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a b s t r a c t 

In this paper, we propose a distributed algorithm, called Directed-Distributed Subgradient Descent 

(D-DSD), to solve multi-agent optimization problems over directed graphs. Existing algorithms mostly deal 

with similar problems under the assumption of undirected networks, i.e., requiring the weight matrices 

to be doubly-stochastic. The row-stochasticity of the weight matrix guarantees that all agents reach con- 

sensus, while the column-stochasticity ensures that each agent’s local (sub)gradient contributes equally to 

the global objective. In a directed graph, however, it may not be possible to construct a doubly-stochastic 

weight matrix in a distributed manner. We overcome this difficulty by augmenting an additional vari- 

able for each agent to record the change in the state evolution. In each iteration, the algorithm simul- 

taneously constructs a row-stochastic matrix and a column-stochastic matrix instead of only a doubly- 

stochastic matrix. The convergence of the new weight matrix, depending on the row-stochastic and 

column-stochastic matrices, ensures agents to reach both consensus and optimality. The analysis shows 

that the proposed algorithm converges at a rate of O ( ln k √ 
k 
) , where k is the number of iterations. 

© 2017 Elsevier B.V. All rights reserved. 

1

 

n  

l  

s  

s  

m  

i  

g  

T  

w  

l  

m  

T  

s  

d  

T  

m  

a  

b  

k

A  

T  

o  

r  

T  

o  

o  

w

 

d  

w  

(  

c  

c  

b  

s  

i  

o  

t  

w  

h

0

. Introduction 

Distributed computation and optimization has received sig-

ificant recent interest in many areas, e.g., distributed machine

earning, [2] , distributed estimation, [33] , cognitive networks, [13] ,

ource localization, [23] , distributed coordination, [30] , and mes-

age routing, [19] . The related problems can be posed as the

inimization of a sum of objectives, 
∑ n 

i =1 f i (x ) , where f i : R 

p → R

s a private objective function at the i th agent. There are two

eneral types of distributed algorithms to solve this problem.

he first type is a (sub)gradient based method [4,6,9,12,17,18,24] ,

here at each iteration a (sub)gradient related step is calcu-

ated, followed by averaging with neighbors in the network. The

ain advantage of these methods is computational simplicity.

he (sub)gradient based methods are generalized to mirror de-

cent methods [10,11,34] by using the Bregman divergence as

istance-measuring function rather than the Euclidean distance.

he second type of distributed algorithms are based on aug-

ented Lagrangians, where at each iteration the primal variables

re solved to minimize a Lagrangian related function, followed

y updating the dual variables accordingly, e.g., the Distributed
� This work has been partially supported by an NSF Award # CCF-1350264 . 
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lternating Direction Method of Multipliers (D-ADMM), [14,26,31] .

he latter type is preferred when agents can solve the local

ptimization problem efficiently. Most proposed distributed algo-

ithms, [4,6,9,11,12,14,17,18,24,26,31,34] , assume undirected graphs.

he primary reason behind assuming the undirected graphs is to

btain a doubly-stochastic weight matrix. The row-stochasticity

f the weight matrix guarantees that all agents reach consensus,

hile the column-stochasticity ensures optimality. 

In this paper, we propose a (sub)gradient based method solving

istributed optimization problem over the directed graph, which

e refer to as the Directed-Distributed Subgradient Descent

D-DSD). Clearly, a directed topology has broader applications in

ontrast to undirected graphs and may further result in reduced

ommunication cost and simplified topology design. We start

y explaining the necessity of weight matrices being doubly-

tochastic in existing (sub)gradient based method, e.g., DSD. In the

teration of DSD, agents will not reach consensus if the row sum

f the weight matrix is not equal to one. On the other hand, if

he column of the weight matrix does not sum to one, each agent

ill contribute differently to the network. Since doubly-stochastic

atrices may not be achievable in a directed graph, the original

ethods, e.g., DSD, no longer work. We overcome this difficulty

n a directed graph by augmenting an additional variable for each

gent to record the state updates. In each iteration of the D-DSD

lgorithm, we simultaneously construct a row-stochastic matrix

nd a column-stochastic matrix instead of only a doubly-stochastic
timization over directed networks, Neurocomputing (2017), 
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matrix. We give an intuitive explanation of our proposed algorithm

and further provide convergence and convergence rate analysis as

well. 

