-

ect class label of a given data instance with probability (1 − ε) ,

 property referred to as validity [51] . Define a bag of size n ∈ R as

 collection of n elements, some of which may be identical with

ach other. Let that bag be denoted as � z 1 , . . . , z n � . Define

 i = ( x i , h i ) , where x i represents a data instance and h i its corre-

ponding class label. 

A nonconformity measure A (� z 1 , . . . , z n � , z) is a function

roducing a nonconformity score α ∈ R , representing how differ-

nt z is from the elements in the bag � z 1 , . . . , z n � . The non-

onformity score of an element z i in � z 1 , . . . , z n � is obtained as

i = A (� z 1 , . . . , z i −1 , z i +1 , . . . , z n � , z i ) . 

In addition, we can measure the conformity of x n + j to class q

sing p-values , which are defined as [1] : 

p(α
(H q ) 

n + j ) = 

count{ i : αi > α
(H q ) 

n + j } 
n + 1 

, (1)

here α
(H q ) 

n + j is the nonconformity score of x n + j , under the null

ypothesis H q , and p(α
(H q ) 

n + j ) is its p -value. Notice that the p-value

s highest when all previous nonconformity scores, α1 , . . . αn , are

igher than that of the new instance, α
(H q ) 

n + j , meaning that x n + j 
est conforms to class q . CP uses Eq. (1) to predict the label for

 n + j using the highest p-value. In addition, for each new instance

 n + j and significance level ε ∈ [0, 1], we form a set of labels

ε
n + j = { i : p(α

(H i ) 

n + j ) > ε} containing the correct class label for x n + j 
ith probability (1 − ε) , according to the validity property. 

The p-values are also used to compute the quality of informa-

ion [8,16] . Ho and Wechsler [16] define the quality of information

f instance x n + j as 

 ( x n + j ) = p (1) 
n + j − p (2) 

n + j , (2)

here p (1) 
n + j and p (2) 

n + j are the largest and second largest p -values

or instance x n + j , respectively. The uncertainty of an instance x n + j ,
ithin the CP framework, can be defined as: 

( x n + j ) = 1 − s ( x n + j ) . (3)

.1.1. Inductive conformal predictors 

Inductive predictors first learn a classification rule, which is

hen used to make new predictions. Therefore, the underlying al-

orithm is applied only once, saving significant computation time.

or a new instance x n + j , ICPs perform the following steps: 

– Split the training set of size n into two smaller sets, the

proper training set of size � = n − r and the calibration set

of size r , where r is a parameter of the algorithm. 

– Employ the proper training set (z 1 , . . . , z � ) to generate a clas-

sification rule C prop using the underlying algorithm. 

– Assign a nonconformity score to each one of the instances in

the calibration set. This results in the sequence 
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– Compute the p-values for x n + j for all possible null hypotheses

H i by applying (1) to the sequences 

α� , . . . , α� + r , α
(H i ) 
n + j for i = 1 , . . . , M. 

– Predict the classification with the largest p-value and calcu-

late the uncertainty I( x n + j ) . 

.2. Query functions for active learning 

A variety of query functions have been studied in the literature

o the select unlabeled instances [12,20,26–28,52,53] . A brief sum-

ary of some of the most popular selection criteria is presented

elow. 

.2.1. Multiclass-level uncertainty (MCLU) 

The MCLU criterion selects the unlabeled instances that have

aximum uncertainty (minimum confidence) about their correct

abel among all instances in the unlabeled pool. For instance, let

s consider a SVM classifier. The confidence value associated with

 j , denoted as c j , can be computed as c j = d (1) 
j 

− d (2) 
j 

[12] , where

 

(1) 
j 

and d (2) 
j 

are the largest and second largest Euclidean distances

rom an instance x j to the separating hyperplanes, respectively. 

In the CP framework, the uncertainty given by Eq. (3) is equiv-

lent to the confidence value c j . Several works, including [7,9,10] ,

ave successfully applied active learning to ICPs based on the un-

ertainty criterion. 

.2.2. Cluster based diversity (CBD) 

Clustering techniques group similar instances into the same

lusters. Since the instances within the same cluster are correlated

nd provide similar information, a representative instance is se-

ected for each cluster. In [54] , k -means is used to obtain a num-

er of clusters equal to the number of instances to be selected,

enoted as N AL . The instance closest to each of the cluster centers

s selected. 

.2.3. Combination of uncertainty and diversity 

Uncertainty and diversity can be used jointly to enhance the

erformance of active learning [12,20,26] . 

The following optimization problem combines uncertainty and

iversity in a unique query function 

 t = arg min 

x i ∈ T u /T s 

{
ρ| c j | + (1 − ρ) max 

x j ∈ T s 
S (·) ( x i , x j ) 

}
, (4) 

here S (·) ( x i , x j ) is a similarity measure, T s contains the set of se-

ected instances for training (the most uncertain and diverse), T u 
enotes the set containing the L ≤ | U | most uncertain instances,

 u / T s represents the set of instances of T u that are not contained in

he current set T s , S (·) ( x i , x j ) represents a similarity measure ap-

lied to instances x i , and x j , and ρ ∈ [0, 1] provides the tradeoff

etween uncertainty and diversity. The first instance of T d is se-

ected as the most uncertain instance in T u . The algorithm stops

hen the number of selected instances in T d is equal to the num-

er of desired instances N AL . 

A variety of similarity measures have been used in the litera-

ure for active learning [12,20,26] . Brinker [12] use the cosine an-

le distance to measure the similarity between instances x i and x j ,

hereas Gu et al. [26] employ the Gaussian kernel. 

. CPAL-LR: conformal prediction based active learning by 

inear regression optimization 

We propose a conformal prediction based active learning algo-

ithm, referred to as CPAL-LR. The proposed approach uses a novel
uery function that considers informativeness, diversity, and rep-

esentativeness as the selection criteria. Furthermore, we present

 nonconformity measures that produces reliable confidence val-

es. In the remainder of this section, the proposed query function

nd nonconformity measures are introduced, and the CPAL-LR al-

orithm is described. 

