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Abstract

A conventional neural network approach to regression problems approximates the condi-
tional mean of the output vector. For mappings which are multi-valued this approach breaks
down, since the average of two solutions is not necessarily a valid solution. In this article
mixture density networks, a principled method for modelling conditional probability density
functions, are applied to retrieving Cartesian wind vector components from satellite scat-
terometer data. A hybrid mixture density network is implemented to incorporate prior know-
ledge of the predominantly bimodal function branches. An advantage of a fully probabilistic
model is that more sophisticated and principled methods can be used to resolve ambi-
guities. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Scatterometers carried on board satellites allow the inference of local wind vectors
over the ocean surface [7]. There are two approaches to retrieving local wind vectors
[6, this issue], (u, v), from local scatterometer observations, ro, using either a local
empirical forward or a local empirical inverse model. The forward model [11] and
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Fig. 1. A two-dimensional sketch of the scatterometer measurement space. The two-dimensional slice is
taken through the measurement manifold at constant wind speed. For a noisy observation there are at least
two solutions in wind direction.

[8, this issue], which maps (u, v)Pro, requires some local inversion to obtain the
wind vectors. The current operational method inverts the forward model by "nding
an estimated ro on the forward model manifold that is closest to the observed
scatterometer measurement [12]. The alternative approach, addressed in this paper, is
to directly infer wind vectors from scatterometer data. Models of this form, mapping
roP(u, v), are called inverse models. Once the local wind vectors have been inferred,
either by using the forward or inverse models, a spatial prior model can be used to
infer the wind "eld over the ocean surface [6].

The scatterometer data is collected by the ERS-1 satellite launched in 1991 by the
European Space Agency. The satellite sweeps the ocean surface in swathes approxim-
ately 500 km wide, sampling 19 cells across the swathe, where the position across the
swathe is given by the antenna beam incidence angle. Each cell is approximately
50 km ]50 km, and so there is some overlapping between cells. The scatterometer has
three antennae, in the same plane, pointing in di!erent directions with respect to
satellite movement. The antennae measures a triplet, ro, for each cell. The wind
vectors, (u, v), are generated by the numerical weather prediction model run at the
European Centre for Medium range Weather Forecasting.

Previous work [4] has shown that there is a unique set of wind vectors called the
noisy ambiguity set which is identi"able from a single scatterometer measurement; that
is, the inverse mapping exists and is multi-valued. The multi-valued nature of the
inverse mapping arises largely from noise on the observations. This is illustrated in
Fig. 1, a sketch of a two-dimensional slice through the three-dimensional measure-
ment space, at a "xed incidence angle. The position of the observation on the model
manifold is a function of wind speed and direction [11]. A noisy observation is
unlikely to lie on the model manifold, making it uncertain from which of the two
model branches the observation originates. Thus, there are typically at least two
solutions for wind direction from a single scatterometer observation. These two solu-
tions are roughly 1803 apart in direction, and are generally referred to as the
ambiguous solutions [12].
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1.1. Background

Neural networks have been applied to wind retrieval from scatterometer observa-
tions. In [13] neural networks were used to infer wind direction and speed directly
from simulated scatterometer data. For each incidence angle, the model consisted of
two feed-forward neural networks. One network modelled wind speed with a conven-
tional regression approach, the other modelled wind direction by classifying it into 36
bins representing 103 intervals. The inputs to the neural network took included
information from the surrounding cells, giving a spatial context. In addition to the
scatterometer data, the wind direction network also took wind speed as an input.
Simulated data was used because ERS-1 was not operational at that time. The results
showed neural networks to be a promising avenue of investigation for a solution to
this inverse problem. In [9] the models of Thiria et al. [13] are trained using data
collected from ERS-1. Performance of the models in [9] is shown to improve upon
results obtained by the operational wind retrieval system at the European Space
Agency. Inclusion of a spatial context means that the network also carries out some
disambiguation (improving its accuracy on individual cells). However, for reasons
discussed in [6], such a model cannot be used in a general disambiguation procedure
since it is not purely local.

In [3] wind speed was modelled using a multi-layer perceptron while the wind
direction was modelled by a mixture density network with circular normal kernel
densities [2] to model the full conditional probability density of the wind direction
given the scatterometer measurements. In addition to the scatterometer measure-
ments, the incidence angle of the mid-beam antenna was included as an input to the
networks. The wind-speed model performed within the designed speci"cation of the
instrument of 2 m s~1. For wind direction, the models learned the inherent ambiguity
in the problem, but did not perform as well as the models of Richaume et al. [9].

