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In this paper, based on feature integration, we proposed a new method for pedestrian detection. Firstly, we
extracted the histogram of oriented gradients (HOG) feature and local binary pattern (LBP) feature from the
original images respectively. Secendly, K-singular value decomposition (K-SVD) was used to extract sparse
representation features from the HOG and LBP features. Moreover, PCA was used to reduce the dimension of
HOG and LBP. Finally, we combined the PCA based features and the K-SVD based sparse representation

features directly for fast pedestrian detection in still images. Experimental results on two databases show that
the proposed approach is effective for pedestrian detection.

1. Introduction

Pedestrian detection is an important branch of pattern recognition
which can be applied in monitoring, intelligent machines, aircraft,
image retrieval, smart cameras [7], etc. But real-time pedestrian
detection from static images is still highly challenging at present due
to the complicated background and the wide range of the pedestrians'
states such as illumination condition, occlusion, camera angle and the
variability in pose, etc. Usually, pedestrian detection methods firstly
extract the features from the images, then train the corresponding
classifiers which is applied to detect the interested areas through the
sliding window technology. Until now, many feature extracting meth-
ods have been proposed [32—-35]. For pedestrian detection, the locally
normalized histogram of oriented gradients (HOG) descriptor recently
proposed by Dalal and Triggs [2] is one of the most popular used
feature extraction methods. By using HOG to extract the gradient
features of the Gabor preprocessed images, the improved method
HoGG is presented [21] for human detection. Zhu et al. [18] proposed
a method for fast human detection by integrating a cascade-of-rejecters
with HOGs of variable-size blocks to extract salient features. In the
implementation, the best blocks are selected by using Adaboost
[19,20,22] which has been generally used for face detection.

Another feature extracting method, i.e., the local binary pattern
(LBP) texture descriptors [10], has been widely used for texture
classification and face recognition for its invariance to gray level
changes and good anti-noise performance. In recent years, plenty of
improved LBP feature extraction methods have been proposed
[3,4,8,9,11-13]. Tan and Triggs proposed the local ternary pattern

(LTP) [13] to apply two parameters as the center pixel thresholds
instead of a single in the original LBP, which improves the operator's
ability to resist noise. Wu et al. [4] proposed the semantic LBP and
Fourier LBP which capture more about the local features and global
statistics as the pedestrian detection region descriptors. Experiments
on the INRIA dataset show that it outperforms other gradient-based
features, for example the HOG features. To effectively represent missed
information in the original LBP and achieve better texture classifica-
tion, the completed LBP (CLBP) [12] is proposed from the viewpoint of
a local difference sign-magnitude transform (LDSMT).

Wang et al. [6] proposed a texture descriptor (HOG-LBP features)
which combines edge information (i.e., HOG) and the texture informa-
tion (i.e., cell-structured LBP) for human detection. By using the linear
SVM as the classifier, a detection rate of 91.3% at 10°® FPPW and
94.7% at 107> FPPW on the INRIA dataset is gotten. Zhang et al. [3]
proposed Local Structured HOG (LSHOG), Local Structured
LBP(LSLBP) and the boosted Local Structures HOG-LBP for object
localization. Zeng et al. [15] used a mi-SVM (Support Vector Machine
for multiple instance learning) and a cascade of HOG-LBP feature for
human detection, and achieved a near real-time detection speed and
similar accuracy to the HOG-LBP features [6]. Won-Jae Park et al. [17]
extract the HOG-LBP features from the selected regions (by training
the AdaBoost classifier using the block SVM response as the features
[19]) and then reevaluate the candidates which are not rejected.

Recently, Wang et al. [14] use the principal components analysis
(PCA) to reduce the dimension of HOG features from 3780 to 30 while
keeping the recognition rate essentially the same on INRIA dataset. Lu
et al. [5] use PCA to project the HOG feature to a linear subspace for

* Corresponding author at: College of Electrical Engineering and Automation, Anhui University, Hefei, China.

E-mail address: zhengch99@126.com (C.-H. Zheng).

http://dx.doi.org/10.1016/j.neucom.2016.09.085

Received 31 December 2015; Received in revised form 28 March 2016; Accepted 3 September 2016

Available online xxxx
0925-2312/ © 2016 Elsevier B.V. All rights reserved.