.1. CPAL-LR query function 

The proposed query function determines the relevance of unla-

eled instances through the solution of a constrained linear model,

ncorporating informativeness, diversity, and representativeness in 

he optimization problem. Define U = { x 1 , x 2 , . . . , x L } as the unla-

eled pool. Let Q ∈ R 

L ×L be a kernel distance matrix, containing

he distances between each one of the elements in the unlabeled

ool. The entries q ij ∈ [0, 1] in matrix Q are computed as: 

 η( x i , x j ) = q i j = exp 

(
− ( x i − x j ) 

T ( x i − x j ) 

η

)
. (5)

Let y ∈ R 

L be a vector consisting of elements y i , containing

he value of informativeness associated with instances x i ∈ U ( i =
 , . . . , L ), calculated according to Eq. (3) . Let D ∈ R 

L ×L be a posi-

ive diagonal matrix, whose diagonal elements d i ∈ [1, 0] provide

 measure of the representativeness (information density) of in-

tances x i . The value d i decreases when instance x i is located in

 densely propulated region, otherwise the value d i increases. The

roposed approach obtains a vector ˆ w ∈ R 

L , consisting of elements

ˆ  i , containing the relevance values associated with instances x i by

olving the following optimization problem: 

ˆ  = arg min 

w 

|| Qw − y || 2 2 + λ|| Dw || 2 2 (6) 

s.t. 0 ≤ w ≤ 1 , 

hich is a generalized ridge regression problem, penalized by the

iagonal matrix D . 

Expanding the first term in Eq. (6) we have 

( Qw − y ) = 

⎡ 

⎢ ⎢ ⎣ 

q 11 q 12 . . . q 1 L 
q 21 q 22 . . . q 2 L 

. . . 
. . . 

. . . 
. . . 

q L 1 q L 2 . . . q LL 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

w 1 

w 2 

. . . 
w L 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
diversity 

−

⎡ 

⎢ ⎢ ⎣ 

y 1 
y 2 
. . . 

y L 

⎤ 

⎥ ⎥ ⎦ 

. 

otice that the values w j are weighed by the terms q ij . The weights

 ij increase when instances x i and x j are close to each other ( q i j =
 , for i = j). Since the solution 0 ≤ ˜ w j ≤ 1 , the instances whose in-

ormativeness is high, and are also different from each other, re-

eive a low penalty. Conversely, the instances that are close to each

ther, i.e. , they are not diverse, receive a higher penalty. Therefore,

he term || Qw − y || 2 
2 

accounts for diversity, and the parameter η in

q. (5) provides a tradeoff between informativeness and diversity. 

Expanding the second term in (6) we obtain 

w = 

⎡ 

⎢ ⎢ ⎣ 

d 1 0 . . . 0 

0 d 2 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . d N 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎣ 

w 1 

w 2 

. . . 
w L 

⎤ 

⎥ ⎥ ⎦ 

︸ ︷︷ ︸ 
representativeness 

. 

he elements d i penalize the solution ˆ w i depending on the repre-

entativeness of instance x i . When x i is located in a densely pop-

lated region, the value d i decreases (representative, low penalty).

onversely, when x i is located in a sparsely populated region, d i in-

reases (not representative, high penalty). Therefore, the parameter

controls the penalty associated with representativeness, which is

sed to filter possible outliers. 
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The expression in (6) can be rewritten as: 

ˆ w = arg min 

w 

|| ̃  Q w − ˜ y || 2 2 (7)

= arg min 

w 

w 

T ˜ Q 

T ˜ Q w − w 

T ˜ Q 

T 
˜ y 

s.t. 0 ≤ w ≤ 1 , 

where ˜ Q = 

[
Q 

√ 

λD 

]T ∈ R 

2 L ×L , and ˜ y = [ y 0 ] 
T ∈ R 

2 L . Notice that the

expression in (7) is a quadratic programming (QP) optimization

problem. 

After the optimization problem in (7) is solved, the number of

desired instances, N AL , associated with the highest relevance values

w j ( j = 1 , . . . , L ) are selected. 

3.2. Incorporating representativeness 

The second term in Eq. (6) penalizes the solution ˆ w through the

weights d i in matrix D . CPAL-LR computes the weights d i , associ-

ated with instances x i in the unlabeled pool, using the distance

between x i and its k -nearest neighbors, denoted as z 
( j) 
i 

[55] , for

j = 1 , . . . , k . Define the value ˆ d i , associated with instance x i , as: 

ˆ d i = 

k ∑ 

n =1 

|| x i − z (n ) 
i 

|| 2 2 . (8)

Notice that the value ˆ d i will be low if instance x i is close to its

k -nearest neighbors (densely populated region, low penalty). Con-

versely, the value ˆ d i will be high if instance x i is far from its k -

nearest neighbors (sparsely populated region, high penalty). Define

d max = max { d i } . CPAL-LR computes the values ˆ d i for all instances

x i in the unlabeled pool ( i = 1 , . . . , L ) as: 

d i = 

ˆ d i /d max . (9)

3.3. CPAL-LR nonconformity measure 

Nonconformity measures produce nonconformity scores, which

are then used to compute informativeness, as described in

Section 2 . Consider a classifier with M outputs, corresponding to

M different class labels. Let x j be an input instance, and h j ∈
{ 1 , . . . , M} be its corresponding class label ( j = 1 , 2 , . . . ) . Define o j
as the j th output of the classifier. Let the estimated class label be

obtained as max i =1 , ... ,M 

o (i ) 
j 

. The proposed nonconformity measure

is given by: 

A 

(H q ) 

CPAL −LR 
:= −γ o (q ) 

j 
+ (1 − γ ) max 

i =1 , ... ,M,i � = q 
o (i ) 

j 
, (10)

where A 

(H q ) 

CPAL −LR 
represents the proposed nonconformity measure

under the null hypothesis H q . Assuming that the classifier is accu-

rate and the null hypothesis H q is true, the values of A 

(H q ) 

CPAL −LR 
, will

decrease (they may become negative), indicating that x conforms

to class q . Conversely, if the null hypothesis is false, the value of

A 

(H q ) 

CPAL −LR 
will tend increase, indicating that x does not conform to

that particular class. The term γ ∈ [0, 1] is introduced to provide

a tradeoff between the importance of the first and second terms. 