In [10] it is shown that it is preferable to analyse wind-vector components in
Cartesian coordinates rather than wind speed and direction (polar coordinates), as the
noise distribution on the the predicted wind-vector components is shown to be
spherically Gaussian. In this paper, we use this information and directly model the
Cartesian wind-vector components from scatterometer observations for the "rst time.

2. Modelling multi-valued functions

2.1. Theory of mixture density networks

Mixture density networks (MDNs) provide a framework for modelling conditional
probability density functions, denoted by P(t D x) [5,1]. The distribution of the outputs,
t3Rc, is described by a parametric model whose parameters, Z, are determined by the
output of a neural network, which takes x as its inputs. The general model is described
by

P(t D x)"
M
+
j/1

a
j
(x)/

j
(tDx), (1)
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Fig. 2. The structure of a mixture density network. The inputs x are feed through the neural network. The
outputs of the neural network, Z, de"ne the parameters of the Gaussian mixture model.

and

M
+
j/1

a
j
(x)"1, (2)

where a
j
(x) represents the mixing coe$cients (which depend on x), /

j
(tDx) are the kernel

distributions of the mixture model (whose parameters also depend on x) and M is the
number of kernels in the mixture model. Generally, the kernels used are c-dimensional
spherical Gaussians of the form
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In principle a Gaussian mixture model with su$ciently many kernels of the type given
by Eq. (3) can approximate any density function providing the parameters are chosen
correctly [5]. It follows then that for any given value of x, the mixture model (1) can
model the conditional density function P(t D x). To achieve this the parameters of the
mixture model are taken to be general continuous functions of x. The output of the
neural network is a vector, Z, which contains the parameters that de"ne the coe$-
cients of the mixture model conditional on the inputs x. For spherical Gaussian
mixture models the coe$cients are, a

j
the mixing coe$cient for the jth kernel, k

jk
the

kth element of the centre of the jth kernel and p2
j

the width or variance of the jth
kernel. The parameter vector, Z, is summarised as
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It is this combination of a Gaussian mixture model, whose parameters are depen-
dent on the output of feed forward neural network that takes x as its inputs, that is
referred to as a mixture density network and is represented schematically in Fig. 2.

By choosing su$cient kernels in the mixture model and a neural network with
su$cient hidden units the MDN can approximate as closely as desired any condi-
tional density, P(t D x) [1]. The neural network element of the MDN is implemented
with a standard multi-layer perceptron (MLP) with single hidden layer of tanh units
and an output layer of linear units.
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2.2. Modelling the geophysical problem

In the context of this application each input pattern for the MDN, x, is the observed
scatterometer data, ro and the cosine of the incidence angle, h. Modelling the wind
vector components directly implies that the targets of the MDN, t, are the wind-vector
components (u, v). The general description of the MDN, (1), is then re-expressed using
geophysical parameters as

P(u, vDro, h)"
M
+
j/1

a
j
(ro, h)/

j
(u, vDro, h). (4)

2.3. Modelling the inherent geophysical knowledge

We also investigated a hybrid architecture, which is a modi"cation of the standard
MDN architecture, in order to model the known geophysical knowledge of the
problem, the 1803 ambiguity in wind direction. The hybrid MDN has two kernels.
One kernel is free to move, and the other is positioned diametrically opposite the "rst
in (u, v) space, by taking the negative mean of the free moving kernel. The simpli"ed
model becomes

P(u, vDro, h)"a(ro, h)/(u vDro, h)#(1!a(ro, h))t(u, vDro, h), (5)

where the kernels are de"ned by diametrically opposed spherical Gaussians with
common variances:

/(u, vDro, h)"
1

2pp2(ro, h)
expA!

DD(u, v)!l(ro, h)DD2
2p2(ro, h) B, (6)

t(u, vDro, h)"
1

2pp2(ro, h)
expA!

DD(u, v)#l(ro, h)DD2
2p2(ro, h) B. (7)

3. Results

In total 12 networks were trained,2 using early stopping for regularisation. The
performance of the networks is evaluated using the vector root mean square (RMS)
error between the predicted and target values on a test data set and the percentage of
predicted directions from the two most probable modes that fall within 203 of the
target wind direction. The results are summarised in Table 1.

The results suggest that model performance is more sensitive to the number of
kernels in the MDN con"guration than the number of hidden units in the MLP.

