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ARTICLE INFO ABSTRACT

Available online 1 March 2013 The highly flexible model structure of methods in data mining and machine learning results in models
that are often difficult to interpret. Their use in domains where interpretability is an issue is therefore
hampered. In order to bridge the gap between advanced modeling techniques and their use in domains
that demand interpretable results, the interpretability aspect should be included in the design of
the technique. The Interval Coded Score index (ICS) is a recently proposed model that satisfies this
condition and automatically detects thresholds on variables to generate score systems. The method was
extended for censored data (ICSc) but two problems remain: (i) given a prognostic index, how can
observations be grouped in different risk groups; (ii) given the risk groups, how can survival curves be
estimated for survival models based on support vector machines or ICS models.

This work offers solutions to both these problems. The ICSc model is used on the prognostic index to
detect thresholds on this index. A grouped index, that can be interpreted as a risk group indicator, is the
result. The method is then modified to ensure that observations with a lower prognostic index are
allocated to higher risk groups. The second problem is tackled by simultaneously estimating multiple
Kaplan-Meier curves, taking into account that the estimated survival curve for higher risk groups
should always be lower than the curve for lower risk groups. The proposed approach is illustrated on
the prognosis of breast cancer patients and compared with the proportional hazard model. Both models
are comparable w.r.t. discrimination, but calibration is better for the ICSc risk groups.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction [13,14], post-processing of previously built regression models
[15], classification and regression trees [16], adaptive index

Methods within artificial intelligence and machine learning models [17] and rule extraction methods [18]. All these methods

[1-4] have proved their use in many domains, including cluster-
ing, classification, regression [5] and prognosis [6-9]. Their ability
to model complex data and to deal with the curse of dimension-
ality have made them very popular data modeling tools. However,
in domains where interpretability is an issue, the black-box
nature of these methods hampers their use in practice. In order
to introduce the use of more complex mathematical methods
[1,2,4,8,10-12] in these domains, different methods to obtain a
score system have been proposed: optimal cut-points methods
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result in categorizations of variables, with differences on whether
the thresholds are defined before, during or after modeling,
feature selection is included, thresholds are defined sequentially
or simultaneously and whether predictions are given. The result-
ing models are easy to apply, but performance, interpretability of
the results and use for different data types differ and disadvan-
tages remain: dependency on the choice and number of the
thresholds, dependency of later thresholds on the choice of former
thresholds, multi-testing problems, no optimal trade-off between
sparsity and performance. The Interval Coded Score (ICS) method
was recently proposed to solve these issues for classification
problems [19] and survival data [20] (ICSc). The approach is
based on transformation models [21-23] where a prognostic
index is trained to be as concordant with the observed outcome
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as possible. It is assumed that there exists a monotonic relation-
ship between this index and the outcome of interest. ICS models
additionally assume additive models and restrict the functional
forms of the inputs to step functions. As such, score models
are generated with an automatic detection of the number and
position of thresholds.

For use in real-life applications, the resulting score should be
accompanied by an estimated survival function. Two approaches
are possible. A first one assumes a baseline survival function
that can be changed according to the observed variables. The
advantage is that a survival function can be estimated for each
observation. However, an additional assumption, such as the
proportional hazards assumption in a Cox model [10], is needed
in this case. In this work, an alternative approach is taken.
Observations are divided into different risk groups depending
on their prognostic index. For each risk group, a survival function
is estimated. In order to use this approach, two problems need
to be tackled: (i) how to select the number of risk groups and how
to define the thresholds in the prognostic index to allocate
each observation to a risk group; (ii) given the risk groups,
how to estimate a survival function for each group, taking into
account the assumptions of the model used to derive the prog-
nostic index.

To solve the first issue, standard clustering methods cannot be
used since they are unable to deal with censored data. Addition-
ally, the number of clusters should be known in advance (see [24]
for an exception). This work proposes to use the ICSc method with
the previously developed prognostic index as a single input
variable. A new index, which will be a grouped version of the
prognostic index, is the result and can be interpreted as a risk
group indicator. The method is modified with the inclusion of a
monotonicity constraint (mICSc) to ensure that observations with
a lower prognostic index are allocated to a higher risk group.