Notice that, regardless of the type of classifier, the nonconfor-

mity scores are normalized through the computation of p -values,

which are then used to measure uncertainty, according to (3) . For

instance, the j th output of a linear classifier to input x can be de-

fined as o j = w j x + b j ∈ R , whereas the j th output of a CNN is ob-

tained through its forward propagation function, and it is taken

directly from its last layer (usually a softmax). In both cases, the

value of uncertainty I ( · ) computed within the CP framework is

normalized in the range [0,1], and can be readily used for active

learning without further scaling. 
.4. CPAL-LR algorithm 

We propose an active learning algorithm within the CP frame-

ork. First, we split the training set, T train = { z 1 , . . . , z n } , into the

roper training set, T prop = { z 1 , . . . , z � } , and the calibration set,

 cal = { z � +1 , . . . , z � + r } , where n = � + r, as described in Section 2 .

hen, the classification rule, C prop , is obtained through the under-

ying algorithm employing T prop . 

The nonconformity scores of the instances in calibration set,

 cal , and the unlabeled pool, U , are computed using Eq. (10) and

 prop . The nonconformity scores are used to measure the p-values

nd the uncertainty of instances in the unlabeled pool, according

o Eqs. (1) and (3) , respectively. 

Matrix Q is computed using the Gaussian kernel distance

s described by (5) , and matrix D is computed using the k-

earest neighbors approach, according to Eq. (8) and (9) . Then, the

uadratic optimization problem described by Eq. (7) is solved to

btain the relevance ˆ w of the instances in the unlabeled pool. The

 AL instances x i whose relevance is highest are selected. 

CPAL-LR returns the training set T AL = T prop ∪ T s , where T s is the

et of pairs containing the N AL instances from U , with their corre-

ponding class labels, whose associated relevance ˆ w is the highest

fter solving the optimization problem in (7) . The proposed ap-

roach is summarized in Algorithm 1 . 

lgorithm 1 CPAL-LR. 

1: Input: Proper training set T prop = { z 1 , . . . , z � } , calibration set

T cal = { z � +1 , . . . , z � + r } , unlabeled pool U = { x n +1 , . . . , x n + v } , clas-

sification rule C prop , number of desired instances N AL , and num-

ber of class labels M 

2: Compute matrix Q using Eq.(5) 

3: Compute the weights d i , using equations (8), and (9), for 

all instances in the unlabeled pool U to form D 

4: Use Eq.(10) and the classification rule C prop to calculate: 

• The nonconformity scores { αH 

q (� +1) 

� +1 
, . . . , α

H 

q (� + r) 
� + r } corre- 

sponding to the instances in the calibration set, where 

q (� + j) is the correct class label of z � + j , for j ∈ { 1 , . . . , r} 
• The nonconformity scores { αH i 

n +1 
, . . . , α

H i 
n + v } correspond- 

ing to the instances in the unlabeled pool, where i = 

{ 1 , . . . , M} 
5: Use Eq.(1) to calculate the p-values associated with the in- 

stances in U , and obtain their uncertainty I( x n + j ) through 

equation(3), where j ∈ { 1 , . . . , v } 
6: Solve the quadratic optimization problem in (7) and form 

the set T s containing the N AL instances from U , with their 

corresponding class labels, whose associated relevance w is 

the highest 

7: Construct T AL = T prop ∪ T s 
8: Output: T AL 

.5. CPAL-LR As a conformal predictor 

The proposed nonconformity measure, described by Eq. (10) ,

an be used to produce confidence values associated with new pre-

ictions, during the testing phase. After training the underlying al-

orithm and obtaining a classification rule, denoted as C train , the

onconformity scores α
(H q ) 

n + j and p-values p(α
(H q ) 

n + j ) , associated with

 new instance x n + j , are computed according to Eqs. (10) and (1) ,

espectively. Then, for a given significance level ε ∈ [0, 1], we

orm a set of labels �ε
n + j = { i : p(α

(H i ) 

n + j ) > ε} containing the cor-

ect class label for x n + j with probability (1 − ε) , according to the

alidity property. CPAL-LR as a conformal predictor is described in

lgorithm 2 . 
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Algorithm 2 CPAL-LR (conformal predictor). 

1: Input: Testing instance x n + j , calibration set nonconformity 

scores { α� +1 , . . . , α� + r } , classification rule C train , significance 

level ε, parameter γ , and number of class labels M 

2: Use Eqs. (1) and (10), along with the classification rule 

C train , to calculate: 

• The nonconformity scores α
H i 
n + j corresponding to the 

new instance x n + j , for the different null hypothesis H i 

( i = { 1 , . . . , M} ) 
• The p-values p(α

(H i ) 

n + j ) , associated with α
H i 
n + j 

3: Construct the set �ε
n + j = { i : p(α

(H i ) 

n + j ) > ε} 
4: Output: �ε

n + j 
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Table 1 

Classification accuracy for different query functions and standard deviation σ as a 

function of the number of selected instances N AL . 

Algorithm Query func. σ = 1 . 5 σ = 2 . 0 

N AL N AL 

8 12 16 8 12 16 

SVM (rnd) 92.6 92.6 92.8 90.8 90.8 91.0 

AL(MCLU) 93.6 93.9 93.7 90.7 90.9 91.6 

AL(CBD) 93.8 94.1 94 90.8 91.2 91.8 

AL(MCLU-ECBD) 93.8 94.4 94.2 91 91.5 92.3 

AL(MCLU-ABD) 95.0 95.1 95.1 91.8 92.6 92.9 

AL(MCLU-KBD) 95.4 95.3 95.6 92.1 93.2 93.1 

AL(GBMAL) 94.7 95.1 95.5 91.9 92.1 93.0 

AL(BatchRank) 95.1 95.2 95.7 92 92.2 92.8 

AL(Sparse) 94.9 95.3 95.4 92.2 92.5 92.9 

CPAL-LR 96.4 96.5 96.6 94.2 94.5 94.6 
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. Experimental results 

The focus of CPAL-LR is twofold: (1) to improve the perfor-

ance of pattern classification algorithms through active learning;

nd (2) to produce reliable confidence values. Therefore, our goal

s to evaluate CPAL-LR based on the improvement achieved in clas-

ification performance and the quality of the produced confidence

alues. This section is organized as follows. First, we present simu-

ation results obtained on a synthetic database to provide a greater

nsight into the proposed query function and show its effective-

ess. Then, we evaluate the performance of CPAL-LR on face and

bject recognition databases, providing a comparison between the

roposed technique and previous work on active learning. Last, we

emonstrate the quality of the confidence values obtained through

PAL-LR. 

