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The importance of metrics in machine learning and pattern recognition algorithms has led to an
increasing interest for optimizing distance metrics in recent years. Most of the state-of-the-art methods
focus on learning Mahalanobis distances and the learned metrics are in turn heavily used for the nearest
neighbor-based classification (NN). However, until now no theoretical link has been established between
the learned metrics and their performance in NN. Although some existing methods such as large-margin
nearest neighbor (LMNN), have employed the concept of large margin to learn a data-dependent metric,
the link between the margin and the generalization performance for the metric is not fully understood.
Though the recent work has indeed provided tenable margin distribution explanation on Boosting, the
margin used in metric learning is quite different from that in Boosting. Thus, in this paper we try to
analyze the effectiveness of metric learning algorithms for NN from the perspective of the margin dis-
tribution and provide a general and effective evaluation criterion for metric learning. On the one hand,
we derive the generalization error upper bound for NN with respect to the Mahalanobis metric. On the
other hand, the experiments on several benchmark datasets using existing metric learning algorithms
demonstrate that large margin distribution can be obtained by these algorithms. Motivated by our
analysis above, we also present a novel margin based metric learning algorithm for NN, which explicitly
enlarges the margin distribution on various datasets and achieves very competitive results with the

existing metric learning algorithms.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Distance metric learning is a fundamental problem in machine
learning and pattern recognition. It is critical to many machine
learning algorithms, such as nearest neighbor classification, sup-
port vector machine and K-means [1,2]. A number of recent
algorithms have been proposed for distance metric learning.
Generally, these approaches are based on the reasonable intuition
that a good metric should make the distances between similar
data points smaller, while the distances between dissimilar data
points larger. Among these approaches, Mahalanobis distance
metric learning [3-6] is a well-studied and successful framework,
whose goal is to learn a positive semi-definite (PSD) matrix to
cater for the above-mentioned intuition by linearly projecting the
data into a new feature space where the standard Euclidean dis-
tance can desirably be performed. Then the distance metric
learned can also further be used in subsequent learning tasks such
as classification and rank.
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Although existing metric learning algorithms have been shown
to be useful in many real-world applications [7-9], more theore-
tical understanding is still needed for metric learning. One
important problem is the generalization guarantee for metric
learning, i.e., bounding its performance on unseen data from its
performance on the training examples. However, establishing a
generalization guarantee for the learned metric is still challenging
and only has been investigated recently from a theoretical stand-
point [1,10]. The problem is currently studied in the two facets:
the first one is the consistency of the learned metric, which tries to
bound the deviation between the empirical performance of the
metric on the training samples and its generalization performance
on unseen data, and the second one is to understand the link
between the learned metric and the generalization performance of
the subsequent learning algorithms with this metric, with such a
link, we can get some insights to design new learning algorithms.

Several recent works have proposed for the first facet by
studying the convergence of the empirical risk of metric learning
to the true risk over the unknown probability distribution. For
example, Jin et al. [11] use the notion of uniform stability adapted
to metric learning with Frobenius norm regularization to derive
generalization bounds; Bellet and Habrard [12] adapt the notion of
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algorithmic robustness to the metric learning setting to derive
generalization bounds for any matrix norm as regularizer. Cao
et al. [13] apply the notion of Rademacher complexity to derive
bounds for metric learning. Meanwhile, the results of the second
facet of generalization have only been obtained for linear classi-
fication so far. For example, Bellet et al. [14] resort to the theory of
learning with (g, y, 7)-good similarity function and explore the link
between properties of a similarity function and the generalization
of a linear classifier built from this similarity. Guo and Ying [15]
extend the results of Bellet et al. [14] to the cases based on other
several matrix norms using a Rademacher complexity analysis.

In this paper, we focus on the second facet of generalization for
metric learning. It is noted that, the learned metrics are also
heavily used for other learning algorithms, especially the nearest
neighbor classification which is a local nonlinear classifier rather
than the linear classifiers as those studied in this facet. In general,
the Mahalanobis metrics learned from training pairs or triplets are
plugged in a k-NN classifier and often lead to greater accuracy than
the standard Euclidean distance [11], but no direct theoretical
evidence supports this behavior. Although some existing methods
such as LMNN [4], have employed the concept of large margin to
design the algorithms and many empirical evidences have also
demonstrated that these methods generally perform better than
other metric learning algorithms such as neighborhood compo-
nent analysis (NCA) or relevant component analysis (RCA) for NN
[4,6,16], the link between the margin with respect to the learned
metric and the generalization performance for subsequent nearest
neighbor classification is not fully understood yet. Besides,
inspired by the recent theoretical results that the margin dis-
tribution rather than a single margin is really crucial for the gen-
eralization performance [17], we also try to analyze the link
between the learned Mahalanobis metric and the performance of
nearest neighbor classification from the perspective of margin
distribution and provide a general and effective evaluation criteria
for metric learning. Different from the situation of the Boosting or
support vector machine (SVM) analyzed by [17] where the margin
is defined specifically for the Boosting or SVM, our margin is
defined not for the specific metric learning algorithm but for the
subsequent nearest neighbor classification with the learned
metric. Thus, our learning situation is more complex in that the
metric learning is usually independent of classification of the
target classifiers. In addition, due to the fact that the target clas-
sifier like the NN is a lazy learner which does not involve training,
thus it becomes relatively reasonable to select it as a criterion of
evaluating the performance of learned metric induced from the
nearest neighbor classification.