Please cite this article as: Zheng, C-H., Neurocomputing (2016), http://dx.doi.org/10.1016/j.neucom.2016.09.085



http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.09.085
http://dx.doi.org/10.1016/j.neucom.2016.09.085
http://dx.doi.org/10.1016/j.neucom.2016.09.085

C.-H. Zheng et al.

tracking and action recognition. A hybird approach [24] of PCA and
LBP is also proposed for facial expression feature extraction. Zeng et al.
[23] combine the multilevel HOG with the multilevel LBP as the feature
vectors of a robust and rapid head-shoulder detector.

Sparse representation methods have been extensively used in image
denoising, document analysis, image reconstruction, object recognition
and detection [25-27,31], etc. For sparse representation method, the
dictionary updating method K-SVD [16,28,29] can be used to better
represent the data. E.g., Ren et al. [30] proposed a sparse representa-
tion Histograms of Spare Codes (HSC) which extract the local
histograms by aggregating sparse codes based on K-SVD of each pixel.
The proposed sparse representation HSC features can represent more
than gradient structures and the detection performance on the PASCAL
benchmark data is greatly improved compared with traditional meth-
ods.

In this paper, we explore the performance of several combined
features for pedestrian detection. Firstly, we study the performance of
the features extracted by using PCA from HOG and the cell-struck
Local Binary Pattern (LBP) features, which denoted as PCA-HOG, PCA-
LBP, PCA-HOG and PCA-LBP respectively. Then we study the perfor-
mance of the sparse features extracted using the dictionary learned
from K-SVD from the HOG and LBP features, which denoted as K-
SVD-HOG, K-SVD-LBP, K-SVD-HOG and K-SVD-LBP respectively.
The combined original HOG-LBP [6] feature is used for comparison.
We also combined K-SVD-HOG and PCA-HOG for pedestrian detec-
tion, the experimental results show that this method can reduce the
dimension of the feature set and time consumption while not sacrifi-
cing detection performance significantly.

The rest of the paper is organized as follows: In Section 2, we
introduce of the HOG, the cell-structure LBP, and the K-SVD. Section 3
gives the detailed description of our algorithm. Section 4 shows the
experimental results on INRIA dataset and Daimler pedestrian dataset.
Section 5 concludes this paper and outlines the future works.

2. Image feature extraction methods
2.1. Local binary patterns of image

The original local binary patterns (LBP) [10] is proposed by Ojala
et al. to measure the differences of a pixel and its surrounding pixels for
texture classification.

Given a pixel of a grayscale image, the basic mathematical formula
of the LBP operator is expressed as:

= 0, by > h
LBPp g = 82,8, =6(hi—h)=1,"7""7°
PR g(j) ( ) {1’ b < h 0
here h. is the center pixel, h; is the circularly symmetric neighbor-
hoods. The parameter P controls the quantization level, R determines
the radius of the operator. To get the number of the bitwise 0-1
transitions, a spatial uniform LBP is calculated in the pattern. An
uniform LBP patterns have limited the transition numbers
(U(LBPp r)=2) to 2. For instance, 11111111(0 transitions),
10001111(2 transitions) are uniform which can be mapped as LBP3?
(superscript means the 0—1 transitions U t) and the other situations are
non-uniforms.
P-1
U(LBPog) = Y181 = 8ical + 160 = &p-i|
i=1 @

It has been observed by Ojala et al. that plenty of uniform LBP can be
categorized in texture image and then are cast into histogram bins to
produce the final feature vectors. Note that the non-uniform LBP is
marked with a single label simultaneously.

Wang et al. [6] proposed a cell-structured LBP which is suitable for
pedestrian detection. Firstly, the image is segmented into the same size
non-overlapping cells for creating pattern histograms. The LBP pattern
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Fig. 1. An overview of feature extracting method.

histograms from the whole cells are concatenated to represent the
texture features of the image.

2.2. Histograms of oriented gradients of image

Histograms of oriented gradients (HOG) [2] is well known to
extract object gradient histogram, which is one of the widely accepted
descriptors to calculate the edge and local shape information of image.
It has been applied to pedestrian detection and object recognition
successfully [2].