.1. Synthetic database experiments 

Experiments are conducted on a synthetic database consisting

f four two-dimensional clusters, denoted as C i ( i = 1 . . . 4 ). The

ata in C i is randomly generated following a multivariate gaussian

istribution given by N ∼ ( μμμi , 


i ) , where μμμi = (μ(1) 
i 

, μ(2) 
i 

) and

i = ( 
σi 0 

0 σi 
) are the mean and covariance matrix of C i , respec-

ively. The parameters of the synthetic database are set to μμμ1 =
(−4 , 4) , μμμ2 = (−4 , −4) , μμμ3 = (4 , 4) , μμμ4 = (4 , −4) and σ1 = σ2 =

3 = σ4 = σ (different values of σ are used). The proper training

et T prop consists of five examples per class. The unlabeled pool U

nd the testing set consist of 200 images per class, each. 

SVMs are employed for these experiments, using the one- vs -

ll (OVA) approach. We compare the performance improvement

btained through CPAL-LR with that of the following batch ac-

ive learning approaches: random sampling, i.e. , we take instances

rom the unlabeled pool at random, active learning based on un-

ertainty [7,9,11] , clustering [20] , clustering with uncertainty [20] ,

ncertainty and ABD [12] , uncertainty and KBD [26] , general-

zed batch mode active learning [24] , BatchRank [25] , and ac-

ive learning by sparse selection [56] , which are denoted as (rnd),

L(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU- 

BD), AL(GBMAL), AL(BatchRank), and AL(Sparse), respectively.

andom sampling is used as the baseline for the experiments. 

For the proposed approach, parameter optimization using grid

earch is performed over the weights η and λ. The grid is

ormed by values η ∈ [0 . 01 × 10 −4 , 5 . 0 × 10 −4 ] , and λ ∈ [0, 10].

or AL(MCLU-ABD) and AL(MCLU-KBD), the parameter ρ is opti-

ized using the same approach. For random sampling, the training

et T R = T prop ∪ T rnd is employed, where T rnd contains N AL randomly

elected instances from U with their corresponding class labels,

nd T prop is the proper training set. The results for active learn-
ng are obtained using the training set T AL = T prop ∪ T s , where T s 
ontains N AL instances selected from U using the aforementioned

ctive learning approaches, with their corresponding class labels.

ive trials are conducted to compute the classification accuracy. In

ach trial, the proper, calibration, training and testing sets are se-

ected at random. For each trial, the best results are selected after

arameter optimization and the average classification accuracy is

resented. 

Fig. 1 shows the instances selected by the proposed technique

or different parameters η and λ, along with those selected by

L(MCLU-ECBD), and AL(MCLU-ABD). It is observed in Fig. 1 (a) that

hen uncertainty is predominant ( η → 0, λ = 0 ) CPAL-LR selects

nstances that are concentrated on high uncertainty the regions,

.e. , the regions where clusters tend to overlap. 

Fig. 1 (c) shows the instances selected by CPAL-LR when repre-

entativeness is predominant ( η → 0 , λ = 18 ). It is observed that

he selected instances are located near the cluster centers, which

orrespond to densely populated regions. Fig. 1 (e) shows the in-

tances selected by CPAL-LR when uncertainty, diversity, and rep-

esentativeness are considered together ( η = 2 . 5 × 10 −5 , λ = 12 ).

t is observed that the selected instances are located in high

ncertainty regions, and the spread of the selected instances is

ower. Different from the selected instances in Fig. 1 (g) ( η = 5 . 0 ×
0 −5 , λ = 0 ), the selected instances in Fig. 1 (e) are not located in

parsely populated regions, such as the ones near coordinates (-8,-

) and (-4,8). 

Fig. 1 (j) shows the instances selected by AL(MCLU-ECBD). It can

e seen that the spread of the selected instances is high, and some

f them lie in sparsely populated regions, such as (8, −4) and (8,

). The instances selected by AL(MCLU-ABD) ( ρ = 10 −3 ) are shown

n Fig. 1 (l). It is observed that most of the instances are located in

igh uncertainty regions, with some exceptions lying in sparsely

opulated regions, around ( −4, −8) and (4, 8). 

Table 1 shows the classification accuracy obtained on the syn-

hetic database for different query functions and values σ , as

 function of the number of selected instances N AL . It is ob-

erved that the proposed technique outperforms the considered

ctive learning approaches for all the values of σ and N AL . For

nstance, when σ = 2 . 0 and N AL = 8 , the performance of (rnd),

L(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD), AL(MCLU- 

BD), AL(GBMAL), AL(BatchRank), and AL(Sparse) is 90.8%, 90.7%,

0.8%, 91.0%, 91.8%, 92.1%, 91.9%, 92.0%, and 92.2%, respectively,

hereas that of CPAL-LR is 94.2%. 

To visualize the effect of the parameters η and λ on the perfor-

ance of CPAL-LR we perform a second experiment. In this ex-

eriment, we conduct 100 trials. In each trial, the instances in

roper, training, and testing sets are selected at random, along

ith those in the unlabeled pool, and the average classification
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Fig. 1. Synthetic database and selected instances (highlighted) for σ = 2 . 0 using CPAL-LR (a) ( η = 10 −9 , λ = 0 ), (b) ( η = 10 −9 , λ = 12 ), (c) ( η = 10 −9 , λ = 18 ), (d) ( η = 

2 . 5 × 10 −5 , λ = 0 ), (e) ( η = 2 . 5 × 10 −5 , λ = 12 ), (f) ( η = 2 . 5 × 10 −5 , λ = 18 ), (g) ( η = 5 . 0 × 10 −5 , λ = 0 ), (h) ( η = 5 . 0 × 10 −5 , λ = 12 ) (i) ( η = 5 . 0 × 10 −5 , λ = 18 ), (j) AL (MCLU- 