Throughout this paper we will use the 1-NN as a target clas-
sifier due to its excellent performance with the error rate less than
a factor of 2 Bayes error rate [18]. In our analysis, we first extend
the margin for 1-NN defined in [19] with the Mahalanobis metric
and then prove a generalization error bound of 1-NN on a Maha-
lanobis metric, the resulting bound guarantees good performance
for the learned metric while keeping the margin distribution large.
Next, we provide more theoretical evidence for the existing large
margin metric learning algorithms and explain the reason why the
metric learned from training triplets can be useful when used in
conjunction with the nearest-neighbor classifier. Actually, by
overcoming the scale ambiguity of the margin of metric learning,
our study further enriches the results in [20] which is specific to
feature selection. Therefore, we draw a more general conclusion
that is applicable for any linear transformation of the original
feature space including Mahalanobis metric learning and other
feature learning methods, as a result, motivating us to design
novel metric learning algorithms based on the large margin dis-
tribution criterion.

The rest of this paper is organized as follows. In Section 2, we
discuss the margins in machine learning community and present
the margin with respect to the Mahalanobis metric. In Section 3,
we present a theoretical generalization analysis to explain the link
between the margin distribution with respect to the learned
metric and the performance of 1-NN. Empirical evidence on sev-
eral benchmark datasets with the representative metric learning
algorithms is provided to verify the theoretical analysis and
explain the effectiveness of these existing methods in Section 4.
We provide more empirical evidences by presenting a novel
metric learning algorithm for NN which directly optimizes the
margin in Section 5. Conclusion is given in Section 6.

2. Margin for 1-NN with the learned metric

A margin [21,22] is essentially a geometric measure for evalu-
ating the confidence of a classifier when making decision. It is
used both for theoretic generalization bounds and as guideline for
designing algorithms. For example, it is well known that the
margin is a fundamental issue of SVMs, and recently the margin
theory for Boosting has also been demonstrated, establishing a
connection between these two mainstream approaches [17]. The
recent theoretical results disclosed that the margin distribution
rather than a single margin is really crucial for the generalization
performance [23]. In the specific context of metric learning, many
algorithms such as LMNN are also designed with the concept of
large margin with the goal that the k-nearest neighbors always
belong to the same class while examples from different classes are
separated. Besides, the margin of 1-NN has also been proposed
and is used for feature selection [20]. Inspired by these previous
works, we first extend the margin for 1-NN with the Mahalanobis
metric such that we can analyze the link between the learned
metric and the performance of nearest neighbor classification
from the perspective of margin distribution.

The first focus of attention is on the definition of margin for
nearest neighbor classification with respect to the Mahalanobis
metric. Generally, there are two types of margins. The first type is
sample-margin, which measures the distance between the data
point and the decision boundary induced by the classifier, such as
the margin in SVM [24]. The other one is hypothesis-margin,
which measures the distance between the hypothesis and the
closest hypothesis that assigns alternative label to the given data
point. Boosting algorithms usually use this type of margin as the
distance among different hypotheses. In the context of 1-NN, both
types of margins can be found [25]. The hypothesis-margin is half
the difference between the distance to the nearmiss and the dis-
tance to the nearhit, and can be easily computed as follows:

ps(X) = %(Hx —nearmiss(x)|| — ||x — nearhit(x)||) M

where ps denotes the hypothesis-margin of the new instance x with
respect to the set of training samples S, Il - |l is the Euclidean distance,
nearmiss(x) and nearhit(x) denote the nearest point to x in S with the
different and the same label, respectively. In [19], the authors proved
that the hypothesis-margin of 1-NN lower bounds the sample margin,
that is, large hypothesis-margin for 1-NN ensures large sample-
margin. Therefore, we can only use the hypothesis-margin to define
the margin of 1-NN on the Mahalanobis metric.