To reduce the influence of light and noisy, the HOG descriptor
manages the images with color normalization and gamma normal-
ization. Then computing the direction gradient using the template
operator (a 1-D gradient filter, i.e., [-1,0,1]). The gradient is divide into
9 orientation bin levels linearly ranging in 0-180°. The gradient
amplitudes in each direction are the weights. The image is divided
into 16x16 pixel block (containing four 8x8 pixel cells, rectangular
blocks(R-HOG) or circular blocks(C-HOG)) and the histograms of the
cells are concatenated to produce the feature vector of the block. To
reduce the effect of the local illumination variation and the transforma-
tion of the visual angle, the Lowe-style clipped Lo norm normalization
is used to the feature vector. Finally, concatenating all the feature
vectors of the blocks (8 pixel spacing stride) into a vector to generate
the HOG feature vector of a 2D picture.

Given a 128x64 sliding detection window [2], (the cell size is 8x8,
each block contains 4 cells, the gap between the blocks is 8 pixel and 4
pixel coverage of each cell) we can get a 3780 dimensions HOG feature
vector, which is represented by 7x15 blocks.

2.3. The K-SVD algorithm

The K-SVD [16] is a generalization of the k-means clustering
algorithm which learns a dictionary for sparse and redundant repre-
sentation. It's an iterative implementation containing two stages. The
updating computations of the sparse coding coefficient based on
current dictionary and atoms column by column in the dictionary are
separated. Given a set of signals Y = {y,, y,, ... .y} € R™¥(M < N) and
an overcomplete dictionary D = {d), ds, ... ,dx} € R¥*K (assuming
M < K, thus the dictionary is a full-rank matrix), a given signal
y; € RM*1 can be represented as a sparse combination of the K atoms
{d;}. The sparse representation coefficients X = {x;, %, ... .xy} € REXV
of the signal should contain zero coefficients as much as possible.
Which can be solved by getting the smallest lp norm of X, i.e., the
solution of min ||x;|lp. Moreover, the spare representation and the

Xi
overcompleted dictionary should satisfy the precise condition Y=DX
or approximate condition where the deviation is measured by l> norm
lly; = Dxill, <e (i=1,2,...,N).

The k-means clustering iteratively alternates between extracting a
sparse representation by the closest dictionary atom of the signal itself
and updating the dictionary atom. Under [?-norm distance, that is to
find the nearest neighbor to represent the signals Y by solving

N
min{ 3y - Dx,.g} s.t. Vi, xp=ecor Vi, |lxillo =1
px | & 3)
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Fig. 2. Some sample images from the INRIA database.

Here x;=¢;. is a basis vector with a one in the kth position. That means
only one column in dictionary D is used to represent the signal.

The K-SVD algorithm is a generalization of K-means algorithm to
represent signal as a linear combination of more than one but less than
L, atoms in D. So, the objective could be written as:

N
min Z ”)’,‘ - D«\Q”%} stt. Vi, ||xi||0 <Ly
b.x { i=1 Q)

At the first stage, the dictionary D is fixed and then find the
approximately optimal coefficients x; to represent the signal y. An
approximation pursuit algorithm named the orthogonal matching
pursuit (OMP) can be used for the calculation. At the second stage,
the sparse representation X is fixed, and then updating all column (d;)
one by one in dictionary D. Assuming the kih row spare coding in X is
x¥ which is corresponding to the dictionary d;. The objective of
updating d; can be alternatively rewritten as the following minimiza-
tion problem:

N 2
Yy = Dxi|2 = ||Y - DX|f} =
i=1

[Y - Z dix%] — dixf

i#k

F (5)

Assuming the first item of the right side formula is fixed, we can solve
the problem of updating d; and x§ by approximately using singular
value decomposition (SVD) [16]. The nonzero representation xf (i) of
the signals Y using the atom d; is defined as:

Zp = (il <i<M,xf@) #0) 6)

Then, a matrix 2 € RV*% is defined with ones on the (Z; (i), i) position
and zeros otherwise. The original minimization problem is equivalent
to:
2
2
= ||E - dixgll
F &)
Here E is decomposed into UAVT by using singular value decomposi-

tion directly. The first column of U is defined as the solution for d; and
the first column of V x A(1, 1) is defined as the coefficient vector x,l,f .