ECBD), (k) AL (MCLU-ABD) ( ρ = 0 ), (l) AL (MCLU-ABD) ( ρ = 10 −3 ). 
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accuracy is presented. The proper training set T prop consists of 10

images, and the number of selected instances from the unlabeled

pool is N AL = 12 . The classification accuracy as a function of η and

λ for σ = 1 . 4 , 1 . 5 , 2 . 0 , and 2 . 3 is depicted in Fig. 2 . It is observed

that in the low variance (low noise) scenario, i.e. , Fig. 2 (a) and (b)

( σ = 1 . 4 and 1 . 5 , respectively), the best performance is obtained

for low values of λ and a combination of uncertainty and diversity

( η > 0). For instance, when σ = 1 . 4 , the best performance (99.1%)

is obtained for η = 5 . 0 × 10 −4 and λ = 0 . As the variance (noise)

increases, it is observed that the parameter λ becomes more rele-

vant, as shown in Fig. 2 (c) and (d) ( σ = 2 . 0 and 2 . 3 , respectively).

For instance, in Fig. 2 (d) the best performance is obtained for high

values of λ and low values of η, i.e. , the instances that are not rep-

resentative of the data (noise) are rejected by increasing the pa-

rameter λ and reducing the diversity weight η. The maximum per-
 p  
ormance for σ = 2 . 3 (90.2%) is obtained when η = 1 . 0 × 10 −4 and

= 7 . 0 . 

The synthetic database experiments demonstrate that the pa-

ameters η and λ effectively control the uncertainty, diversity,

nd representativeness of the selected instances, providing flex-

bility to the proposed approach. Moreover, it is observed that

PAL-LR outperforms other existing active learning approaches for

lassification. 

.2. Face and object recognition 

Experiments are conducted on two face databases, the Ex-

ended YaleB database [47] and the AR face database [48] , and

ne object recognition database, Caltech101 [49] . CPAL-LR is im-

lemented in conjunction with three different pattern classification



S. Matiz and K.E. Barner / Neurocomputing 388 (2020) 157–169 163 

496
3

10-48 26
4 1

98
C

la
ss

. A
cc

ur
ac

y 
(%

)

2
0

100

495
3

10-48 26
4 1

97

C
la

ss
. A

cc
ur

ac
y 

(%
)

2
0

99

(a) (b)

493
3

10-48 26
4 1

C
la

ss
. A

cc
ur

ac
y 

(%
)

2

94

0

489
3

10-48 26
4 1

C
la

ss
. A

cc
ur

ac
y 

(%
)

2

90

0

(c) (d)

Fig. 2. Classification accuracy (%) obtained through CPAL-LR (SVMs) as a function of η and λ, (a) σ = 1 . 4 (b) σ = 1 . 5 (c) σ = 2 . 0 (d) σ = 2 . 3 . 
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1 The Caltech101 subset includes the classes: ketch, chandelier, hawksbill, grand 

piano, brain, butterfly, helicopter, menorah, kangaroo, starfish, trilobit, buddha, 

ewer, sunflower, scorpion, revolver, laptop, ibis, llama, umbrella, crab, crayfish, 

cougar face, dragonfly, ferry, flamingo, and lotus. 
lgorithms: SVMs, sparse coding (LC-RLSDLA [42] ), and CNNs. We

ompare the performance improvement obtained through CPAL-LR

ith that of (rnd), AL(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-

BD), AL(MCLU-KBD), AL(GBMAL), AL(BatchRank), and AL(Sparse).

andom sampling is used as the baseline for the experiments,

nd parameter optimization is performed using grid search, as in

he synthetic database experiments. The grid is formed by val-

es η ∈ [0 . 01 × 10 −3 , 5 . 0 × 10 −3 ] and λ ∈ [0, 3.5] for the Extended

aleB and AR databases, and η ∈ [0.01, 0.2] and λ ∈ [0, 3.5] for

altech101. 

For each of the experiments in this section, five trials are con-

ucted. In each trial, the proper, calibration, training, and testing

ets are selected at random. For each trial, the best results are

elected after parameter optimization and the average classifica-

ion accuracy is presented. The calibration set consists of 199 in-

tances for all the experiments, which results in a resolution of

.5% in the confidence values calculated, according to Eq. (1) . The

arameter γ is set to 0.5 in the nonconformity measure given by

q. (10) . 

We provide a description of the considered databases and the

onfiguration of the pattern classification algorithms for each one

f them below. 

The Extended YaleB database consists of 2414 frontal-face images

f 38 people taken under varying lighting conditions. There are

bout 64 images for each person. For SVMs, the OVA approach is

sed. For LC-RLSDLA, the dictionary size is 190 (5 atoms per class).

or this database, the proper training set T prop consists of eight im-

ges per class, and the size of the unlabeled pool is | U| = 912 .

he feature descriptors used for SVMs and LC-RLSDLA are ran-

omfaces [57] of size N = 504 . For CNNs, the original images are
eshaped to 32 × 32 pixels. The CNN architecture used for this

atabase is described in Table 2 . Example images from the Ex-

ended YaleB database are shown in Fig. 3 (a). 

The AR database contains over 40 0 0 frontal-face images of 100

eople, including facial variations and also disguises, such as sun-

lasses and scarves. For SVMs, the OVA approach is used. For

C-RLSDLA, the dictionary size is 400 (4 atoms per class). For this

atabase, the proper training set T prop consists of five images per

lass, and the size of the unlabeled pool is | U| = 1200 . The feature

escriptors used for SVMs and LC-RLSDLA are randomfaces of size

 = 540 . For CNNs, the original images are converted to greyscale

nd reshaped to 50 × 50 pixels. The CNN architecture used for

his database is described in Table 3 . Example images from the Ex-

ended YaleB database are shown in Fig. 3 (b). 

The Caltech101 database contains 9144 images from 102 classes

101 object classes and a background class) including animals, ve-

icles, flowers, etc. The number of images in each category varies

rom 31 to 800. The samples within the same category display

onsiderable shape variability. A subset of images from 30 differ-

nt classes is used in our experiments, 1 which accounts for a to-

al of 2475 images. For SVMs, the OVA approach is used. For LC-

LSDLA, the dictionary size is 300 (10 atoms per class). For this

atabase, the proper training set T prop consists of ten images per

lass, and the size of the unlabeled pool is | U| = 900 . For SVMs

nd LC-RLSDLA, the SIFT descriptors are first extracted. Next, spa-
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Fig. 3. Images from (a) extended YaleB database and (b) AR database. 