Once the risk groups are defined, a survival function for each of
these could be estimated by means of a Kaplan-Meier (KM) curve
[25]. However, this does not take into account that the model
assumed non-crossing survival curves when training the prog-
nostic index. A modified KM estimator is therefore proposed. The
method is based on the inverse-probability-of-censoring weighted
average estimator [26]. The resulting step functions are then
smoothened by means of a monotonic regressor. An overview of
this work is presented in Fig. 1. The approach of this paper is
summarized in Algorithm 1. All methods were implemented in
Matlab! using cvx? [27].

Algorithm 1. Necessary steps to automatically obtain a score
system with survival estimates for different risk groups.

1: Given the training data D = {(x;,y;,6;)}]_ ;, train the ICSc
model to obtain a score y; for each observation i.

2: Use the mICSc model with the scores y; as a single input
variable to obtain risk groups indicators z; that can only
take values in {4, ...,G,,}, where ng is obtained from the
method.

3! Determine step functions I:"S(t),s: 1,...,n, that are
monotonic w.r.t. the risk groups s as an estimate of the
cumulative distribution for all risk groups simultaneously.

4. Smoothen the step functions I:'S(t) to obtain smooth
estimates Cs(t) of the cumulative distribution functions
that are monotonic w.r.t. the risk groups.

! http://www.mathworks.nl/products/matlab/.
2 http://cvxr.com/cvx/.
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Fig. 1. Overview of this work. The dataset D= {(x;y;,0;)}]_,, representing the

input variables (x;eRY), the outcome (y;eR) and the censoring indicator
(8; €{0,1}), which are transformed into a score or prognostic index y;e R by
means of the ICSc approach given in Section 3. The method also results in a vector
w indicating the selected set of variables, the selected intervals and their
contribution to the score. In order to obtain a small number of risk groups, the
scores are used as input variables for the mICSc approach (see Section 4). This
results in a risk indicator Z; € R, a clustered version of the scores y;, that can be

interpreted as risk groups. For each risk group s, a step function F (t) is calculated
using the approach of Section 5.1 to obtain an estimate of the survival function as

1-F s(t). These step functions are smoothened according to the method of Section 5.2

to obtain smooth survival estimates ]—Cs(t).

The remainder of the paper is organized as follows. Section 2
starts with the description of support vector machines for survival
analysis. Section 3 discusses how this method can be adapted to
automatically obtain score systems for censored data (ICSc).
Section 4 proposes a modification of ICSc to allow to cluster
survival data after a survival model has generated a prognostic
index, such that risk groups can be obtained. Section 5 proposes a
new method to estimate survival curves that takes the mono-
tonicity assumption of the ICSc method into account. Section 6
illustrates the latter method on artificial data before applying the
whole procedure (see Algorithm 1) on a large breast cancer
dataset [28]. The results are compared with a proportional hazard
model (PH model) [10]. Section 7 finalizes the paper.

Throughout the paper, the following notation will be adopted.
Let D= {(x;,y;,0;)}{_ ; be a dataset with x; € R? a vector containing
all input variables for observation i, y; = min(t;,c;) the observed
failure times, with t; and c; the true failure and censoring time,
respectively. J; is an event indicator equal to J; = Z[y; < ¢;], with
Z[z] the indicator function equal to 1 when z is true and zero
otherwise. The pth input variable is denoted as x”.

2. Support vector machines for censored data

Support vector machines (SVM) for classification or regression
cannot be used for the analysis of survival data due to the
occurrence of censored data. The outcome of survival analysis is
the time until a predefined event occurs. However, observations
can drop out of the study and the outcome will not be observed
exactly: the outcome is censored. The most frequent censoring
type is right censoring, and occurs when a lower bound on the
outcome is known. In the remainder of this work, only right
censoring will be considered.
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In order to deal with censored data, support vector machines
for survival analysis take a two-step approach [8]. In a first step, a
prognostic index (also called utility, latent variable or score) that
is as concordant as possible with the observed survival times, is
trained under the assumption that a monotonic relation exists
between the prognostic index and the outcome of interest. The
second step involves estimation of the monotonic relation and is
ignored in practice.

