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a b s t r a c t

To construct biologically interpretable gene sets for muscular dystrophy (MD) sub-type classification,

we propose a novel computational scheme to integrate protein–protein interaction (PPI) network,

functional gene set information, and mRNA profiling data. The workflow of the proposed scheme

includes the following three major steps: firstly, we apply an affinity propagation clustering (APC)

approach to identify gene sub-networks associated with each MD sub-type, in which a new distance

metric is proposed for APC to combine PPI network information and gene–gene co-expression

relationship; secondly, we further incorporate functional gene set knowledge, which complements

the physical PPI information, into our scheme for biomarker identification; finally, based on the

constructed sub-networks and gene set features, we apply multiclass support vector machines

(MSVMs) for MD sub-type classification, with which to highlight the biomarkers contributing to sub-

type prediction. The experimental results show that our scheme can help identify sub-networks and

gene sets that are more relevant to MD than those constructed by other conventional approaches.

Moreover, our integrative strategy improves the prediction accuracy substantially, especially for those

‘hard-to-classify’ sub-types.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The muscular dystrophy (MD) [1] is a group of inherited
muscle diseases characterized by progressive muscle wasting
and weakness, consisting of several sub-types with different
severity. Although many MD-related defective genes and proteins
have been identified, no effective treatments are known yet for
many sub-types of MD as their disease pathways are not clearly
understood. The availability of high throughput gene expression
data provides us the opportunity to elucidate disease pathways
involved in MD progression, which is an important task in
computational biology aiming for disease biomarker discovery.

Traditional disease biomarker discovery is usually performed
by individual gene based classification approaches [2], which
ignore the internal relationship among genes, and thus encounter
the curse-of-dimensionality problem [3]. Many computational
efforts have been put in to address this problem by incorporating
biological knowledge. For examples, several supervised approaches
[4–6] were proposed to identify phenotype-specific PPI sub-net-
works so as to reveal related genetic pathways or predict clinical
ll rights reserved.

@vt.edu (S. Ha),
outcomes. Functional gene set categorization was also combined
with clinical information to classify disease samples [7]. However,
these methods, which are based on supervised learning, could easily
overlook many important biomarkers that only mildly correlate
with phenotype label only but have strong relevance to the disease
status.

To address the aforementioned drawbacks of conventional
approaches, we propose an integrative scheme in this paper to
fully utilize available biological knowledge such as protein–
protein network and functional gene set information to construct
biologically interpretable features for sub-type classification. The
workflow of the proposed scheme is shown in Fig. 1. Specifically,
we use a modified affinity propagation clustering (APC) approach
[8] for sub-network identification, incorporating both topological
adjacency and expression similarity into the calculation of distance
between genes. By doing so, we aim to identify sub-networks
comprising genes with consistent activities in the local regions of
PPI network. Besides the physical interaction information from PPI,
we also use functional gene set knowledge to argument biomarker
features, since functional interactions among genes also play impor-
tant roles in cellular systems. Using both sub-network and func-
tional gene set as features, we then construct classifiers to predict
the MD sub-types in a biologically interpretable way, i.e, sub-type
specificities are reflected in the abnormal activities of differentially
expressed sub-networks and functional gene sets. We have applied
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Fig. 1. Workflow of the proposed integrative analysis scheme.

Fig. 2. Different levels in the development of disease.

Fig. 3. Message passing of APC.
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the proposed scheme to a gene expression dataset with six different
MD sub-types for their improved diagnostics. Experimental results
show that the sub-networks identified by our scheme are comprised
of multiple important pathways related to MD. Moreover, the
prediction accuracy has been substantially improved, especially for
those sub-types that are difficult to classify.
2. Methods

2.1. Sub-network construction using affinity propagation clustering

(APC)

2.1.1. Protein–protein interaction (PPI) information

Proteins collaborate with each other to perform various types of
molecular functions and PPI network structure provides potential
interaction information of proteins. As the alternation of protein
interactions could contribute to diseases onset or progression, a
better understanding of disrupted protein sub-networks is essential
for the study of disease systems and biomarker discovery. However,
there are limitations associated with available PPI information. First,
current PPI measurements are quite noisy and every existing
technique for PPI information acquisition has its own limitations [9].
Second, PPI only provides the static information of protein interac-
tions and cannot reflect the dynamics of protein interactions in
cellular systems. Therefore, it is necessary to incorporate other data
types such as gene expression in order to identify condition-specific
sub-networks.