 

 

 

Table 2 

CNN architecture for the Extended YaleB database. 

Layers Filter size Stride Padding Output 

W × H × L 

Input – – – 32 × 32 × 1 

Conv-ReLU 5 × 5 1 0 14 × 14 × 25 

Avg_pool 2 × 2 2 

Conv-ReLU 5 × 5 1 0 10 × 10 × 65 

Avg_pool 2 × 2 2 

FC-ReLU dropout – – – 400 

FC-Softmax – – – 38 

Table 3 

CNN architecture for the AR database. 

Layers Filter size Stride Padding Output 

W × H × L 

Input – – – 50 × 50 × 1 

Conv-ReLU 7 × 7 1 0 22 × 22 × 15 

Avg_pool 2 × 2 2 

Conv-ReLU 7 × 7 1 0 8 × 8 × 45 

Avg_pool 2 × 2 2 

FC-ReLU dropout – – – 500 

FC-Softmax – – – 100 

Table 4 

CNN architecture for the Caltech101 database. 

Layers Filter size Stride Padding Output 

W × H × L 

Input – – – 32 × 32 × 1 

Conv-ReLU 5 × 5 1 0 14 × 14 × 30 

Avg_pool 2 × 2 2 

Conv-ReLU 5 × 5 1 0 10 × 10 × 60 

Avg_pool 2 × 2 2 

FC-ReLU – – – 200 

FC-Softmax – – – 30 

g  

u  

t

tial pyramid features are obtained from the SIFT descriptors. Then,

the dimensionality of the resulting features is reduced to 30 0 0

through PCA [34] . For CNNs, the original images are converted to
Fig. 4. Images from the C
reyscale and reshaped to 32 × 32 pixels. The CNN architecture

sed for this database is described in Table 4 . Example images from

he Caltech101 database are shown in Fig. 4 . 
altech101 database. 
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Fig. 5. Classification accuracy (%) using different active learning techniques as a function of the number of selected instances N AL (a) YaleB (LC-RLSDLA) (b) AR (LC-RLSDLA) 

(c) Caltech101 (LC-RLSDLA) (d) YaleB (SVM) (e) AR (SVM) (f) Caltech101 (SVM) (g) YaleB (CNN) (h) AR (CNN) (i) Caltech101 (CNN). 
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.3. Results: CPAL-LR for face and object recognition 

The performance of CPAL-LR, along with that of the considered

ctive learning approaches, as a function of the number of selected

nstances N AL , for the different algorithms and databases, is shown

n Fig. 5 . It is observed that the performance of the different

attern classification algorithms is significantly improved through

ctive learning, for all the considered databases. Notice that the

erformance of CPAL-LR compares favorably with that of the other
ctive learning techniques. This demonstrates the effectiveness of

he proposed approach. 

The results for the Extended YaleB database in Fig. 5 (a) (LC-

LSDLA) show that the biggest performance gain is obtained by

PAL-LR for N AL = 300 . Table 5 shows that for N AL = 300 the

lassification accuracy of (rnd), AL(MCLU), AL(CBD), AL(MCLU-

CBD), AL(MCLU-ABD), AL(MCLU-KBD), AL(GBMAL), AL(BatchRank), 

nd AL(Sparse) is 83.7%, 86.1%, 86.3%, 86.7%, 87.0%, 86.8%, 86.9%,

6.8%,and 86.7%, respectively, whereas that of CPAL-LR is 87.3%. 
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Table 5 

Classification accuracy (%) using different active learning techniques as a function of the number of selected instances N AL . 