[y - d,-x}].Q — dxfQ

i#k

3. Feature combination method

Our experimental process is shown in Fig. 1. As is known to all, PCA
is a widely used method for dimension reduction. By finding a linear
transformation that maps the high dimensional features to a lower
space, PCA could expose the latent structures of the original features.
In [14], the authors use PCA to reduce the HOG feature vector
dimensions while keeping the recognition rate essentially the same as
on original features and gain a practical filter tracking. Inspired by
them, we firstly survey the effects of combining the PCA with the LBP
and HOG features respectively, thus obtaining the low dimensional
feature, i.e., PCA-HOG and PCA-LBP. The LBP and the HOG features
will be used as the comparisons group respectively. Secondly, we apply

the efficient K-SVD algorithm [16] to produce the sparse representa-
tion of the HOG and LBP features set separately by learning the
dictionary, we denoted them as K-SVD-HOG and K-SVD-LBP. In
addition, we combine each of two feature set respectively, i.e., K-
SVD-LBP and PCA-LBP, K-SVD-HOG and PCA-HOG, K-SVD-HOG
and K-SVD-LBP, PCA-HOG and PCA-LBP, for pedestrian detection.

3.1. Dimension reduction by PCA

In our implementation, we follow the procedure used in [2,6] to
extract the traditional HOG feature and the cell-structured LBP feature
from the dataset at first. We use A = [a;, ay, ....ay] € RV*M to describe
the HOG feature or the LBP feature of the training samples, and
B = [by, by, ... ,by] € RV*K for the testing samples (where M is the
number of training samples, K is the number of testing samples, N is
the feature dimension). As well known, PCA is the simplest of the true
eigenvector-based multivariate analyses. PCA dimension reduction
methods can be concisely described as:

A=WH (8)

where W € RV and H € R”*M is the reduced feature matrix. If the
dimension reduction target is J, the projection matrix W is composed
of J eigenvector groups corresponding to the J maximal eigenvalues of
covariance matrix of A.

3.2. Sparse representation using K-SVD

The K-SVD algorithm is a simple and effective implementation for
learning an over-completed dictionary to obtain the sparse representa-
tion of the sample. Due to the purpose of K-SVD is to find the common
direction of energy distribution of the dataset, the feature set of spare
representation mapped by the over-completed matrix can be used for
classification and compression, etc. In this study, firstly, we establish
the over-completed dictionary from a portion of training feature set,
and then produce projection coefficients for training and testing set in
the sparse space spanned by the dictionary. After getting the original
feature (HOG and LBP) A = [ay, ay, ....ay] € RV*M of the training set,
We use all the positive feature set to train the dictionary. Given the
feature set (HOG or LBP) A* = [ay, ay, ... ,ai000] € RY*M" of the training
sample, thus the number of dictionary elements to train is M*, the
iterative implementation K-SVD try to find the best dictionary
D € RVM* by solving:
min{[|A* = DS|E} st V. lsillo < Lo
D.S ©)
In this paper, we used the method in [16] to yield the dictionary D. The
sparse representations of original feature set can be simply presented
as:

A = A'D = [a,, @, ... ,ay] € RM™M (10)

B = BTD = [by, by, ... by] € RM™*K 1)

where d; and b; are the sparse coding coefficients.
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Fig. 3. (a) Performance comparison of PCA-LBP features in different dimensions on the
INRIA dataset. The performance of different PCA-LBP dimension is not obviously
differences from the original LBP. (b) The performance comparison of HOG feature with
different dimensions projected by PCA. The performance of the original HOG is also
better than PCA-HOG. The performance of the combined feature, i.e., HOG-LBP is the
best.

3.3. Combination of the feature set

As is well known, PCA pursues keeping the maximize data
information after dimension reduction. By calculateing the variance
of the data on the projection direction, PCA can measure the
importance of the direction. However, the projection direction often
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Fig. 4. The DET curves of K-SVD-HOG with different random samples and iterations for
training the dictionary. (a) For obtaining the spare representation of HOG feature using
K-SVD, we training the dictionary with iterations 10, 30, 40, 70, through the random
selected 1000 samples. (b) The performance of K-SVD-HOG with dimension 500, 800,
1000, 1200 respectively, with 40 iterations.

does not benefit for classification. On the contrary, the projection data
points may be mixed together and indistinguishable.

K-SVD uses an over-complete dictionary to described the data by
sparse linear combinations and could be applied to compression and
feature extraction, etc. By combining PCA and K-SVD, we can make full
use of the advantages of the two methods. The combined features may
be eliminate the redundancy in the feature set and obtain a more stable
feature set for classification.