Concordance between a prognostic index and the outcome is
expressed by means of the concordance index (c-index) [29],
which is defined as

# concordant pairs
# comparable pairs’

c-index =

A pair of observations (x;,y;,;) and (x;,y;,6;) is comparable when
both observations have an observed event time, or when only one
of them is censored and the censoring occurs later than the event.
More formally, a pair {(x;,y;,0;),(%;,y;,0;)} is comparable if:

0i=1&6;=1)
or
(0i=1&6;=0&y; <y

A comparable pair is considered concordant when the ranking in
observed survival time y; and y; is the same as the ranking in the
prognostic index.

In order to optimize the number of concordant pairs, ranking
constraints are added together with regression constraints in the
SVM survival model proposed in [9]

. 1 n n .
min iwTw+y Z G (EG+ED

wb.ed.&" i=1 i=1
subject to
wT(go(xi)—cp(xj(i))) >Yi—Y;p—€in ¥ i=1,....n,
WT(rD(Xi)+b2yi76iv vi=1,...,n,
—5iWT @(x;)+b) = —8;y;— &5, Vi=1,...,n, )
€ >0, Vi=1,...,n,
&i=0, vi=1,...,n,
& >0, vi=1,...,n,
with
j@)=arg max j
J
(%:,¥:,0;) and (x;,y;,0;,) comparable,
subject to e R )
Y <Yi

The first constraint in (1) is a ranking constraint. The second and
third constraints are the regression constraints. j(i) indicates the
observation within the training set, that is comparable with
observation i, with a survival time the closest to that of observa-
tion i. The estimated outcome y, for a new point x, is then found
as y, =wlp(x.)+b.

3. Interval coded score system for censored data

In order to obtain a score system, model (1) is adapted in three
ways [19,20]. Firstly, the model is constrained to be additive [30].
Secondly, the estimated functional forms are restricted to be step
functions, closely related to constant B-spline functions [31].
The range of each variable xP is divided into k, consecutive
intervals. The functional form of this variable is then defined as
Z;“:’]l Wy Z[0p-1 <xP <0p,)], namely a linear combination of
binary indicators denoting whether the value of the variable is
within each of the k, intervals. Lastly, in order to obtain a sparse

model representation, the total variation of the coefficients vector
w is minimized [32]. The problem to be optimized then becomes

d ky+1 n n
min Z Z Ypd |Wpi=Wp 11| +7 Z €+ U Z(@'-Fff)
wybedd 5T [ i-1 i-1
subject to
d [kp+1
9= Z (pr',I[BP,H <xf < 9,,‘,]> +b, vi=1,....n,
p=1\Il=1
Vi=Y54 = Yi—Y5p —Cis vi=1,....n,
Vizyi—& vi=1,....n, 3
-8 = —0y;i—&F, Vi=1,...,n,
€ >0, Vi=1,...,n,
& >0, vi=1,...,n,
& =0, vi=1,...,n

Note that y is eliminated before solving the model in w,b,e,&,&.
In first instance y,,;=1,¥vp=1,...,d,¥I=1,...,kp+1. In order to
further improve the sparsity of the model, the method is itera-
tively reweighted [33] with y,, =1/(e+a|w, ;—w,_1|). Here gis a
small positive value (e.g. 0.0005) and the value of a is optimized
for the problem at hand.

In order to make the score system easily applicable, the
weights are normalized such that the smallest non-zero absolute
value of the coefficients (v) becomes 1. All other normalized
coefficients are rounded to the nearest integer : Wy, ; =[w,;/v]. The
final score for a new observation x, is then found as

y.=3

d
p=1

kp +1
<Z Wy Z[0p11 <XP < ep',]> +b. 4)

=1

Application of this procedure results in the Interval Coded Score
index for censored data (ICSc).

4. Obtaining risk groups

Once a score or prognostic index is trained, risk groups need to
be defined for application in practice. Most often, three risk
groups are considered: a low, moderate and high risk group.
However, the choice for three groups is artificial and no statistical
ground exists to support this choice. A second problem is how the
groups should be defined. A first possibility is to use clustering
methods to define clusters using the inputs of the observations
and/or survival time. However, these methods are based on a
distance measure between all pairs of data points. Clustering
survival data is therefore difficult since calculating a distance in
survival time is not always possible due to censoring, correspond-
ing to uncertainty about the survival time. Using clustering
mechanisms on the score obtained from the ICSc method for
example is not an option either. This score is only defined up to a
monotonic relation and a distance of a between the scores of two
observations thus has another meaning depending on the exact
value of the score. Additionally, clustering mechanisms do not
take into account that the prognostic index defines a ranking
on the risk groups: the higher (lower) the index, the higher?
(higher)* the risk. Another possibility is to define a grid of possible
thresholds on the prognostic index and select the combination of
thresholds that leads to the largest difference in survival curves
(by means of the log-rank test for example) on bootstrap samples
of the original data. However, the number of groups still needs to
be defined in advance.