Current computational approaches using PPI information can be
categorized into three types: The first type is to identify protein
complexes, by extracting densely connected modules [5]; the second
type is to reveal condition specific gene modules utilizing both
phenotype label information and gene expression data [4,6]; the
third type is to define gene modules by using unsupervised cluster-
ing approaches [10].

Supervised learning is a common approach to discover biomar-
kers that differentiate phenotypes. However, such an approach is
mainly focused on the disease outcomes, and may easily overlook
the disease mechanisms underneath. As shown in Fig. 2, human
diseases such as cancers are usually caused by genetic and environ-
mental factors through multiple intertwined biological functions. If
we focus only on the difference in clinical outcomes, we may lose
the important information about the coherence of gene activities
and their functional roles. For example, in tumor progression,
metabolic activities are the most differentiable signals associated
with clinical outcomes but provide limited information for us to
understand the underlying mechanism of disease. Another example
can be found in our MD study, where the muscle degeneration
activity can be successfully used for the diagnostic purpose but hard
to be used for the treatment purpose. Aiming to identify biologically
informative sub-network biomarkers, we propose to construct sub-
networks without using clinical label information directly. Instead,
we will use clinical information later in classifiers to highlight MD
sub-type specific sub-networks.
2.1.2. Affinity propagation clustering (APC)

Before we describe our sub-network construction method, we
will briefly explain the affinity propagation clustering (APC) algo-
rithm in this section. Given a set of data points P¼ fp1, . . . ,pNg and
function Sði,jÞ calculating the similarity between pi and pj, the goal
of affinity propagation clustering is to find a mapping function gð�Þ

that maximizes the energy function Eg defined as

Eg ¼
XN

i ¼ 1

Sði,gðiÞÞ�
XN

i ¼ 1

wiðgÞ: ð1Þ

The second term in Eq. (1) represents a consistency constraint
such that if one data point is an exemplar for other data points, it
has to be its own exemplar [8].

The energy function can be optimized through message
passing among different data points, and there are two types of
messages (as shown in Fig. 3): ‘‘availability’’ aði,kÞ represents the
accumulated evidence for pk to be selected as the exemplar for pi;
‘‘responsibility’’ rði,kÞ tells that how suitable pk acts as the
exemplar of pi. The values of these two messages are iteratively
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updated as follows:

rðk,kÞ ¼ Sðk,kÞ� max
k0 ,k0ak

fSðk,k0Þg, ð2Þ

rði,kÞ ¼ Sði,kÞ� max
k0 ,k0ak

faði,k0ÞþSði,k0Þg, ð3Þ

aði,kÞ ¼min 0,rðk,kÞþ
X

i0 ,i0a i,k

maxf0,rði0,kÞg

8<
:

9=
;, ð4Þ

aðk,kÞ ¼
X

i0 ,i0ak

maxf0,rði0,kÞg: ð5Þ

Once the algorithm is converged, the index of the most appro-
priate exemplar for i-th data point is determined by the following
formula:

gðiÞ ¼ arg max
k

frði,kÞþaði,kÞ,k¼ 1 . . .Ng: ð6Þ

The message passing algorithm of APC involves pair-wise dis-
tance calculations, which can incur high computational complexity
if the number of data points N is large, thus hinder its applicability
to gene clustering; note that APC has been used for microarray
sample grouping [11] but not for gene clustering. But with the help
of PPI data, the computation load of APC will be greatly reduced
since the interactions between proteins are sparse even when the
indirectly connected interactions are considered.

In APC, every data point within one cluster can be ‘‘repre-
sented’’ by a common exemplar, which is also a data point. Such
exemplar-member relationship resembles the gene module net-
work, where a hub gene interacts with other genes in a module.
The hub gene can be a key regulator affecting or coordinating the
activities of other genes. Such resemblance motivates us to
exploit APC to reveal gene modules by incorporating PPI into
the gene-gene relevance calculations.