In the specific context of Mahalanobis metric learning, the
distance function between the training example x; and the x; is
dm(Xi, %) = 11X —Xj Ly = 1/ (x,'ij)TM(x,»ij). It is parameterized
by a matrix M, which is usually a positive semi-definite matrix,
and can be further decomposed as M =LTL(L e RN*", r < N). Thus,
we can formulate the hypothesis-margin of 1-NN as the function
of the learned metric M.

Please cite this article as: P.-C. Zou, et al., Margin distribution explanation on metric learning for nearest neighbor classification,
Neurocomputing (2015), http://dx.doi.org/10.1016/j.neucom.2015.11.016



http://dx.doi.org/10.1016/j.neucom.2015.11.016
http://dx.doi.org/10.1016/j.neucom.2015.11.016
http://dx.doi.org/10.1016/j.neucom.2015.11.016

P.-C. Zou et al. / Neurocomputing u (AEEE) EEE-EEE 3

Definition 1. Let S be a set of samples and x be an instance. Let M
be a positive semi-definite matrix, M = LTL, then the margin of x is

P = % (Ilx —nearmiss(x) |l yy — | x —nearhit(x)ll ;) or

PEx) = % (J|Lx —L - nearmiss(x)|| — ||Lx — L - nearhit(x)||) )

Definition 1 naturally extends the original hypothesis-margin
of 1-NN, so that the learned metric will affect the margin through
the distance measure. Since an arbitrarily large margin can be
given by enlarging its scale, such as pg'M)(x)z ﬂp’s‘”(x), we
introduce a normalization Tr(M)=1 to guarantee that

Ixily = ILx; ] < 1%l
which can be proved as follows:

Proof. | - Iz denotes the Frobenius norm and IILIly=+/Tr(L"L).
Thus, ILIg - X1l p = \/Tr(L"L) - %] = /Tr(M) - |x;]|. When Tr(M) =
1, it follows that IILIig - IIx;1l F = ||x;||. Since Frobenius norm satisfies
the consistency condition, we have IILx;llg < IILIlg - llx;|lp. There-
fore, IILx; 1l F = || Lx;|| < ||x;]|.C

Thus the scale ambiguity of the margin with the learned metric
can be removed.

3. Theoretical analysis

In this section we use the margin defined with the learned
metric to prove a generalization error bound for 1-Nearest
Neighbor which is used both feature selection and large margin
principle to prove a finite sample generalization bound for 1-NN.
However, to the best of our knowledge, the margin of 1-NN has
not been investigated when a Mahalanobis metric learned from a
set of training pairs or triplets being plugged into 1-NN. Here, we
first provide a further result which enriches the results specific to
feature selection in [20]: a large margin led by an effective metric
(any linear transformation of the original feature space) provides
enough evidence to obtain a useful bound on the generalization
error for 1-NN. If the metric learning algorithm leads to a large
margin, the bound guarantees it generalizes well.

In order to prove our conclusion, we use the following notation:

Definition 2. Let D be a distribution over X x {+ 1} and h: ¥—
{ + 1} a classification function. We denote the generalization error
of h with respect to D by errp(h):

errp(h) = XyIlr 5 [h(x) # Y]

For a set of samples S= {(xk,yk)},'(":1 eXx{+1)™ and a con-
stant y > 0, we define the y —sensitive training error to be

efrt(h)= %| {(k : h(x) # yi)or[x, has sample —margin <y)}|

Our main result is in the following theorem.

Theorem 1. Let D be a distribution over R x (+ 1) which is sup-
ported on a ball of radius R in RN. Let §>0 and let S be a set of
samples of size m such that S~ D™. With probability 1—§ over the

random choice of S, for any set of metric M and any y € (0, 1]

errp(h) < efri(h)+ \/i (d In (34§m>> log ,(578m) 1 In (}%)

where h is the 1-NN classifier when the distance is measured on
the metric M(M =L"L) and d = (64R/.y)d'm(m. Moreover, dim(Lx)
denotes the dimension of the feature space projected by L, and e is
natural constant. Note that the theorem holds when sample-margin is
replaced by hypothesis-margin since the latter is the lower bound of
the former.

In order to prove Theorem 1, we begin by proving a basic
lemma which shows that the class of the nearest neighbor clas-
sifiers with respect to a Mahalanobis metric M is a subset of the
class of 1-Lipschitz functions. Let NN,SV,(-) be a function, where the
sign of NNSM(x) is the label that the nearest neighbor rule assigns to
x, and the magnitude is the sample-margin.