3 For methods that model the risk.
4 For methods that model the survival.
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In order to solve these issues, another approach that uses a
shrinkage mechanism for clustering as in [34] is proposed here.
The goal is to find a categorization of the prognostic index that
maintains the concordance with the outcome as much as possible,
without the need to define the number of categories in advance.
Since ICSc is a survival model that is able to define relevant
intervals on each of the input variables, and controls for the loss
of information as a result of the categorization, this method can
be used as a clustering/categorization method for survival data
when the prognostic index is used as a single input variable.
However, an extra adaptation is necessary to ensure that the
identified risk groups have a monotonic relationship with the
prognostic index. The outcome w of the ICSc model represents the
effect of each interval on the survival. To express that a higher
prognostic index indicates a lower risk (for models modeling the
survival such as ICSc) it is necessary that w increases with the
prognostic index. The adapted method will therefore be referred
to as the monotonic ICSc model (mICSc) and is obtained from

k+1 n n
min g wi—wig [+ ) a+p )y (EGHED
w2l (3 i=1 i=1
subject to
k+1
21': (ZW[I[@[] Syi<91]>+b, vi=1,...,n,
I=1
zifzj(i) Zyi*yj(i)*é,‘, vi=1,...,n,
fiZy,'*fi, vi=1,...,n,
—8i2; = oy —&F, vi=1,...,n, ()
¢ >0, vi=1,...,n,
&i=0, Vi=1,...,n,
& =0, Vi=1,...,n,
wi—w;_; >0, vi=2,....k

where y; denotes the value of the prognostic index for observa-
tion i and y; is defined as before. Again, Z is eliminated before
solving the model in w,b,¢,é,&*. Note that for models that are
modeling the risk (e.g. the PH model), the last constraint in Eq. (5)

10
9t
8 r r T r r
i i i i
L s s s
E 7 k k k k
<
2 67 g g g g
"g r T r r
= 5| o o 0
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Fig. 2. Illustration of mICSc with a prognostic index (modeling survival) as a single
input. The prognostic index or score y; is mapped on a risk group indicator
Zi= Zf‘:} W Z[0,_1 <¥; < 0]+b, with a restricted set of possible values (here
Zi €{G1,...,C4} ={11,7,5,0}). The pluses indicate the observed pairs (y;Z;). The
coefficients vector w is restricted to be positive such that Z(y) is a monotonically
increasing function of y. The sparsity of the mICSc method makes it possible to
interpret the results as risk groups.

becomes w;—w;_; <0, ¥ I=2,...,k. The risk group indicator zZ, for
a new point x, with prognostic index y, is then defined as
z, = E;‘:} WIZ[0_1 <y, <0]+b, with W defined as before. The
risk groups are then defined by the unique Z values, where the
highest value corresponds to the first risk group (lowest risk/
highest predicted survival). Fig. 2 illustrates that this approach
can be interpreted as clustering on the level of Z;. Observations
with a score y; <—1 all receive the same risk group indicator
z;=0 and form a cluster or risk group with the highest risk.
Observations with a score —1<y; <—0.5 all receive a value of
z; =5 and form another risk group.

5. Estimation of survival curves

As discussed before, support vector machines for survival
analysis assume a monotonic relation between the score and
the outcome of interest (here the survival function S, or cumula-
tive distribution function F =1-S). To obtain an estimate of the
survival function, a separate function needs to be estimated for
each possible risk group. Since survival functions are non-
increasing functions in time, the estimated functions should be
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Fig. 3. Illustration of the monotonicity constraints: (a) monotonic w.r.t. time,
(b) monotonic w.r.t. the score.
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monotonic in time and in risk groups (see Fig. 3). Two different
approaches will be provided in this section. First, the inverse-
probability-of-censoring weighted average estimator of the
cumulative distribution (Fgg) as proposed by Robins and
Rotnitzky [26] will be adapted to include the monotonicity
constraints. This method has several advantages but the esti-
mated survival functions are step-functions. A second approach
solves the problem in the dual space and smooth curves are
obtained. Although this second approach is appealing, direct
application of this method is time-consuming since it requires
the estimation of O(nn;) unknowns, with n; the number of time-
points at which the survival curve needs to be estimated. Using
the first method first and smoothing the results by means of the
second, only O(nsn;) unknowns need to be estimated, with n, the
number of different risk groups and ns < n.