Let pi ¼ ½p1i, . . . ,pLi�
T be the expression vector of i-th gene

across L microarray samples and pli is its gene expression level
in l-th microarray sample. Then the correlation coefficient rðpi,pjÞ

between expression vectors of i-th and j-th genes can be defined
as follows:

rðpi,pjÞ ¼

PL
k ¼ 1ðpki�mpi

Þðpkj�mpj
Þ

ðL�1Þspi
spj

: ð7Þ

Here, mpi
, mpj

, spi
and spj

are the means and standard devia-
tions of i-th and j-th expression vectors, respectively. If we only
focus on the similarity of expression vectors regardless of up or
down regulation of genes, we can measure the relevance Sði,jÞ
between two genes i and j using the following formula:

Sði,jÞ ¼
9rðpi,pjÞ9

dgij
: ð8Þ

Here, dij can be any topological distance metric between i-th
and j-th genes based on PPI network structure [12], and g is a
weight to control the influence of distance to Sði,jÞ. In this paper,
we adopt the shortest distance to calculate d and set g¼ 1 for
simplicity. If one wishes to tell up- from down-regulated genes,
the relevance in (8) can be modified as following:

Sði,jÞ ¼
rðpi,pjÞþ1

2dgij
: ð9Þ

In both (8) and (9), the relevance is bounded between 0 and 1,
with 1 indicating the highest relevance and 0 the lowest. Notice
that (9) is more favorable in practice if we need to further
combine expression patterns to construct features, as there is
no ambiguity of signs.
2.1.3. Significance analysis of identified sub-networks

Unlike conventional clustering methods, sub-networks learned
by the proposed scheme can be statistically evaluated using
significance analysis. Without label information, it is infeasible
to design significance analysis for traditional clustering, and the
confidence of resulting clusters cannot be statistically evaluated.
In contrast, our proposed scheme is semi-supervised by PPI
information, therefore we can shuffle the PPI and gene corre-
sponding relationship to assess the reliability of identified sub-
networks. Let us define a statistic to measure the compactness of
one sub-network as follows:

ce ¼
1

M�1

XM
i ¼ 1

Sði,eÞ, ð10Þ

where e is the exemplar gene index, M is the number of genes
within a sub-network, and Sði,eÞ measures the relevance between
i-th gene and its hub (or, ‘‘exemplar’’). Using randomly shuffled
PPI information, we construct sub-networks and calculate their
compactness. A sufficiently large number of random shuffling
(e.g. 10,000) is required to construct the null distribution. Based
on the null distribution, we can calculate the significance value,
i.e, p-value, as follows. Letting fcn

1, . . . ,cn
Rg be the compactness

measurements generated by R times of random shuffling, the
empirical null distribution FR(t) can then be defined by the
following equation:

FRðtÞ ¼
number of elements rt

R
¼

1

R

XR

r ¼ 1

1fcn

r rtg, ð11Þ

in which, 1fAg is the indication of event A. Based on the empirical
null distribution, we define the p-value of an observed compact-
ness measurement ce as follows:

p-valueðceÞ ¼ 1�FRðceÞ: ð12Þ

2.2. Feature construction and classification

2.2.1. Feature constructions

As the PPI information has been exploited for sub-network
construction, what we eventually have are multiple gene sub-sets
based on identified sub-networks. We first standardize expression
level of each gene as z-score [13]

zli ¼
pli�mpi

spi

, ð13Þ

where mpi
and spi

are the mean and standard deviations of i-th
expression vector, respectively. For the m-th gene sub-set Gm with
Nm gene members, we compute the activity of this gene sub-set in
the l-th microarray sample as the aggregated expression of gene
members [6,4]

actlm ¼
1ffiffiffiffiffiffiffi
Nm

p
X

iAGm

zli: ð14Þ

These gene sub-set activities will be calculated for each
individual microarray sample and treated as the features for
classification. We also incorporate functional gene sets, as defined
from other biological knowledge databases, into the features to
take into account the functional interactions between genes.
Instead of using all the genes within a functional gene set, we
apply a variance based filtering to eliminate the genes with less
variance that are more likely to have low signal quality. For each
functional gene set, we map gene symbols to probe set ids, and
select the sub-set of probe set ids that have relatively large
expression variation across all microarray samples. We define
the activity of each new gene set by taking the average of the
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standardized expressions of all genes belonging to the same set,
just like what the activity for our sub-networks is calculated.