4. Experiment results

For the image dataset, we extract the original histogram feature
using HOG and texture feature using cell-structure LBP firstly. Then
reducing the dimension of the two feature sets by using PCA respec-
tively, and getting the PCA-HOG and PCA-LBP feature of low dimen-
sions (200/400/800, The performances are shown in Fig. 4(a) and (b)
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Fig. 5. The DET curves of using K-SVD-LBP and K-SVD-HOG. (a) Compared with the
original features LBP, the performance of the K-SVD-LBP is a little bit poorer. The
combined K-SVD-LBP and PCA-LBP performance is also not affirmative. (b) The
performance of K-SVD-HOG and PCA-HOG is encouraging and better than HOG-LBP.

in the experiments section). Thirdly, we produce sparse representation
of the two original feature sets by using K-SVD, named K-SVD-HOG
and K-SVD-LBP. At last, we adopt the 1ib-SVM [1] classifier to classify
the samples based on the combined features.

4.1. Experiments on INRIA dataset

In this subsection, we perform the experiments on the INRIA
database. This database [4] includes training set (2416 positive
samples of fixed pixel and 1218 initial negative samples of various
pixel and format) and testing set(1126 positive samples and 453 full
negative samples, similar basic information to training set). Except for
some partial situations, such as occlusions, the pedestrians are always
upright. The state (pose, appearance, clothing, illumination) and
background are in large variation range, as shown in Fig. 2. We fed
the central 64x128 pixels of the pedestrian images to the descriptor to
capture positive features vectors. In this paper, we collected 10
negative feature vectors randomly from each person-free images with
a fixed 64x128 window. Classification performances are evaluated on

0.08

0.06

missrate(False negative rate)

0.04

4 3

0 i
10 10

FPPW(False positive per window)

Fig. 6. Miss rate under varying combined features. Experimental results show that the
performance of PCA-HOG and PCA-LBP is the best one, and K-SVD-HOG and K-SVD-
LBP does not decrease the miss rate obviously.

1126 positive and 4530 negative patches.

In our experiment, the widely used lib-SVM (support vector
machine) is trained as the classifier. To quantify the classification
performance of the detection algorithm, we choose the Detection Error
Tradeoff (DET) curves (a log-log scale, miss rate versus FPPW (False
Positives Per Window)) [2] as the criteria. All the experiment results
are simulated in matlab2012b environment, computer environment is
2.70 GHz CPU and 6.00 GB internal storage memory.

Firstly, the HOG feature and the LBP feature are extracted. Then we
combine the two kind of original features to get the HOG-LBP features
directly as the compared group. Thirdly, we reduce the dimensions of
the two kind of original features using the PCA and K-SVD respectively.
All the experiments are based on these three kinds of features, i.e.,
original HOG or LBP feature, combined HOG-LBP feature, and the
reduced feature by using PCA or KSVD.

4.1.1. Performance on PCA based features

In this subsection, we extract feature with three different dimen-
sions (200/400/800) from the original features (HOG feature and LBP
feature) by using PCA (denoted as PCA-LBP, PCA-HOG), and use lib-
SVM to classify the dataset. The cell-structure LBP, HOG and HOG-
LBP features are used as the compared groups. The relationships
between the classification results and the characteristic dimensions are
shown in Fig. 3. From Fig. 3(a) we can see that the performances of
different dimensions of PCA-LBP features are undistinguished from the
original LBP feature. The higher the dimension is, the more similar the
performance of PCA-LBP to the original features.

As shown in Fig. 3(b), the performances of the PCA-HOG features
are better than the PCA-LBP. We can also find from Fig. 3(b) that, the
performance of PCA-HOG with different dimensions are similar. In
other words, for the PCA-HOG features, it is not sensitive to the
dimensions. However, the performances of PCA-HOG features are not
better than the original HOG feature. Moreover, it can be found from
Fig. 3(b) that the performance of the combined feature HOG-LBP is the
best one.

4.1.2. Performance on K-SVD based features

How to choose the iteration and training samples are two problems
need to be solved for training the dictionary for sparse representation
by using K-SVD algorithm. To solve these problems, firstly, we
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Fig. 7. The DET curves of LBP, HOG, and the extracted features using KSVD and PCA
respectively. The performance of HOG-LBP feature is used as the comparison group. (a)
Compared with the original LBP feature, the performances of K-SVD-LBP, PCA-LBP and
the combined K-SVD-LBP and PCA-LBP are not well. (b) The performances of K-SVD-
HOG, PCA-HOG and the combined K-SVD-HOG and PCA-HOG are not distinguished.