5.1. Estimation of the survival curve by means of step functions

This section proposes an approach to estimate survival curves
for each of the risk groups obtained by using any type of score
system that assumes a monotonic relation between scores and
survival. The approach of Robins and Rotnitzky [26] to calculate
the Kaplan-Meier estimate of the survival function is first
described. An alternative implementation is proposed and
adapted to simultaneously estimate ng survival curves that are
monotonic w.r.t. the risk groups. Section 5.2. proposes a method
to smoothen the results from this section.

5.1.1. Estimation of a single survival curve

Two methods to estimate the survival function S(t) or cumu-
lative distribution function F(t) = 1-5(t) are frequently used. Both
approaches estimate the survival function as a step-function,
changing value at discrete event times tj, j=1,...,n.. The first
approach is the Kaplan-Meier estimator defined as

Sad = T[ (1—7%)).

it

where v; indicates the number of events at time t; and

R(t) = Z(v, +VHI[T > ]
j=1

is the risk group at time t. Here, vt indicates the number of
censored observations at ;. Note that it is assumed that there are
no ties, i.e. v;v¥ will always be zero, as usual. This is accomplished
by the consensus that censoring occurs an infinitesimal time step
later than the event.

The second approach is the inverse-probability-of-censoring
weighted average estimator of the cumulative distribution (Fgg)
[26] and is defined as

Fratty = 13- 2Di=090 ®)
z—l CO’,‘ )

with C the Kaplan-Meier estimate of the censoring distribution,

and @(y;) the function value at y; = maxg <y,7;. The reasoning

behind this approach is that in the case without censoring, the

empirical cumulative distribution function can be estimated as

F@t) = - ZI[t <t

z =1
The inverse-probability-of-censoring weighted average estimator
consists of the same terms Z[t; <t], but each of these terms
is multiplied by 0;=Z[t; <c¢;] and weighted inversely by the
probability that the failure time is observed to take the informa-
tion from censored observations into account. Since all terms are

multiplied by §;, t; can be replaced by y; and the estimator can be
calculated using the observed failure times.

In [35] it is proven that Fgg=1—Sky, with Sgy the Kaplan-
Meier estimator when the unique event times are used as time
points T;.

Proposition (Estimation of Fgg as an optimization problem). Given
a dataset D={(x;y;,0)}}_, and 7;, j=1,...,n; the unique event
times in D, sorted in ascending order. Then, F rr(t) equals

n
Fy=> oIl <t], j=1,....n, (7)
j=1

with v =[Dq,...,0,]" equal to

‘ 2
n J
D= arg1 min » Z (I[y, =l -y vjr> ) (8)

i=1j=1 Cu) =1

Proof. Frp(t) can only change value at t=1;,j=1,...,n. Since
E(t) is a step function with steps at t=71;,j=1,...,n, it can only
change value at t=1;,j=1,...,n; (see Fig. 4). The proposition is
therefore proven if we can proof that FRR(‘L']) equals F(r]) for all
i=1,.

The estimate ofyj,vj=1,...

of the cost function
. 2
J
oy

Ily; < 7i19;
7~ zz( )

i=1j=1 C(y) i=1

,1¢ is found by taking the derivative

w.r.t. v;. The optimal value of v; is then found as the value for
which this derivative equals zero:

n Iy <710 <
_:_222( & va>=0

i=1j=1 C(.V) i=1
I 1 Iy <110
:Zvjzﬁ CIT;I
j=1 i=1 i

The value of F(t) at t = 7; then equals
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Fig. 4. Representation of a monotonic step function with n, steps by means of
positive constants v;, j=1,...,n;.
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which equals Frp(t)), Vj=1,...,n.. O

Sl

Note that the proposition above is not needed to estimate
Fra(t) since it can be estimated using Eq. (6). However, when two
or more related cumulative distribution functions need to be
estimated, Eq. (6) can no longer be used. Additionally remark that
v; will always be positive since Fre(t) is a cumulative distribution
function.