2.2.2. Classification techniques

For our MD prediction study, we used three commonly used
classification techniques: K-Nearest-Neighbor (KNN), Decision
Tree (DT), and Support Vector Machine (SVM). KNN is a non-
parametric method that can describe nonlinear decision bound-
aries for classification, and we include it to investigate whether
there is any nonlinearity among different MD sub-types. DT is an
approach that can be used to establish tree-like models to for
classification or prediction. Since clustering analysis of MD
microarray data [14] has already revealed the hierarchical struc-
ture among different MD sub-types, we want to further investi-
gate if tree based models can also facilitate classification of MD
sub-types. We also use SVM classifier for this study since it is less
prone to the curse-of-dimensionality problem intrinsic to the
high dimensional microarray data [3]. While KNN and DT algo-
rithms can naturally handle multiclass prediction, the SVM
algorithm was originally designed to perform binary classifica-
tion, and later extended to handle multiclass prediction as well,
using one-versus-one (OVO) or one-versus-all (OVA) strategy. In
our study, we use the OVA strategy to construct multiclass SVM
(MSVM), because the OVA strategy has been reported to perform
better than the OVO strategy for classifying microarray datasets
with small number of samples [15]. The performance difference
can be partially explained by the fact that OVO-MSVM only uses a
portion of the training data to construct each binary classifier,
thus the resulting classifiers can be more subject to the over-
fitting problem.
3. Experiments

3.1. Muscular dystrophy

Before we explain the microarray gene expression data used in
this muscular dystrophy (MD) study, we will briefly describe
some clinical background of MD diseases. Muscular dystrophy
refers to a group of more than 30 genetic muscle diseases
characterized by progressive skeletal muscle weakness, defects
in muscle proteins, and the death of muscle cells and tissue. The
onset of some MD types is in infancy or childhood, while others in
middle age or later. The disorders differ in terms of the distribu-
tion and extent of muscle weakness, rate of progression, and
pattern of inheritance. Among them, Duchenne Muscular Dystro-
phy (DMD) is known as the most common and fatal form
primarily affecting boys, while myotonic MD is the most common
form affecting adults. Becker MD (BMD) is similar to DMD but the
symptom is less severe. There are no known cures and no specific
treatments for any form of MD, and thus the goal of this MD
profiling study is to gain a better understanding of MD sub-types
so as to enable the development of novel techniques to diagnose,
Table 1
Six MD sub-types and control in the MD dataset.

Class index Types of muscular dystrophy

1 CTRL—Control

2 BMD—Becker muscular dystrophy

3 DMD—Duchenne muscular dystrophy

4 DYS—Dysferlin deficiency; also known as limb-g

5 FKRP—Dystrophy related with fukutin-related p

6 TITIN—Dystrophy related with the TITIN protein

7 ALS—Amyotrophic lateral sclerosis; also known

All Total number of samples
treat, prevent, and ultimately cure this disorder. In this paper, we
will focus on computational analysis of six MD sub-types con-
sisting DMD, BMD, dysferlin deficiency (DYS), dystrophy related
with fukutin-related protein defect (FKRP), dystrophy related
with the TITIN protein encoded by mutated TTN gene (TITIN),
and amyotrophic lateral sclerosis (ALS) (see Table 1).

3.2. Dataset description

We analyze a microarray dataset acquired by Children’s
National Medical Center (CNMC). The dataset consists of 68
microarray samples based on Affymetrix U133-plus2 platform.
The disease group consists of 62 samples of six MD sub-types, and
the control group consists of six ‘normal’ samples. A brief
summary of the dataset is given in Table 1. PPI information
comprising 9303 proteins and 35,000 protein interactions is
collected from the Human Protein Reference Database (HPRD)
[16], which contains manually curated physical interactions
among proteins. 639 functional gene sets are retrieved from
Molecular Signatures Database (MSigDB) (http://www.broadinsti
tute.org/gsea/msigdb/) to take into account the functional inter-
actions between genes.

3.3. Differentially expressed sub-networks and gene sets

By applying our proposed scheme to the MD dataset, we
identified 122 sub-networks for this MD study. For a comparison,
we also applied PinnacleZ, the software implementation of
Chuang’s algorithm [4] PinnacleZ (http://chianti.ucsd.edu/
�slotia/pinnaclez/help.html), to the same dataset for sub-net-
work identification. PinnacleZ uses a phenotype label guided
approach to identify sub-networks, and follows a heuristic strat-
egy to search for phenotype associated sub-networks. It starts
from a sub-network consisting of only one selected seed gene, and
gradually includes the adjacent genes in PPI network by examin-
ing whether including additional genes will increase the associa-
tion score (i.e., mutual information), which is measured by the
relationship between averaged gene expression pattern and
phenotype labels. It keeps growing the network until the associa-
tion score stops increasing or its increasing falls below a certain
threshold. Afterwards, statistical assessments are performed
extensively to filter out irrelevant sub-networks with non-sig-
nificant association scores. With the same p-value cut-off used in
our proposed approach, PinnacleZ only finds 34 sub-networks
which is only 28% of the 122 sub-networks identified by our
approach. In addition, the sizes of the individual sub-networks
constructed by the PinnacleZ method are smaller than those
constructed by our proposed approach (i.e. APC). 41 (34%) APC
identified sub-networks have six to ten genes and 46 (37%) have
eleven or more gene members. But 79% of PinnacleZ identified
sub-networks have six to ten genes, and none has more than ten
genes. The summary of comparison is given in Table 2. The
difference in the sub-network size (constructed by the two
No. of samples