calculate the dictionary with 1000 random positive training samples of
HOG feature (K-SVD-HOG) through different iterations while keep the
total error within the scope of 0.065, as shown in formula (7). In our
experiments, we extract the K-SVD-HOG with the training iterations of
10, 30, 40, 70 respectively. As shown in Fig. 4(a), the performances of
K-SVD-HOG features with all the different iterations are similar. So in
the experiments of this subsection, the iteration number of calculating
the dictionary using K-SVD is fixed as 40. We compute the miss rate
using the K-SVD-HOG features with dimension 500, 800, 1000 and
1200 respectively, the results are shown in Fig. 4(b). The performance
of K-SVD-HOG with 1200 dimension is the best one, but it is not
obvious compared with other dimensions. In the following experi-
ments, for easy to compare with the PCA-HOG feature, the dimension
of K-SVD-HOG feature is set as 800.

Neurocomputing xx (Xxxx) XxXxx—xxxx

DET for classification

0.18 : : .
0.16 ‘ : Lhidd : 4
0141 A
; | HOG-LBP ;
T o412k il Ll mme— K-SVD-HOG & K-SVD-LBP g
8 ] || mm—— PCA-HOG & PCA-LBP
2
S 01h 4
o
c
o
°
& 0.08- 4
T
©
3
- 0.06 - A
0.04 H
0.02} A
0 i
10° 10" 10°
FPPW(False positive per window)
Fig. 8. Miss rate under varying combined features.
Table 1

Statistic comparison of the detection results of different combined features. The
processing time is obtained by detecting the INRIA and Daimler testing data with lib-
SVM. Miss rate at 10> FPPW and 1072 FPPW of different groups.

Features INRIA person dataset Daimler pedestrian dataset
Processing ~ Miss rate ~ Miss Processing ~ Miss Miss
time/s at rate at time/s rate at rate at

1073FPPW 1072 1073 1072
FPPW FPPW FPPW
HOG 157 0.088 0.033 128 0.071  0.011
PCA- HOG 200 7 0.102 0.039 x
X X
400 13 0.128 0.043 x X X
800 32 0.098 0.044 48 0.060 0.0-
12
LBP 258 0.159 0.052 372 0.055  0.004
PCA- BP 200 8 0.226 0.050 x
L- x X
400 13 0.198 0.043 x X X
800 37 0.183 0.043 34 0.073 0.0-
07
K- VD K-SVD- 55 0.092 0.035 76
S- HOG
0.07- 0.015
0
K- VD- 57 0.211 0.065 59 0.115
S- LBP
0.01-
6
HOG-LBP 533 0.080 0.015 427 0.053  0.004
K-SVD-HOG 102 0.066 0.010 59 0.029 0.001
and K-
SVD-LBP
PCA-HOG 67 0.047 0.016 61 0.007  0.00
and PCA-
LBP
K-SVD-HOG 93 0.053 0.011 106 0.062 0.011
and PCA-
HOG
K-SVD-LBP 96 0.191 0.051 81 0.077  0.007
and PCA-
LBP

4.1.3. Performance on combined features of different projections

To evaluate the performance of sparse coding techniques based on
gradient feature and texture feature, in this subsection, we combined
several groups of features for pedestrian detection. The experimental
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results are shown in Fig. 5. The computational process of K-SVD-LBP
is the same as K-SVD-HOG. The dictionary size is 800 and the train
iterations are 40. Fig. 5(a) shows that the performance of K-SVD-LBP
is worse than the original LBP. As a comparison group, we do
experiment using K-SVD-LBP and PCA-LBP and the performance is
also not nice. Fig. 5(b) shows that the performance of K-SVD-HOG is
not well. We then investigate whether the simple combined K-SVD-
HOG and PCA-HOG can performance better. It is inspiring to see that
error detection rate of the combined feature greatly decrease and the
performance is better than HOG-LBP feature.

Based on the results of the experiments as shown in Fig. 5, we can
draw the following summaries. First, for both the texture and gradient
features, the sparse representations can not improve the performances
directly. Yet the sparse representation of the gradient feature combined
with the PCA based gradient feature can improves the performance
greatly. However, it is not suit for cell-structure LBP feature. The
combination of different projections of HOG feature makes it more
distinguish and even better than the simply combined HOG-LBP
feature.