Lemma 1. Let M be a positive semi-definite metric matrix M =LTL,
and S be a set of labeled samples. Then, for any x1,x, e RN:

NN (x1) = N3y 2)| < 1%1 — Lo

Proof. Let x;,x, e X. If NNSM(x1) and NN%,,(XZ) have the same sign, let
21,25 € RY™I) be the points on the decision boundary of the 1-NN
which are closest to Lx; and Lx, respectively. From the definition of
Z1,X>, it follows that NN,SV,(xl) = ||Lx1 —z;|| and NN,SV,(XZ) = ||[x; — z3]|.
Thus,

NNy(x2) = ILx2 — 23 || < ILxp — Z1 || < |1 IxXp — Lxq || + (| Lx1 — 21 |
= ||Lxy — Lxy | + NN, (x1).

Similarly, we have

NN (x1) < 11X, — Lxq ||+ NNy (x5).
Then, we obtain that

NN G = NN 2)| < 1+ L — Lxa L.

If NN,SV,(xl) and NN,SV,(xz) have different signs, as NN,SV,(-) is continuous,
there must be a point z on the line that connects Lx; and Lx,. Let z be
the crossing point between this line and the decision boundary. Thus,

INN3 )| = 161 =21 < lx; 2
NN (X2)| = I — 22 < 1 xz ~ 2]
Then we obtain

‘NNi,,(xl)—NN,SV,(xz)‘ - ‘NN,SV,(xl)‘ + ’NN,SV,(xz)‘

Table 1
Benchmark datasets used in our experiments.

Dataset # of classes # of feature  # of training  # of test
SPECTF Heart 2 44 187 80
sonar 2 60 146 62
ILPD 2 10 409 174
diabetes 2 8 538 230
cardiotocography 10 21 1489 637
segmentation 7 19 1617 693
satellite 6 36 4505 1930
letter 26 16 14,000 6000
dna 3 180 1811 775
usps 10 50 6209 2789
mnist 10 50 60,000 10,000
protein 3 50 15062 6454
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<|Lx1 =2zl +ILx2 =zl =1 - ILx1 —Lxz|l.

This completes the proof.o

heH and every y € (0,1], let d = faty (y/.32):

errp(h) < efrf(h)+ %(d ln(34§m)> log,(578m)+In (}%)

Then, the main theoretical tool for proving Theorem 1 is the

following:

Theorem 2 (Bartlett [26]). Let H be a class of real valued functions.
Let S be a set of samples of size m generated i.i.d. from a distribution D
over X e { + 1} then with probability 1— 6 over the choices of S, every

Next we turn to prove Theorem 1.

Proof. Let M be a positive semi-definite metric matrix M=L"L
and y > 0. In order to use Theorem 2, we only need to compute the
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fat-shattering dimension of 1-NN with the metric M. According to
Lemma 1, the class of 1-NN classifiers on the learned metric is a
subset of the class of 1-Lipschitz functions. Thus, we can bound the
fat-shattering dimension of 1-NN by the dimension of Lipschitz
functions. Since D is supported in a ball of radius R, and ||Lx|| < ||x||
has been proved, we only need to calculate the fat-shattering
dimension of Lipschitz functions acting on points in RYM™ with
the norm bounded by R. According to Theorem 1 in [20], the fat,
—dimension of the 1-NN functions on the learned metric M is thus
bounded by the largest y packing of a ball in R4™® with radius R,
which in turn is bounded by (2R/y)*™". Therefore, given a fixed
metric matrix M, we can apply to Theorem 2 and use the bound on
the fat-shattering dimension just calculated. As a result, we obtain
the result in Theorem 1.0

From the generalization error bound in Theorem 1, it can be
learned that the generalization performance of 1-NN on the
learned metric is mainly influenced by the following factors: the
margin distribution of 1-NN on the training set (i.e.,
(1/m)| (xx has sample—margin <y)|), the number of training
examples m and fat, —dimension of the 1-NN with respect to y.
Therefore, according to Theorem 1, it can be inferred that when m
and y are fixed, the more the training examples with large margins
are, the smaller the value (1/m)|(x, has sample —margin <y)]| is,
thus, the smaller the generalization error of 1-NN on the learned
metric is. Actually, this is a general conclusion which is suitable for
any linear transformations of the original feature space, naturally
including those derived from not only the Mahalanobis metric
learning but also other feature learning methods.