5.1.2. Estimation of ny different survival curves

In case the observations in the dataset D are grouped into ng
groups, n, different cumulative distribution functions F', with
s=1,...,n; need to be estimated. Let ¢;,, s=1,...,n; denote the
unlque group indicators. All cumulative dlstrlbutlon functions
Fs=1,. .,ns can then be estimated independently using

Egs. (7) and (8) as

ne
Fo=> o1m<t j=1....n

i=1

with 7 the solution of

. 2
n J
v° =arg | min > ZIZ, Gl (ID}I =7l -> vj) .
i-1j=1 Cyy) o

To ensure that the estimated cumulative distribution functions
fulfill the assumption of monotonicity w.r.t. the group indicator,
the optimization problems for all functions need to be solved
simultaneously with addition of the following constraint:

v-vi120, Vji=1,...,n; Vs=2,...,n

The steps vj, s=1,...,n5, j=1,...,n, are further restricted to be
positive, to ensure that the solutions are valid cumulative dis-
tribution functions. All functions F°, s=1,...,n; can then be
estimated as

ne
Foy=> 0Tm<t, s=1,....n, 9)
j=1

where 7 is the solution of

) 2
ﬁ:argmm iiiﬂzl s(W_JZU;>

iT1j=1s=1 Cup) 7o
v§ >0,

‘ ; vi=1,...
subject to U;_Uj_l >0 vj=1,...

MVs=1,...,ns

NVS=2,...,1;.

5.2. Smooth estimation of the survival function

The estimated cumulative distribution functions are step
functions and a smoothing algorithm is needed to obtain smooth
survival curves. Standard smoothers cannot be used, since it
cannot be guaranteed that the smoothed versions of I:“S(t) will
remain monotonically increasing with the risk group. It is there-
fore necessary to define a smoothing algorithm that incorporates
this monotonicity constraint.

The approach that we follow starts from a least-squares SVM
(LS-SVM) regressor [3,4], with the values of I:"s(rj), Vji=1,...,ng;
Vs=1,...,ns as outcomes and the times T =1y, - - -, 75, and unique
risk group indicators ¢;, s=1,...,ns as inputs. Let X,[=1,...,n5n;
be defined as %, = [¢; 7;]", with s = [(I-1)/n;+1] and j = I-n,(s—1),

where |a] denotes the largest integer not larger than a. The
standard LS-SVM formulation can then be used as follows:

nsng

min 5 Tomo 4 1; &
subject to ﬂqu(x,)er =W¥—¢,VI=1,...,nn, an

with ¢(-) a feature map and ¥, =I:"S(rj), with s and j defined as
before. The dual problem then becomes a set of linear equations:

Q+i Ti[e] ¥ 12
1 0 M B {0 } (12
where Q is a matrix with elements ler:k(ic,,ir):(p(fq)T(p(fcr),
with k(.,-) a kernel function. The monotonicity constraints are

added to the dual problem formulation such that the desired
result is obtained using the following parametric model:

E|EH

M(Qp+b") >0,
M(QB+b*) >0,

min
£.0

2

subject to { (13)
with M e R®~Dnexmsne 3 matrix with diagonal elements equal to
1 and elements on the n; th diagonal equal to —1 and all other
elements equal zero; and M e R™"~D*™ 3 matrix with diagonal
elements equal to —1 and the elements on the first diagonal
equal to 1. The first constraint enforces the monotonicity w.r.t.
the risk groups and the second w.r.t. time. An estimate of the
cumulative distribution function for a score ¢, at time 7, can then
be calculated as G([c, ") = 31" BikXylcs Ts]")+b*. An esti-
mate of the survival curve for risk group s is then given by
SO=1-G©.