2When training the MDNs, the inputs are assumed to be noiseless in comparison to the noise on the
targets.
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Table 1
Results of the 12 MDN con"gurations. These results are generated from a test data set of 5000
examples

MDN architecture Vector RMS errors Percentage
Kernels Hidden Units within 203

2 (Hybrid) 35 4.33 73.38
2 (Hybrid) 50 4.18 70.32
2 35 4.02 72.76
2 50 4.03 74.10

4 20 3.82 76.76
4 25 3.69 76.82
4 30 3.90 76.64
4 35 3.89 76.94
4 50 3.73 77.12
4 90 4.29 76.64

12 35 4.58 76.74
12 50 4.24 77.16

Recent work using a specially selected ERS-2 data set, which has outliers removed
by hand, has shown a signi"cant improvement in our model statistics. Our best model
(computed on the new ERS-2 test set, which is independent of the training and
validation set), with 25 units in the hidden layer of the MLP and four kernels in
the mixture model, has a vector RMS error of 2.33 m s~1 and percentage within 203
of 85.07.

3.1. Discussion

The complexity of the mapping, (ro, h)P(u, v), is modelled by the MLP part of the
MDN. The focus of the investigation is on MDNs with four kernels. Here the
di!erence in the performance of percentage within 203 between the best and worst
model is less than 0.5%, and for vector RMS error is 0.6 m s~1. It seems possible these
di!erences are due to di!erent initial positions on the error surface. The model with 90
hidden units does not perform as well for vector RMS error, and it is suggested that
this is due to the model over-"tting. The model with 20 hidden units gives a good
indication of the complexity of the mapping, (ro, h)P(u, v).

Comparing the hybrid MDNs with the MDNs with two kernels it is interesting to
note that the directional performance is similar, and the vector RMS di!ers by less
than 0.3 m s~1 between best and worst case. This gives strong evidence to suggest the
solution is predominantly bimodal (see Fig. 3) with these modes being approximately
1803 apart in direction. However, the models with four kernels out-perform the
models with two. The complexity of the density model in the MDN is related to the
number of kernels in the Gaussian mixture model. The improved performance of
the MDNs with four kernels is attributed to two factors. Firstly, although the results
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Fig. 3. The conditional probability distribution of the wind vectors (u,v) given the scatterometer data for
a MDN with four kernels, 20 hidden units, on two di!erent input patterns.

suggest that the modes of the conditional distribution are predominantly bimodal,
they are not always Gaussian or spherically symmetric, suggesting that the noise on
the targets is heavier tailed than originally assumed. Four kernels in the MDN are
able to model the non-Gaussian, non-spherical modes in the conditional probability
distribution more e$ciently than two kernels. Secondly, the increased #exibility of
four kernels permits the MDN to place kernels into four quadrants of (u,v) when
appropriate, #exibility which is not available to the models with two kernels. Two
further experiments obtained results for MDNs with 12 kernels. The results show that
there is an increase in the vector RMS error. This is due to the model over-"tting, since
it has su$cient #exibility to model both the underlying data generator and the noise on
the training data set, and hence yields poor results for the test set.

Bench marking against previous work is di$cult because of the di!erent data sets
used when training and testing the models. However, bearing this in mind, the
networks in [3], which model each cell independently, achieved a correct solution
within 203 roughly 73% of the time when considering the two most probable
solutions. The results reported in [9], achieve a correct solution more than 85% of the
time in wind direction when considering the two most probable solutions. However in
[9] it must be noted that spatial information is also provided at the inputs to the
networks, which provides additional disambiguation skill [3].

The results of this study improved on the results of the local models in [3]. When
the local models trained in this study are applied using the methods proposed in [6,
this issue] it is hoped that we can further improve performance.

4. Conclusions

In this paper a novel method for modelling the Cartesian wind-vector components,
(u, v), directly from scatterometer data has been introduced. By using the MDN
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framework, a fully probabilistic model, P(u, vDro, h), has been developed which de-
scribes the joint probability distribution of the wind vectors given the scatterometer
observations. The hybrid MDN has shown that the solution is predominantly
bimodal, agreeing with earlier work [12]. Training MDNs with several di!erent
architectures suggests that these are the best results achievable, given the data, by
local modelling of the inverse mapping (ro, h)P(u, v).

On going work, using improved data selection techniques for generating training
data sets from the recently available ERS-2 satellite data, has shown signi"cant
improvements in model performance.
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