4. Empirical evidence with existing metric learning algorithms

In this section, in order to understand further the link between the
learned metric and the performance of nearest neighbor classification
from the perspective of margin distribution, the experiments on
several benchmark datasets using existing metric learning algorithms
are carried out. Firstly, to demonstrate the effectiveness of the margin
distribution for the existing metric learning algorithms, we investi-
gate the margin distribution with the learned metrics and compare
the generalization performances of nearest neighbor classification
yielded by the learned metrics. Secondly, for many metric learning
algorithms, the triplet constraints can be constructed with different
strategies, such as the NN selection or the random selection strategies
[27]. By investigating the margin distribution resulted from the
metrics learned from the constraints constructed with different

Table 2
The test errors and average margins of different metrics on each dataset.

strategies, we can explicitly explain the reason why the NN selection
strategy is a better choice than the random selection strategy to
construct the training constraints.

Table 1 summarizes the characteristics of 12 data sets used in
our experiments, Datasets SPECTF Heart, ILPD, sonar, diabetes,
cardiotocography, segmentation, satellite and letter are down-
loaded from the UCI repository [28], and dna, usps, mnist and
protein from LIBSVM [29]. Due to the limitation of the memory of
our computer, for usps, mnist and protein, the feature dimensions
are reduced to 50 by principle component analysis (PCA), then the
metrics are learned in the PCA subspace. In order to avoid the
influence carried by the scale of the features to the metric to be
learned, the normalization procedure is applied to each feature in
our experiments. In our study for mnist, we use the standard
training/testing split provided by the original dataset. For the
other datasets, we randomly select 70% of the data for training and
the remaining 30% for testing; the experiments related to these
datasets are repeated ten times, and their averaged prediction
results are reported. We implement all the experiments in
MATLAB on a laptop with 2.5 GHz CPU and 8 GB RAM.

Firstly, we investigate the margin distribution on the learned
metrics and compare the generalization performance of nearest
neighbor classification using the learned metrics and the standard
Euclidean distance. In this experiment, two representative metric
learning algorithms are employed: LMNN [4] and FrobMetric [30].
FrobMetric formulates the metric learning problem to use the
Frobenius regularization. Actually, both of them can be treated as
margin based algorithms and many empirical evidences have
demonstrated they generally perform better than other metric
learning algorithms for NN [4,11,30,6]. LMNN is one of the most
widely-used Mahalanobis distance learning methods and has been
the origin of many extensions. The training samples of LMNN are
directly derived from data label: the k-nearest neighbors of any
training instance should belong to the correct class while keeping
away instances of other classes. FrobMetric is another popular
metric learning algorithm which learns the metric with a collec-
tion of flexible triplet constraints, i.e. (x;,X;,x;) where x; is similar
to x;, and is dissimilar to x;. Besides FrobMetric, metric learning
with Boosting (BoostMetric) and information theoretic metric
learning (ITML) algorithms are all of this kind [31,32,5].

In our experiment, the number of nearest neighbors k is set to
1 for LMNN. Meanwhile, the triplet constraints in FrobMetric are
constructed using the 1-NN selection strategy: for any instance,
we find two of its nearest neighbors measured by the standard
Euclidean distance in the original feature space with the different
and the same labels respectively. To maintain consistency with the

Dataset Test error Average margin
Euclidean LMNN FrobMetric Euclidean LMNN FrobMetric

SPECTF Heart 0.2819 0.2562 0.2275 0.0167 0.0413 0.1814
sonar 0.1742 0.1661 0.1589 0.0355 0.0452 0.0997
ILPD 0.3555 0.3543 0.3293 0.0115 0.0114 0.0256
diabetes 0.2657 0.2626 0.2643 0.0099 0.0111 0.0136
cardiotocography 0.2429 0.2323 0.2148 0.0209 0.0278 0.0294
segmentation 0.0450 0.0388 0.0398 0.0641 0.0888 0.1288
satellite 0.1150 0.1004 0.0975 0.0331 0.0718 0.1054
letter 0.0512 0.0392 0.0384 0.0285 0.0308 0.0333
dna 0.2494 0.1297 0.1174 0.0168 0.0240 0.0279
usps 0.0361 0.0269 0.0291 0.0281 0.0334 0.0362
mnist 0.0324 0.0273 0.0265 0.0259 0.0286 0.0308
protein 0.4405 0.4330 0.3967 0.0014 0.0018 0.0021
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Fig. 2. Cumulative frequency (y-axis) with respect to the margin (x-axis) of random selection and NN selection strategies on all the datasets. The more right the curve, the

larger the accumulated margin.

previous section, we check the generalization performance of the
NN classification with the learned metrics using 1-NN. For LMNN,
we use the codes provided by its authors, and also use their
default parameters in our experiment. For FrobMetric, we imple-
ment the algorithm as described in [30], and the tradeoff para-
meters C is set to 1, unless otherwise specified. The result using the
standard Euclidean distance as metric is used as a baseline.