Algorithm Query function YaleB AR Caltech101 

300 400 500 300 400 500 200 300 400 

LC-RLSDLA (rnd) 83.7 84.8 85.8 78.5 79.0 79.9 68.3 69.1 69.9 

AL(MCLU) 86.1 87.3 87.7 78.0 79.4 79.5 69.3 69.2 71.0 

AL(CBD) 86.3 87.3 87.8 78.7 79.4 80.3 69.4 69.5 71.1 

AL(MCLU-ECBD) 86.7 87.4 87.7 78.8 79.6 80.5 69.6 69.9 71.5 

AL(MCLU-ABD) 87.0 87.5 88.0 79.5 81.2 81.4 69.7 70.8 72.0 

AL(MCLU-KBD) 86.8 87.4 87.9 79.3 80.6 81.0 69.5 70.4 71.8 

AL(GBMAL) 86.9 87.4 87.9 79.6 80.9 81.5 69.7 70.9 71.9 

AL(BatchRank) 86.8 87.2 87.7 79.5 81.1 81.4 69.5 70.7 72.0 

AL(Sparse) 86.7 87.3 87.8 79.7 81.1 81.2 69.9 70.5 71.7 

CPAL-LR 87.3 87.8 88.1 80.2 81.7 82.2 70.6 71.3 72.6 

SVM (rnd) 85.3 88.0 89.6 85.2 87.1 89.0 70.5 71.9 73.2 

AL(MCLU) 86.2 88.2 89.9 84.9 87.2 89.1 71.0 74.2 74.6 

AL(CBD) 86.2 88.4 90.1 85.5 87.6 90.2 71.2 74.2 74.6 

AL(MCLU-ECBD) 86.3 88.5 90.0 85.8 87.9 90.5 71.4 74.5 74.8 

AL(MCLU-ABD) 87.2 88.6 90.4 86.2 88.2 90.4 72.8 74.9 76.6 

AL(MCLU-KBD) 87.3 89.1 90.5 86.1 88.4 90.3 71.9 75.0 76.7 

AL(GBMAL) 87.5 89.2 90.7 86.3 88.7 90.9 72.5 75.0 76.6 

AL(BatchRank) 87.4 89.2 90.6 86.5 88.9 90.8 72.7 75.1 76.8 

AL(Sparse) 87.2 89.2 90.5 86.4 88.5 90.6 72.6 74.9 77.0 

CPAL-LR 88.0 89.6 90.9 87.1 89.5 91.2 73.8 75.5 77.3 

CNN (rnd) 68.4 72.8 76.7 61.7 68.5 71.0 57.8 60.4 61.7 

AL(MCLU) 72.1 76.3 80.9 64.9 72 73.9 58.7 59.9 62.8 

AL(CBD) 72.9 76.9 81.0 65.1 72.3 73.9 58.9 59.2 62.1 

AL(MCLU-ECBD) 73.9 77.5 82.8 67.7 72.5 74.0 59.1 60.7 63.2 

AL(MCLU-ABD) 76.0 80.0 81.7 68.7 72.5 77.5 59.4 61.6 63.6 

AL(MCLU-KBD) 76.1 80.7 83.5 68.2 72.0 76.9 59.0 61.9 63.5 

AL(GBMAL) 76.2 80.5 83.4 68.9 73.1 77.7 59.5 61.9 63.7 

AL(BatchRank) 76.0 80.4 83.5 68.6 72.9 77.4 59.6 62.1 63.6 

AL(Sparse) 74.4 80.0 82.2 67.7 71.8 76.4 59.3 61.5 63.9 

CPAL-LR 76.6 81.1 84.3 70.1 75.1 79.9 60.5 63.0 64.8 
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Fig. 6. Classification accuracy (%) obtained through CPAL-LR (SVMs) as a function of η and λ, (a) YaleB ( N AL = 600 ), (b) AR ( N AL = 100 ), (c) Caltech101 ( N AL = 400 ). 
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The results for the AR database in Fig. 5 (h) (CNNs) show that

the largest performance gain is obtained when CPAL-LR is ap-

plied for N AL = 500 , which is about 9.0%, with respect to random

sampling. It can also be seen that the performance of CPAL-LR

is highest among all the considered approaches for the different

values of N AL . For instance, for N AL = 500 , the classification accu-

racy of (rnd), AL(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-ABD),

AL(MCLU-KBD), AL(GBMAL), AL(BatchRank), and AL(Sparse) is

71.0%, 73.9%, 73.9%, 74.0%, 77.5%, 76.9%, 77.7%, 77.4%, and 76.4%,

respectively, whereas that of CPAL-LR is 79.9%. 

Similar results are obtained for Caltech101, as shown in Fig. 5 (f)

(SVMs). For instance, for N AL = 200 , the largest performance im-

provement is obtained when CPAL-LR is applied, which is about

3.3%, with respect to random sampling. The classification ac-

curacy of (rnd), AL(MCLU), AL(CBD), AL(MCLU-ECBD), AL(MCLU-

BD), AL(MCLU-KBD), AL(GBMAL), AL(BatchRank), and AL(Sparse)
s 70.5%, 71.0%, 71.2%, 71.4%, 72.8%, 71.9%, 72.5%, 72.7%, and 72.6%,

espectively, whereas that of CPAL-LR is 73.8%. 

Fig. 6 shows the classification accuracy of CPAL-LR (SVMs) as

 function of the parameters η and λ for the Extended YaleB, AR,

nd Caltech101 databases (average over the five trials for the dif-

erent values of η and λ). It is observed that the best performance

s obtained for a combination of uncertainty, diversity, and repre-

entativeness, i.e., η, λ ≥ 0, for all the considered databases. For the

xtended YaleB database ( N AL = 600 ), the best performance is ob-

ained in the region λ ∈ [0, 2] and η ∈ [3 . 0 × 10 −3 , 5 . 0 × 10 −3 ] , and

he classification accuracy peaks when η = 4 . 0 × 10 −3 and λ = 1 . 0

91.9%). For the AR database ( N AL = 100 ), the best performance

s obtained in the region λ ∈ [1, 2] and η ∈ [2 . 0 × 10 −3 , 4 . 0 ×
0 −3 ] , and the classification accuracy peaks when η = 3 . 0 × 10 −3 

nd λ = 1 . 5 (80.7%). For Caltech101 ( N AL = 200 ), the best perfor-

ance is obtained in the region λ ∈ [2.5, 3.5] and η ∈ [5 . 0 ×
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Fig. 7. Performance of the proposed nonconformity measure for ε = 0 . 1 as a function of the parameter γ ∈ [0, 1] using different metrics (a) ValE (b) SinP (c) AvgC. 
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0 −2 , 1 . 0 × 10 −1 ] , and the classification accuracy peaks when η =
 . 0 × 10 −2 and λ = 3 . 0 (76.9%). Similar results are obtained for LC-

LSDLA and CNNs. 

The results on face and object recognition show that CPAL-

R improves the performance of several pattern classification

lgorithms across different databases, outperforming other state-

f-the-art active learning techniques. 

.4. Results: quality of CPAL-LR confidence values 

In this section, the quality of the confidence values produced

y CPAL-LR (through Algorithm 2 ) is compared with that of the

onfidence values obtained through the hinge and margin noncon-

ormity measures, which are given by A 

(H q ) 

hinge 
:= 1 − max i =1 , ... ,M, o 

(i ) 
j 

,

nd A 

(H q ) 

margin 
:= −o 

(q ) 
j 

+ max i =1 , ... ,M,i � = q o 
(i ) 
j 

, respectively. Notice that

he hinge and margin nonconformity measures are particular cases

f the proposed nonconformity measure described by Eq. (10) ,

hen γ = 1 . 0 and γ = 0 . 5 , respectively. Experiments are per-

ormed for SVMs, LC-RLSDLA, and CNNs on the Extended YaleB, AR,

nd Caltech101 databases. Different significance levels, ε ∈ [0, 1],

re used yielding different prediction sets �ε
n + j , for test instances

 n + j . The quality of the CPAL-LR confidence values is demonstrated

sing three metrics [9,58] : 

• ValE : The percentage of errors measured as the number of

times the correct label for instances x n + j is not in �ε
n + j ,

for a given ε, divided by the total number of test in-

stances [9] (ValE ≈ ε, according to the validity property) 

• SinP : The proportion of all predictions that are singletons, i.e.,

instances x n + j that produce | �ε
n + j | = 1 , for a given ε ∈ [0, 1].

The motivation for this metric is that singleton predictions are

the most informative [58] (high SinP is preferable). 