6

14

17

irdle muscular dystrophy 2B (LGMD 2B) 10

rotein defect 9

encoded by mutated TTN gene 5

as Lou Gehrig’s disease 7

68

http://www.broadinstitute.org/gsea/msigdb/
http://www.broadinstitute.org/gsea/msigdb/
http://chianti.ucsd.edu/~slotia/pinnaclez/help.html
http://chianti.ucsd.edu/~slotia/pinnaclez/help.html


Table 2
Comparison of sub-network size identified by the proposed APC scheme and

PinnacleZ method.

Methods No. of genes in sub-networks

225 6210 Z11 Total

PinnacleZ 7 (21%) 27 (79%) 0 (0%) 34 (100%)

APC 35 (29%) 41 (34%) 46 (37%) 122 (100%)

Table 3
MD related pathways captured by (A) the APC identified sub-networks, and

(B) PinnacleZ identified sub-networks.

KEGG pathway term No. of genes/p-value

(A)

Cell adhesion molecules (CAMs) 24/9.15E�06

ECM–receptor interaction 17/4.88E�04

Hematopoietic cell lineage 16/9.51E�04

Focal adhesion 25/1.89E�03

Fc epsilon RI signaling pathway 14/1.90E�03

Natural killer cell mediated cytotoxicity 19/2.23E�03

B cell receptor signaling pathway 12/8.60E�03

Leukocyte transendothelial migration 16/1.50E�02

(B)

Dentatorubropallidoluysian atrophy 5/1.77E�02

Calcium signaling pathway 13/3.14E�02

Leukocyte transendothelial migration 19/3.32E�02

Table 4
Gene ontology (GO) terms captured by (A) the APC identified sub-networks, and

(B) PinnacleZ identified sub-networks.

GO ID: biological process No. of genes/p-
value

(A)

0022610: biological adhesion 72/1.32E�13

0007155: cell adhesion 72/1.32E�13

0032502: developmental process 173/1.81E�11

0048856: anatomical structure development 125/9.91E�10

0048518: positive regulation of biological process 79/3.03E�09

0009605: response to external stimulus 56/4.82E�09

0006952: defense response 52/5.72E�09

0009611: response to wounding 44/6.16E�09

0007049: cell cycle 68/6.53E�09

0002253: activation of immune response 18/8.13E�09

(B)

0065007: biological regulation 106/1.54E�08

0050789: regulation of biological process 96/4.41E�07

0032502: developmental process 75/5.60E�07

0007242: intracellular signaling cascade 46/1.25E�06

0050790: regulation of catalytic activity 25/1.85E�06

0007165: signal transduction 79/3.01E�06

0030154: cell differentiation 50/3.29E�06

0048869: cellular developmental process 50/3.29E�06

0016043: cellular component organization and

biogenesis

64/3.34E�06

0016265: death 32/3.62E�06
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approaches) could be partly explained by the fact that the
heuristic search scheme would limit PinnacleZ to discover com-
plex sub-networks with a large number of gene nodes.

To objectively assess the biological relevance of genes selected by
both methods, we conduct functional enrichment analysis using
online bioinformatics tools DAVID [17]. The enrichment p-value
provides us a statistical confidence measure of a specific number of
genes falling into specific functional categories, taking the random
case as the reference. All the presented p-values are corrected by
Benjamini technique to handle the multiple hypothesis testing
problem [18]. Also, to fairly compare the resulting sub-networks,
we selected the same number of sub-networks constructed by both
methods according to mutual information score.