4.1.4. Performance on the combined features of texture and gradients

In this subsection, we research the ability of the combined feature
with the same projection of the texture feature and the gradients
feature. We compare the performances of the combined K-SVD-HOG
and K-SVD-LBP feature and PCA-HOG and PCA-LBP feature. The
results are shown in Fig. 6. From this experiment it can be found that
the average miss rate between 10~ and 107 FPPW of K-SVD-HOG
and K-SVD-LBP is lower than HOG-LBP. And the performance of PCA-
HOG and PCA-LBP feature is the best one. It means that the combined
projection feature of HOG and LBP using PCA can improve the
performance.

4.2. Experiments on daimler pedestrian dataset

In this subsection, we studied the performance of the combined
features on Daimler pedestrian dataset. The Daimler mono pedestrian
dataset contains 15,560 pedestrian samples of 48x96 resolution. We
select 7830 pedestrian samples randomly as the positive training
samples. Additionally, we collected 10 samples randomly from each
person-free images of the INRIA training data set with a fixed 48x96
window. Thus 12,180 negative samples along with 7830 pedestrian
samples for training. Similarly, we collect 4530 negative samples from
the INRIA testing set along with the remaining 7830 pedestrian
samples for testing.

The experiment results are shown in Fig. 7. It can be seen that the
performance of K-SVD-HOG, K-SVD-LBP, PCA-HOG and PCA-LBP do
not performance better than the original HOG and LBP on this dataset.
The performance of the combined HOG-LBP is best as studied in [6].
But the performance of the combined K-SVD-HOG and PCA-HOG, K-
SVD-HOG and PCA-LBP and PCA-HOG and PCA-LBP demonstrates a
tiny better than HOG-LBP. During these experiments, the dimensions
of K-SVD-HOG, K-SVD-LBP, PCA-HOG and PCA-LBP are set as 800,
and we evaluate the performances of all the features by using lib-SVM
as the classifier.

Fig. 8 shows the performances of combined K-SVD-HOG and K-
SVD-LBP and PCA-HOG and PCA-LBP. As shown in Fig. 8, similar to
the experiment results on INTIA dataset, these two combined features
also performing much better than HOG-LBP on Daimler pedestrian
dataset. Thus we can conclude that, although K-SVD and PCA do not
improve the performances of HOG and LBP under simply dimension
reducing form, their combined features are more robust for pedestrian
detection.

4.3. Performance evaluation

To further intuitively evaluate the performance of different combi-
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nation of features, we also the compared the performance of them
statistically under three criteria, i.e., the processing time on testing set
by using lib-SVM, the miss rates at 10~ FPPW and 1072 FPPW. The
results are shown in Table 1.

From Table 1 we can find that, first, both on the two datasets, the
processing times of the original HOG feature are reduced greatly by
using K-SVD-HOG and PCA-HOG. And it is the same for cell-structure
LBP. In addiction, compared to the performances of HOG and LBP
features on INRIA dataset and Daimler dataset, the performances of
PCA-HOG, K-SVD-LBP, PCA-HOG and PCA-LBP features are undis-
tinguished improved. Second, for INRIA dataset, beside the combined
K-SVD-LBP and PCA-LBP, the performance of other three combined
feature sets, i.e., K-SVD-HOG and K-SVD-LBP, PCA-HOG and PCA-
LBP, K-SVD-HOG and PCA-HOG, are all well. On Daimler dataset, all
of the four combined features perform well. Thus, we can conclude that
compared with the original HOG-LBP, the combined features are more
robust. Moreover, the processing time is decreased drastically.

5. Conclusions

In this paper, we demonstrated the improvement to the well known
features, i.e., HOG and LBP, by utilizing K-SVD and PCA to extracted
new features and combining them for pedestrian detection. Firstly, we
generated the original HOG and LBP features from the images. Then,
we used PCA and K-SVD to extract the new features from them. Finally,
we combined these new features for pedestrian detection. We test our
methods on INRIA and Daimler dataset, the experimental results show
that our method is effective and outperform the combined original
HOG-LBP feature. In summary, by using effective dictionary, PCA
based feature extraction and effective feature combination, we may
construct new features with richer structures than the original com-
bined HOG-LBP.

However, how to automatic but effective confirm the number of
dictionary and the dimension for pedestrian detection under real-world
conditions is still a challenging topic. Moreover, there are plenty of
sophisticated implementations for sparse representations and dimen-
sion reduction of texture feature and gradient feature. More study
should be carried out in future to explore more effective feature
extracting and combining method for pedestrian detection.
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