The experimental results are shown in Fig. 1 and Table 2,
respectively. Fig. 1 shows the cumulative margin distribution of
Euclidean, LMNN and FrobMetric on all the datasets. Here, the

margins of LMNN and FrobMetric are computed from the learned
metrics such that the nearhit and the nearmiss are all measured by
the learned metrics. For a fair comparison, the traces of the
learned metric matrices have all been enforced to 1 to remove the
scale ambiguity. It should be noted that, slightly different from the
margin defined in Boosting, the range of values of our margin is
not normalized. The point where a curve and the x-axis crosses
corresponds to the minimum margin. As can be seen, the mini-
mum margin of LMNN or FrobMetric is sometimes smaller than
that of Euclidean distance, whereas the curves of LMNN and
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Table 3
The test errors and the average margins of different strategies on each dataset.

Dataset Test error Average margin
Random NN selection Random NN selection
selection selection

SPECTF Heart 0.2288 0.2225 0.1610 0.1728

sonar 0.1742 0.1629 0.0810 0.1003

ILPD 0.3333 0.3264 0.0070 0.0245

diabetes 0.2757 0.2643 0.0117 0.0153

cardiotocography 0.2738 0.2148 0.0193 0.0300

segmentation 0.0646 0.0401 0.1059 0.1278

satellite 0.1404 0.0971 0.0918 0.1053

letter 0.0844 0.0383 0.0274 0.0334

dna 0.1173 0.1169 0.0257 0.0281

usps 0.0440 0.0289 0.0296 0.0361

mnist 0.0296 0.0265 0.0235 0.0308

protein 0.4081 0.3957 0.0015 0.0022

FrobMetric generally lie on the right side, showing that the margin
distributions of LMNN and FrobMetric are generally better than
that of the standard Euclidean distance. Table 2 shows the test
errors and the average margins of different metrics on each
dataset, and the best results are in bold. It is obvious that the test
errors of both LMNN and FrobMetric on all the datasets are lower
than that of the original Euclidean distance, and the average
margins of both LMNN and FrobMetric are correspondingly larger
than that of the standard Euclidean distance. The result indicates a
similar conclusion as in the study of Boosting that the margin
distribution rather than a single margin is really crucial for the
generalization performance.

For many metric learning algorithms, the constraints can
usually be constructed using different strategies, such as the NN
selection or the random selection strategies. In [27], the experi-
mental results show that the NN selection strategy is better in the
construct of the constraints than the random one. To verify the
conclusion obtained from their experimental results, we can
investigate the margin distribution with the metrics learned from
the constraints constructed with different strategies.

In this experiment, FrobMetric is employed again, as it can
learn a metric from the triplet constraints flexibly constructed
using different strategies. We construct the triplet constraints
using the NN selection strategy and the random selection strategy
respectively according to the description in [27]:

(1) NN selection: For any training sample (x;,y;), we find two of its
nearest neighbors x; and x, measured by the standard Eucli-
dean distance in the original feature space, with x; sharing the
same class label as x;, and x; belonging to a class different from
X;, and we obtain such a triplet constraint (x;,x;,X). By con-
structing all such triplets from the training samples, we build a
triplet set using the NN strategy.

(2) Random selection: Given a set of training samples, we ran-
domly select the triplets from all the possible triplets.

In our experiment, the number of constraints constructed using
different strategies are both equal to the number of the training
sample on each dataset.

The experimental results are shown in Fig. 2 and Table 3,
respectively. Fig. 2 plots the cumulative margin distributions of the
random selection and the NN selection strategies on all the datasets.
As can be seen, the curves of the NN selection strategy generally lie on
the right side, showing that the margin distributions of the NN
selection strategy are generally better than that of the random
selection strategy. Table 3 shows the test errors and the average

margins of different strategies on each dataset, and the best results
are also in bold. It is obvious that the overall performance of the NN
selection strategy is superior to the random one, and the average
margin of the NN selection strategy is larger than that of the random
one. The result also indicates that although the standard Euclidean
distance may not be the optimal distance function, it is still reason-
able to select the initial nearest neighbors measured by the standard
Euclidean distance in the absence of prior knowledge.