6. Results

This section starts with an illustration of the method to
estimate survival curves for different risk groups on artificial
data. It is shown that our first approach results in the Kaplan-
Meier estimator for the different groups when the monotonicity
constraints are valid. When this assumption is violated, the
monotonicity constraints in Eq. (10) will become active, and the
estimated survival curves will differ from their Kaplan-Meier
estimator. A real life application of the interval coded score
system for survival analysis on the prognosis of breast cancer
patients follows. The quality of the model is assessed in terms of
discrimination, indicating with which probability a patient at
higher risk, will obtain a lower prognostic index than a patient at
lower risk [29] and calibration, indicating how well the predicted
survival probabilities correspond to the observed survival prob-
abilities [36,37]. Calibration plots are obtained as follows. Obser-
vations are divided into groups based on their prognostic index.
For each group, the mean predicted probability is plotted against
the mean observed probability. For survival data, calibration plots
are considered at fixed time points (here 2 and 5 years after the
operation.) For a well calibrated model, these points lie on one
line with an angle of 45°. The proposed approach is compared
with the proportional hazard model [10]. All parameters are
tuned by means of 10-fold cross validation. The model selection
criterion to obtain a score system is the c-index [29]. The model
selection criterion to estimate survival curves is the Hosmer-
Lemeshow y? statistic [36] at 2 and 5 years using 10 groups. The
Hosmer-Lemeshow test is a test for model calibration. The data
are divided into groups, according to their prognostic index. The
predicted survival within these groups are then compared with
the observed survival. The result is an indication whether the
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Fig. 5. Artificial Example 1. (a) The true survival functions are monotonic as a
function of the groups. The estimated survival curves (1—F) coincide with the
Kaplan-Meier estimators. (b) The smoothed versions (1—G) align closely with the
true survival curve.

predicted survival probability is close to the observed survival.
The RBF kernel was used to obtain smooth estimates of the
survival curves.

6.1. Artificial data

Consider a dataset with two groups of 100 observations. The
true survival times of both groups are Weibull distributed
fo= bl‘b2 byth2—1 exp(—(t/bl)bz)) with parameters (2,1) and (4,1)
for both groups, respectively. The censoring times have an
exponential distribution (f(t)=b; exp(—b t)) with parameter
b1=50. Fig. 5 illustrates the results. The results of model (9) and
(10) coincide with the Kaplan-Meier estimates since these are
already monotonic as a function of the scores.

In a second example, consider two groups (each containing
100 patients) with Weibull distributed survival times, with
parameters (3,2) and (3,4), respectively. The true survival curves
are thus non-monotonic in function of the scores. The censoring
times have an exponential distribution with parameter b; = 50.
Fig. 6 illustrates the results. The estimates after model (9) and
(10) coincide with the Kaplan—-Meier estimates when the mono-
tonicity constraints are valid.
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Fig. 6. Artificial Example 2. (a) The true survival functions are non-monotonic as a
function of the scores. The estimated survival curves (1—F) coincide with the Kaplan-
Meier estimators as long as the monotonicity constraint holds. (b) Smooth survival

function estimates 1-G.

Table 1

ICSc score system to obtain a prognostic index (step 1 in Fig. 1) for the prognosis of
primary operable breast cancer patients. If the answer on the question is yes, the
points at the right of the question need to be added to the score.

Variable Question # Points
Number of positive lymph nodes
Number of positive lymph nodes =1 -1
2 < number of positive lymph nodes <3 -2
Number of positive lymph nodes =4 -3
5 < number of positive lymph nodes < 6 -4
Number of positive lymph nodes =7 -10
Number of positive lymph nodes > 8 -17
Progesterone receptor
Positive PR 2
Human epidermal growth factor receptor
Positive HER2 -2
Tumor grade
Tumor grade=2 -4
Tumor grade=3 -11

6.2. Prognosis of breast cancer patients

The complete methodology (see Algorithm 1) is illustrated on
the prognosis of breast cancer patients. The training set consists of
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Fig. 8. Estimation of the survival curves for the different risk groups. (a) Estimated
survival curves (1—G, steps 3-4 in Fig. 1) for the ICSc risk groups; (b) mean
estimated survival within the PH risk group. The stair functions indicate the
Kaplan-Meier estimators.

Table 2

Risk groups obtained by means of the mICSc model (step 2 in Fig. 1). Six risk
groups were obtained, but due to a low number of observations in the highest risk
group (score y; lower than —29), this group was merged with the risk group
containing observations with scores ranging from —29 to —15. The predicted
survival (1—G) at 2 and 5 years of follow-up are reported for each risk group.