Overall, APC identified sub-networks reveal more biological
relevance to MD disease by capturing eight MD related pathways,
while PinnacleZ identified sub-networks have only captured three
pathways with relatively lower statistical significance. Particularly,
three most statistically significant pathways captured by APC, namely
Cell adhesion molecules, ECM-receptor interaction, and Hematopoietic

cell lineage are not included in PinnacleZ identified sub-networks.
Specifically, Hematopoietic cell lineage is a canonical pathway
involved in self-renewal or differentiation of blood–cell development
from Hematopoietic stem cells, which might be related to the muscle
loss and resulting systematic compensations. Actually, stem cell
based therapy is one of the most promising approaches to treat
MD [19]. It has also been documented that cell adhesion molecules
and ECM-receptor moleculars all have essential links with various of
muscular dystrophy sub-types [1,20].

Table 3 summarizes the KEGG pathway term, the number of
genes, and the p-value for each MD related pathway captured by
APC identified sub-networks (A), and PinnacleZ identified sub-
networks (B).

Table 4 presents biological process enrichment analysis results
for the APC identified sub-networks (A) and the PinnacleZ
identified sub-networks (B). Again, cell adhesion, an important
MD related biological process, is enriched only in the genes from
the APC identified sub-networks, but not in the genes from the
PinnacleZ identified sub-networks.
To further compare the capability of both methods to detect
sub-networks enriched with biological functions, we defined the
significance score for each biological function term T with given
gene sub-set Q as follows:

signfðT ,Q Þ ¼�log10ðp-valueðT ,Q ÞÞ, ð15Þ

in which, p-value ðT,Q Þ is the DAVID enrichment p-value of
biological function T for given gene sub-set Q. The score function
signfð�Þ ranges from 0 to 1 and the higher score indicates the
better enrichment. Thus, we can compute the significance differ-
ence of biological enrichment between the gene sub-sets con-
structed by the proposed scheme and PinnacleZ, based on
individual biological function term T

Significance differenceðTÞ ¼ signfðT ,QAPCÞ�signfðT ,QPinnacleZÞ,

ð16Þ

where a positive value of which indicates that our proposed
scheme is better to capture the corresponding functional term T,
and a negative value suggests PinnacleZ is better. There are totally
647 biological functional terms enriched in the gene sets from
both methods, and we draw the significance difference for each
term in Fig. 4. We can see that in overall our proposed scheme has
much better capability than PinnacleZ to capture biological
enriched functions. There is no biological function term with
significance difference less than �5, while there are 22 terms
associated with significance difference larger than 5.

3.4. Prediction performance

As summarized in Table 5, the prediction accuracy of MSVM
based on selected sub-network features is 68%. It is striking to
observe a huge contrast between the 100% accuracy for DMD and
the 1% accuracy for TITIN. Such a large difference of prediction
accuracy could be explained by several reasons including:
(i) Clinically, DMD is the most rapidly worsening MD sub-type
accompanied by highly varied expression patterns, and thus
serves as the easiest diagnostic case. (ii) The number of DMD
samples in the dataset is much larger than that of TITIN, and
consequently the training of classifier is biased towards DMD.



Fig. 4. Significance difference for different biological terms, between APC and

PinnacleZ.

Table 5
Prediction accuracy rates measured by MSVM classifier for each MD sub-types and

control of features selected from the sub-networks and the gene sets combined.

MD sub-
types

Prediction accuracy rates

Sub-network
features (%)

Combined
features (%)

Prediction
improvement (%)

CTRL 52 76 24

BMD 68 90 22

DMD 100 99 �1

DYS 61 91 30

FKRP 35 70 35

TITIN 1 42 41

ALS 86 97 11

Average 68 86 18

Fig. 5. Prediction accuracy of up to 80 selected sub-network features (A), and sub-

network and gene set combined features (B), of MSVM, KNN(k¼2) and DT

classifiers.
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(iii) PPI sub-network based prediction incorporates only physical
interaction information, and it may not be sufficient to tell the
sub-type differences by using PPI alone.

As functional interaction could also play vital roles in the onset
and progression of MD diseases, we have further added functional
gene set features into our prediction analysis. Surprisingly, the
results show that the accuracy for TITIN is dramatically improved
from 1% to 42%, and the accuracies for DYS, and FKRP are also
improved by 30% or more. Fig. 5 shows the prediction perfor-
mances based on selected sub-network features, and selected
combined features (sub-networks and gene sets). Notice that the
prediction accuracy of MSVM classification results based on
selected sub-network features is only 72% at best, while the
accuracy based on combined features is mostly higher than 72%
and increases up to 90%. The fact that prediction accuracy is
dramatically improved when functional gene set features is added
may suggest that the functional interactions play an essential
roles in some of the MD sub-types such as DYS, FKRP and TITIN.