5. Empirical evidence with directly optimizing the margin

As can be seen in the previous section, the experimental results
demonstrate that the existing algorithms LMNN and FrobMetric can
obtain larger margin distributions and clearly improve the general-
ization performance of nearest neighbor classification on the experi-
mental datasets. In order to further investigate the changing of the
generalization performance of NN with enlarging the margin dis-
tribution, we also present a novel metric learning algorithm by
directly optimizing the margin in this section. The design is inspired
by the feature selection algorithm Simba [20], so we call our algorithm
as SimbaMetric. It is actually a margin based metric learning algorithm
for nearest neighbor classification using stochastic gradient ascent and
is naturally more powerful than Simba due to the fact that it is
applicable for any linear transformation of the original feature space.

In order to obtain a larger margin distribution, we wish to learn
such a metric that more of the training examples have large margins.
Thus, we define a margin based evaluation function according to the
definition of margin of 1-NN with the Mahalanobis metric.

Definition 3. Given a set of training examples S and a positive
semi-definite metric matrix M, the evaluation function is

e(M) = Zp’}’{x(x) = %Z( Il x — nearmiss(x) Il y — || x— nearhit(x) | )

XeS XeS
3)

where pls"’\x(x) is the margin of each training example x, which is
calculated with respect to the training examples excluding x.

Both LMNN and FrobMetric have employed a similar evaluation
function as (3). However, in the absence of prior knowledge, the real
nearhit and nearmiss for each training example are unknown in
advance. The choice of LMNN and FrobMetric is to use the standard
Euclidean distance to determine the nearhits and nearmisses. While
these nearhits and nearmisses are fixed during the learning process,
the actual nearest neighbors may change as a result of the linear
transformation of the input space. Although multi-pass strategy has
been considered both in LMNN and BoostMetric, it is quite time
consuming. To make up this weakness, we use the stochastic gradient
ascent method over e(M), which is a trade-off between the compu-
tational efficiency and the updating of the nearest neighbors. At each
iteration, we randomly select a training example x from set S and
calculate its nearhit and nearmiss with the updated metric currently.
The same training example can be picked up repeatedly during the
different iteration rounds. The gradient of (3) with respected to the
picked training example x; can be calculated as follows:

9ei(M) _ 1 ((x; —nearmiss(x;))(x; — nearmiss(x;))’
oM 2 Il x; — nearmiss(x;) |l p

(x; — nearhit(x;))(x; — nearhit(xi))T 4
h Il x; — nearhit(x;) | “

We refer to the Mahalanobis distance matrix at the t-th iteration as
M.. At each iteration, the metric matrix can be updated by

ade;(M)
)

M[:Ps(Mf_ﬁn 5)
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Fig. 3. The training errors and the test errors at each iteration and the average margins on different datasets.
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where Ps(-) is the projection of the learned metric onto the cone of
positive semi-definite matrices, and # is a positive step-size constant,
denoting the learning rate. To remove the scale ambiguity of the
learned metric, we enforce the trace of the matrix to 1 at each
iteration as follows:

M <M /Tr(Mp). (6)

According to the above details, our proposed algorithm is illu-
strated in Algorithm 1.

Algorithm 1. Iterative Search Margin Based Metric learning
(SimbaMetric).

Input: A set of training examples S, the number of iterations T.

1: Initialize metric matrix Mg « I¢%¢;

2:fort=1...T do

3: pick randomly an training example x; from S;

4: calculate nearmiss(x;) and nearhit(x;) with respect to S
excluding x; and the current metric M;_q;

5: calculate the gradient of (3) with respected to x; according
to (4);

6: update the metric M, according to (5);

7: enforce the trace of the matrix M, to 1 according to (6);

8: end for

Output: M,.

In our algorithm, we use 20 percent of the training data as a
small hold-out set to monitor the average margin, and T is set to
the number of training data. In iteration of our algorithm, we
initially use a relatively large learning rate of 0.5. Similar to [4], at
each iteration, we increase the rate # by a factor of 1.01 if the
average margin on the validation set get increased, and decrease 7
by a factor of 0.5 otherwise. Actually, with the increase of the
number of iterations, the learning rate tends to get smaller, our
algorithm using stochastic gradient ascent can typically converge.
If the initial learning rate is set to too large and at the same time,
no strategy is adopted to decrease it with the increase of the
number of iterations, then the average margin more likely

Table 4
The running time on each dataset (s).

fluctuates wildly and thus makes the algorithm fail in con-
vergence. We repeat the algorithm 5 times and obtain the learned
metric with the largest average margin on the training data as the
final metric.