Risk group Score $ (2 year) $ (5 year)

5 <-15 0.75 0.62

4 —14to —4 0.95 0.86

3 —-3to -1 0.98 0.94

2 0 0.99 0.95

1 >1 >0.99 0.98
Table 3

Comparison of ICSc with the PH model. No significant differences are found
between the discrimination abilities of both models. The 95% confidence intervals
are obtained by means of the bias corrected and accelerated percentile method
using 1000 bootstraps samples.

Model c-index 95% CI c-index 95% CI
Training set Test set

ICSc 0.711 0.676-0.741 0.724 0.687-0.758

PH 0.710 0.678-0.740 0.716 0.680-0.752

ICSc risk groups 0.687 0.659-0.715 0.702 0.669-0.731

PH risk groups 0.669 0.641-0.695 0.688 0.658-0.716

1923 patients with complete information (age, tumor size, number
of positive lymph nodes, expression of the progesterone (PR) and
human epidermal growth factor receptor 2 (HER2) and tumor
grade) which were diagnosed with primary operable breast cancer
at the University Hospitals Leuven between January 2000 and June
2005. An external test set on 1192 patients containing complete
information treated in New Zealand (Auckland Breast Cancer
Registry) between January 2000 and December 2005 is available
to test the resulting model. The obtained score model is summar-
ized in Table 1 (see [20] for a figure-based representation).

In order to divide the observations in a smaller number of risk
groups, the prognostic index obtained from Table 1 is used as a
single input in the mICSc model. The mICSc methodology will
then automatically find the number of groups and the thresholds
on the score. The c-index is again used as model selection
criterion. Six different risk groups are identified in this way (see
Fig. 7). However, the group with the highest risk (risk group 6)
contains only four patients and, since a survival curve cannot be
estimated accurately based on a small number of patients, is
combined with risk group 5. Fig. 8(a) shows the estimated
survival curves together with the Kaplan-Meier estimates for all
five groups. The estimated survival curves and the Kaplan-Meier
curves are very similar since the Kaplan-Meier estimates are
already monotonically increasing with the scores. Table 2 sum-
marizes the results.

The ICSc model is compared with the proportional hazard
model [10], using the variables selected by the ICSc model. The
mICSc method is applied with the prognostic index of the PH
model as input to define risk groups. Five different risk groups are
obtained, but the highest risk group contains only seven observa-
tions and is combined with risk group 4. The mean estimated
survival curve for each group is given in Fig. 8(b). Table 3
compares both models. No significant differences are found
between the discrimination abilities of the methods.

Fig. 9 illustrates the calibration results on the test set. The ICSc
model is well calibrated. The PH model overestimates the survival
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Fig. 9. Calibration plots for the risk groups on the test set after ICSc (a-b) and proportional hazard regression (c-d). The ICSc model is well calibrated. The PH model
overestimates the survival in the risk group with the highest risk. This is the result of the proportional hazard assumption. Since ICSc only assumes non-crossing survival
curves, this method has more flexibility in the estimation of the different survival curves. (a) ICSc, 2 year. (b) ICSc, 5 year. (c) PH model, 2 year. (d) PH model, 5 year.

in the risk group with the highest risk. This was also noted on the
training set. This is due to the proportional hazard assumption
that restricts the differences between the predicted survival
curves. Since ICSc only assumes non-crossing survival curves, a
less restrictive assumption than the proportional hazard assump-
tion, this method has more flexibility in the estimation of the
different survival curves.

7. Conclusions

This work started with the introduction of a survival model
that automatically leads to an easily applicable score system. In
contrast to existing score models, the number and position of the
thresholds are determined automatically by means of an incor-
porated control mechanism, making the trade-off between per-
formance and categorization. Secondly, this method was adapted
to define a clustering method for survival data, such that the
number of clusters/risk groups is automatically determined.
Thirdly, the inverse-probability-of-censoring weighted average
estimator of the cumulative distribution was adapted to allow
for the simultaneous estimation of different survival curves that
are monotonic w.r.t. the risk groups. The method was illustrated
on artificial and real-life data. The results of the proposed method
are comparable with the PH model w.r.t. discrimination (c-index),
but calibration is better for the ICSc approach. Additional advantages

of the ICSc methodology are the incorporated feature selection
and the automatic generation of the thresholds such that the
performance of the resulting score is not dependent on the model
developer.
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