We performed KNN classification on our MD microarray data
using three different numbers of neighbors (k¼1, 2, 3). The results
for different k value are very similar, and so we will present only the
result of k¼2 case. As we can observe from Fig. 5(A) and (B), the
prediction performance of Decision Tree (DT) is the worst, while that
of MSVM is the best among the three. The poor performance of
Decision Tree can be explained, at least in part, by its complexity in
training a tree structure. It also suggests that even though certain
MD sub-types may exhibit hierarchical relationship, it is still very
risky to use classification only scheme to discover such relationship,
since the number of samples in the microarray data is usually too
small to fully support such relationship, and thus additional clinical
information may be needed to overcome such limitation.

3.5. Some representative sub-networks

3.5.1. Sub-network features

We have presented four representative sub-networks in Fig. 6.
From the figure, we can observe that most of the gene nodes are
directly connected through protein interactions, and some indir-
ectly related genes can also be identified by our proposed APC
scheme. Specifically, sub-network A consisting of 50 genes is
dominantly enriched in cell cycle biological process (GO:
0007049, p-value¼2.75E�14) and cytoskeleton cellular compo-
nent (GO: 0005856, p-value¼4.66E�6), indicating that the mus-
cle regeneration activity is vigorous in MD in order to compensate
its muscle loss. It is also very interesting to see that all the 10
genes in sub-network B are belonging to glycoprotein category, as
it has been reported that the mutation genes of several MD sub-
types can interact with glycoprotein to form protein complex



Fig. 6. Four representative sub-networks constructed by APC. The nodes are genes and edges are the protein interactions. Notice that some isolated nodes are also included

as proposed APC scheme could identify indirectly related gene nodes.

Table 6
Some representative functional gene sets.

MSigDB gene set name Descriptions

KEGG_MAPK_SIGNALING_PATHWAY MAPK signaling pathway

BIOCARTA_STRESS_PATHWAY TNF_Stress Related Signaling

REACTOME_INSULIN_SYNTHESIS_AND_SECRETION Genes involved in Insulin Synthesis and Secretion

KEGG_ETHER_LIPID_METABOLISM Ether lipid metabolism

KEGG_CELL_CYCLE Cell cycle
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[20,21]. These genes are also highly enriched in extracellular
matrix cellular component (GO: 0031012, p-value¼3.04E�9), which
is also closely related to MD as we mentioned in the previous section.
Sub-network C comprising 22 genes shows similar enrichment in
terms of extracellular matrix cellular component (p-value¼3.46E�5),
and it is also enriched in the skeletal muscle growing biological
processes (GO: 0001501, p-value¼4.84E�4) closely related to MD.
Unlike all the other sub-networks, sub-network D containing 20
genes emphasizes on the leukocyte activation (GO: 0045321, p-
value¼2.20E�6) and regulation of immune system process (GO:
0002684, p-value¼5.90E�4), reflecting the active immune response
evoked by muscle injures and repairs. The discovery of these enriched
biological processes in the constructed sub-networks coincides with
the inflammatory pathway activations in MD [22]; anti-inflammatory
treatment is also developed to delay the progress of diseases [23]. In
summary, our proposed scheme has effectively prioritized the sub-
networks closely related to MD disease mechanisms. Note that
additional in-depth biological experiments are required to clarify
the specific relationships of those features with MD onset and
progression.
3.5.2. Some representative functional gene-sets

In Table 6, we present a few representative functional gene
sets. As MSigDB has various functional gene sets collected from
multiple knowledge databases (KEGG, BIOCARTA, REACTOME,
etc.) [24], it provides alternative angles for us to investigate MD
sub-types. While cell cycle activities are also detected in the gene
sets, several different functional pathways are highlighted.
Among them, MAPK, TNF and Insulin signaling pathways are
known to play important roles in skeletal muscle remodeling and
regeneration [25]. Specifically, the activation of MAPK pathway
has been reported to be linked with the mutation gene of another
MD sub-type named EDMD (Emery–Dreifuss muscular dystro-
phy) [26]; experimental observations of MAPK and TGFb1 net-
works in muscle-wasting pathway also have been reported to
contribute to the early onset of DMD [22]. Another study
discussed that TNF pathway has links to pro-inflammatory
activity and its disrupted signaling may cause exaggerated injury
response in Dysferlin sub-type patients [27]. Although biological
validations by additional experiments are required to come to any
specific conclusion, we can see that those similar biological
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process enrichments could be retrieved from both physical sub-
networks and functional gene sets information. The proposed
integrative approach can provide us with multiple levels and
different angles to delineate the complex functional mechanisms
of diseases.
4. Discussions and conclusions