We verify the behavior of SimbaMetric on the same datasets as
in the previous section. To investigate the changing of the margin
distribution and the generalization performance of NN with
updating the metric, we monitor the average margin of the
training set, training error and test error at each iteration on each
dataset. Fig. 3 presents the results on some representative data-
sets, where (a) plots the average margin of the training set cal-
culated with the updated metric at each iteration, (b) plots the
training error (bottom) and test error (top) curves and (c) plots the
cumulative margin distribution of SimbaMetric with the metric
learned finally. The curves for the other datasets are similar.
Although we only pick one training example at each iteration, the
average margins on different datasets all get larger with the
increasing of the number of iterations. At the same time, 1-NN
trends to achieve lower error rates both on the training set and the
test set with the increasing of the number of iterations. It is
obvious that, across datasets, our algorithm trends to produce
margin distribution graphs of roughly the same character as that
of LMNN and FrobMetric in the previous section, that more of the
training examples have larger margins when using the learned
metric than the standard Euclidean distance.

The running time of the different metric learning algorithms is
reported in Table 4. Though both of these experiments are
implemented in Matlab, it is still difficult to make the comparison
absolutely fair, due to the fact that the solver of LMNN is sophis-
ticated and the main part of FrobMetric is optimized in Fortran
which is more efficient than Matlab, while SimbaMetric is entirely
implemented in Matlab. In spite of this, SimbaMetric is still com-
parable with LMNN and FrobMetric on the run time efficiency.

The test error of 1-NN with the metric learned by SimbaMetric
is reported in Table 5. To compare the performance of SimbaMetric
with the other methods in the previous section, statistical test on
the datasets is shown in Fig. 4. According to the classification error
rates listed in Tables 2 and 4, and following the statistical test
setting in [33], we perform the Bonferroni-Dunn test at the sig-
nificance level p=0.05. The Bonferroni-Dunn test result indicates
that the classification performance of SimbaMetric is statistically

Dataset LMNN FrobMetric SimbaMetric
| CD=1.262

SPECTF Heart 0.7522 0.3104 0.1888
sonar 0.5353 0.3824 0.1952 4 3 2 !
ILPD 2.054 0.1746 0.2043 \ \ \ ! \
diabetes 3.638 0.2257 0.1915 | SimbaMetric
cardiotocography 34.95 1.255 2.102 ‘—_ o .
segmentation 36.78 1243 2.746 : L FrobMemic
satellite 62.14 6.582 22.67 Euclidean LMNN
letter 444.8 17.01 69.54
dna 56.61 4.006 4.671 Fig. 4. Performance comparison of different metric learning methods on the
usps 223.9 23.24 62.42 Bonferroni-Dunn test. Groups of methods that are not significantly different (at
mnist 17493 1541 2862 p=0.05) are connected. CD refers to the critical difference between the average
protein 360.2 95.92 2747 ranks of two methods. In our experiment, the average ranks of Euclidean distance,

LMNN, FrobMetric and SimbaMetric are 4, 2.50, 1.83 and 1.5 respectively.

Table 5
The test error of SimbaMetric on each dataset.

Dataset SPECTF Heart sonar ILPD diabetes cardiotocography segmentation
Test error 0.2362 0.1540 0.3523 0.2617 0.2203 0.0369
Dataset satellite letter dna usps mnist protein
Test error 0.0926 0.0392 0.1089 0.0289 0.0240 0.4188
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better than that of the standard Euclidean distance at p=0.05, and
there is no statistically significant difference between the classi-
fication performance of SimbaMetric, LMNN and FrobMetric.

6. Conclusion

In this paper, we analyze the effectiveness of metric learning
algorithms for NN from the perspective of margin distribution
theoretically and experimentally. By defining the margin of 1-NN
on the Mahalanobis metric, we derive a generalization error upper
bound for 1-NN. The experiments on several benchmark datasets
using existing metric learning algorithms demonstrate that large
margin distribution can be obtained by these algorithms and it is
very beneficial to reduce the generalization error. To provide more
empirical evidences, a novel metric learning algorithm is also
presented by directly optimizing the margin and achieves very
competitive results in terms of 1-NN classification error rate, and it
further verifies the effectiveness of margin on establishing the
link between the learned metrics and the generalization perform
ance of NN.

In conclusion, we find that the margin theory can well explain
the effectiveness of metric learning algorithms for nearest neigh-
bor classification, which is consistent with our inference. We draw
a more general conclusion that the margin distribution could be a
more general analysis tool able to be applicable for any linear
transformation of the original feature space including Mahalanobis
metric learning and other feature learning methods.

In our analysis, a single parameter i.e. the average margin is still
not enough to characterize the margin distributions of the differ-
ent margin based metric learning algorithms. As suggested by
some recent Boosting studies [23,34], it is important to consider
not only the average margin but also the margin variance. We will
continue to contribute on this topic.
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