• AvgC : The average number of class labels in the prediction sets

�ε
n + j , as a percentage of the total number of classes, i.e. , a di-

rect measure of how good the model is at rejecting class labels

(low AvgC is preferable) 

Fig. 7 shows the performance of the proposed nonconformity

easure, as a function of the parameter γ ∈ [0, 1], using the three

forementioned metrics, for ε = 0 . 1 . It is observed in Fig. 7 (a) that

alE fluctuates around 10%, for the different values of λ, across

ll the considered pattern classification algorithms and databases,
hich agrees with the validity property (ValE ≈ 10%). The pa-

ameter γ can be adjusted to obtain the desired performance.

or instance, when γ = 0 . 3 (LC-RLSDLA, YaleB), ValeE = 10.1%. For

VMs (Caltech101, γ = 0 . 1 ), ValeE = 10.0%. For CNNs (AR, γ = 0 . 9) ,

aleE = 10.7%. This demonstrates the usefulness of the CPAL-LR con-

dence values. 

Fig. 7 (b) shows the behavior of singleton predictions as a func-

ion of γ (SinP). It is observed that SinP behaves differently across

he considered pattern classification algorithms. The results in

ig. 7 (b) show that SVMs obtain the highest number of singleton

redictions, followed by CNNs and LC-RLSDLA, respectively. For the

xtended YaleB database, the production of singleton predictions

eaks when γ = 0 . 1 , γ = 0 . 4 , and γ = 0 . 2 for LC-RLSDLA (32.9%),

VMs (84.9%), and CNNs (52.1%), respectively. 

The average number of class labels in the prediction sets, as

 percentage of the total number of classes (AvgC), is shown in

ig. 7 (c), for different values of γ . The results show that LC-RLSDLA

nd SVMs produce more discriminative sets �ε than CNNs (low

vgC). For the AR database, AvgC reaches its minimum when γ =
 . 1 , γ = 0 . 7 , and γ = 1 . 0 for LC-RLSDLA (3.0%), SVMs (1.0%), and

NNs (3.8%), respectively. 

The performance results of the hinge, margin, and CPAL-LR non-

onformity measures are summarized in Table 6 . For CPAL-LR, the

est results are shown (from those obtained using different values

f γ ). Table 6 shows that CPAL-LR achieves similar or better per-

ormance than that obtained through the hinge and margin non-

onformity measures, for the considered performance metrics. 

. Conclusion 

A conformal prediction based active learning algorithm is pre-

ented in this work. The proposed approach uses a novel query

unction that determines the relevance of unlabeled instances

hrough the solution of a constrained linear regression model, in-

orporating uncertainty, diversity, and representativeness in the

ptimization problem. 

CPAL-LR is implemented in conjunction with three different

attern classification algorithms: SVMs, sparse coding (LC-RLSDLA),

nd CNNs. Experiments conducted on face and object recognition

atabases show that CPAL-LR outperforms previous work on active

earning, improving performance across different pattern classifica-

ion techniques and databases. 
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Table 6 

Performance of hinge, margin, and CPAL-LR nonconformity measures. 

Algorithm Database Confidence (%) Performance (%) 

Hinge Margin CPAL-LR 

ValE SinP AvgC ValE SinP AvgC ValE SinP AvgC 

LC-RLSDLA YaleB 98 2.9 0.0 28.5 2.5 0.0 27.5 2.0 3.8 24.2 

95 5.8 0.9 10.8 5.7 2.4 8.6 5.0 11.6 7.6 

90 10.2 13.5 4.5 10.5 18.0 3.7 10.1 32.9 3.4 

AR 98 2.7 0.0 26.0 2.8 0.0 27.3 2.7 2.0 26.0 

95 5.4 0.0 15.8 5.4 0.0 15.8 5.3 8.7 15.3 

90 10.0 7.7 3.9 9.9 6.8 4.0 10.0 18.9 3.0 

Cal101 98 2.4 0.0 21.1 2.7 0.0 20.5 2.2 3.7 19.9 

95 5.3 0.0 15.2 4.9 0.2 11.9 5.0 6.4 11.9 

90 8.8 0.2 9.2 9.9 0.2 7.2 9.9 9.9 6.9 

SVM YaleB 98 1.8 0.4 22.2 2.5 56.2 13.9 2.2 63.4 12.4 

95 4.9 3.8 7.7 5.4 69.4 9.5 5.0 72.5 7.7 

90 10.8 24.7 3.2 10.7 84.2 4.7 10.5 84.9 3.1 

AR 98 2.4 10.2 6.7 1.8 85.3 11.4 2.0 85.3 6.1 

95 4.6 21.1 2.9 4.5 88.9 7.5 5.0 88.9 2.9 

90 9.8 74.7 1.2 8.6 94.2 3.2 10.0 94.2 1.0 

Cal101 98 2.5 0.0 16.3 2.7 25.5 8.8 2.3 46.3 8.8 

95 5.1 0.4 12.3 5.5 32.0 6.3 5.0 50.1 6.3 

90 10.1 1.2 5.1 10.2 39.9 4.2 10.0 59.2 3.4 

CNN YaleB 98 2.6 8.5 44.1 2.2 25.4 73.1 2.0 28.3 44.1 

95 5.1 9.9 40.8 5.0 42.4 55.8 5.0 47.1 40.8 

90 8.9 23.9 20.0 8.8 48.4 48.9 9.2 52.1 20.0 

AR 98 2.1 9.5 16.1 1.7 36.8 59.5 2.1 39.9 16.1 

95 4.3 18.9 8.8 6.2 58.5 38.0 4.3 62.1 8.8 

90 10.8 37.9 3.8 11.2 68.4 27.6 10.7 73.3 3.8 

Cal101 98 2.8 0.0 71.1 2.5 0.4 63.0 1.7 2.9 63.0 

95 6.5 0.0 56.8 5.9 0.8 54.1 5.2 6.3 46.8 

90 10.2 0.0 35.1 9.8 2.0 40.2 10.1 13.3 33.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition to performance enhancement, CPAL-LR produces re-

liable confidence values that are used to predict class labels with

guaranteed error rate. Experimental results show that CPAL-LR

achieves similar or better performance than that obtained using

previously proposed nonconformity measures. 
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