In general, analysis of genetic data should be done within a
biological context in order to gain a full understanding of complex
disease mechanisms. However, commonly used single gene based
machine learning approaches are unable to uncover the full
picture of complex cellular systems. Different from traditional
classification applications mainly focusing on accuracy, micro-
array based classification usually requires the classification fea-
tures to be biologically interpretable. The merit to utilize priori-
knowledge such as pathways collected in knowledge databases is
we can interpret biological context towards resulted features, as
well as classification model. Such interpretability can also facil-
itate the design of follow-up experimental validation to deter-
mine how abnormal molecular activities contribute to the
distinction between disease sub-types. The weakness is these
well studied pathways may be not as effective as some less
studied and even unknown pathways to accurately describe sub-
type differences. That is also our motivation to integrate PPI
information, which is not limited to the context of known path-
ways, since the identification of PPI sub-networks can potentially
reveal some novel pathways in the disease. We have showed an
improvement in the prediction results using the selected features
constructed from both knowledge sources. More importantly, we
have identified many potential sub-network/gene-set biomarkers
through feature selection and classification procedures.

Clinically, DMD is the most severe MD sub-type characterized
by rapid progression of muscle degeneration [1], and its expres-
sion profiles highly vary. Therefore, it is relatively easy for
classifiers to differentiate DMD from other sub-types. However,
it makes difficult to classify some less severe sub-types with
lower expression variations, such as TITIN and FKRP. In addition,
since all MD sub-types share the common biological processes
such as immune response, apoptosis and cell cycle responding to
muscle loss, it is even harder to identify sub-type specific
biomarkers. Due to such difficulties, supervised approaches can
be biased by dominant expression signals from DMD samples, and
fail to capture the gene expression signatures of other weakly
distinguishable MD sub-types. In an effort to address such
problem, we have proposed a semi-supervised approach, which
can be used to identify more biologically interpretable features
than conventional clinical label guided approaches [4]. As the
discovery of new MD biomarkers could contribute to revealing
disruption of genetic pathways in MD diseases [28], our identified
sub-network and gene set features may also imply disrupted
interactions in related sub-types and provide clues for biological
study. As an extension to the proposed computational analysis,
we will continue to carry out comparative study on normal
muscle recovery experiments [29] for a better understanding of
the failed muscle regeneration processes in MD.

Since the identification of condition-specific sub-network has
been proved as a NP-hard problem [6], heuristic approaches such
as simulated annealing [6] and greedy searching [4] are usually
utilized to seek sub-networks associated with large differentia-
tion scores. Instead of directly utilizing sub-type information, we
proposed a heuristic scheme to highlight co-expressed sub-net-
works, considering topological adjacency in PPI network and
expression similarity. One weakness of the proposed approach
is that the given PPI information could be very general and may
consequently degrade the performance of sub-network identifica-
tion. For the future research, we will study the refinement of PPI
topology through combining other information such as co-evolu-
tion evidence and topological features [30], and further investi-
gate how to solve PPI refinement and sub-network identification
algorithms jointly. In our future research, other biological knowl-
edge such as protein–DNA interaction network structure would
also be incorporated into our computational analysis for a deeper
understanding of MD diseases. However, biological knowledge
contains errors and noises, since it is collected from different
sources, such as biological experiments, automatic text-mining
results, and manually curated annotations. Therefore, it is essen-
tial to carefully examine the reliability or specificity of biological
knowledge prior to its use and evaluate its impacts on computa-
tional analysis [29]. The limitation of existing biological knowl-
edge poses a challenge for computation approaches to discover
meaningful and true biomarkers. Therefore, computational
approaches should try to utilize further available biological
knowledge while minimizing adverse impact of the biological
knowledge due to its incompleteness. In other words, computa-
tional approaches that utilize but not restricted by biological
knowledge are more desirable for biomarker discovery [31].
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