In the context of directed graphs, related work has considered

(sub)gradient based algorithms, [15,16,27–29] , by combining sub-

gradient descent and push-sum consensus. The push-sum algo-

rithm, [1,7] , is first proposed in consensus problems 1 to achieve

average-consensus given a column-stochastic matrix. The idea is

based on computing the stationary distribution (the left eigenvec-

tor of the weight matrix corresponding to eigenvalue 1) for the

Markov chain characterized by the multi-agent network and can-

celing the imbalance by dividing with the left-eigenvector. The al-

gorithms in [15,16,27–29] follow a similar spirit of push-sum con-

sensus and propose nonlinear (because of division) methods. In

contrast, our algorithm follows linear iterations and does not in-

volve any division while providing the same convergence rate as

the nonlinear one in e.g., [16] . Finally, the analysis and proofs in

our work are completely different than the nonlinear counterparts

described here. 

The remainder of the paper is organized as follows. In Section 2 ,

we provide the problem formulation and show the reason why

DSD fails to converge to the optimal solution over directed graphs.

We subsequently present the D-DSD algorithm and the necessary

assumptions. The convergence analysis of the D-DSD algorithm is

studied in Section 3 , consisting of agents’ consensus analysis and

optimality analysis. The convergence rate analysis and numerical

experiments are presented in Sections 4 and 5 . Section 6 contains

concluding remarks. 

Notation: Lowercase bold letters denote vectors and uppercase

italic letters denote matrices. We denote by [ x ] i the i th component

of a vector x , and by [ A ] ij the ( i, j )th element of a matrix, A . An

n -dimensional vector of all ones or zeros is represented by 1 n or

0 n . The notation 0 n × n represents an n × n matrix with all ele-

ments equal to zero. The inner product of two vectors x and y is

〈 x, y 〉 . We use ‖ x ‖ to denote the standard Euclidean norm. 

2. Problem formulation 

Consider a strongly-connected network of n agents commu-

nicating over a directed graph, G = (V, E ) , where V is the set

of agents, and E is the collection of ordered pairs, (i, j) , i, j ∈ V,

such that agent j can send information to agent i . Define N 

in 

i 
to

be the collection of in-neighbors, i.e., the set of agents that can

send information to agent i . Similarly, N 

out 
i 

is defined as the out-

neighborhood of agent i , i.e., the set of agents that can receive in-

formation from agent i . We allow both N 

in 

i 
and N 

out 
i 

to include

the node i itself. Note that in a directed graph N 

in 

i 
	 = N 

out 
i 

, in gen-

eral. We focus on solving a convex optimization problem that is

distributed over the above network. In particular, the network of

agents cooperatively solve the following optimization problem: 

P1 : min f (x ) = 

n ∑ 

i =1 

f i (x ) , 

where each f i : R 

p → R is convex, not necessarily differentiable,

representing the local objective function at agent i . 

Assumption 1. In order to solve the above problem, we make the

following assumptions: 

(a) The agent graph, G, is strongly-connected. 

(b) Each local function, f : R 

p → R , is convex, ∀ i ∈ V . 
i 

1 See, [5,20–22,25,32] , for additional information on average-consensus problems. 

o  

s  

s
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(c) The solution set of Problem P1 and the corresponding opti-

mal value exist. Formally, we have 

x 

∗ ∈ X 

∗ = 

{ 

x | f (x ) = min 

y ∈ R p 
f (y ) 

} 

, f ∗ = min f (x ) . 

(d) The (sub)gradient, ∇f i ( x ), is bounded: 

‖∇ f i (x ) ‖ ≤ D, 

for all x ∈ R 

p , i ∈ V . 

The Assumptions 1 are standard in distributed optimization, see

elated literature, [18] , and references therein. Before describing

ur algorithm, we first recap the DSD algorithm, [17] , to solve P1

n an undirected graph. This algorithm requires doubly-stochastic

eight matrices. We analyze the influence to the result of the DSD

hen the weight matrices are not doubly-stochastic. 

.1. Distributed subgradient descent 

Consider Distributed Subgradient Descent (DSD), [17] , to solve

1. Agent i updates its estimate as follows: 

 

k +1 
i 

= 

n ∑ 

j=1 

w i j x 

k 
j − αk ∇ f k i , (1)

here w ij is a non-negative weight such that W = { w i j } is doubly-

tochastic. The scalar, αk , is a diminishing but non-negative step-

ize, satisfying the persistence conditions, [8,12] : 
∑ ∞ 

k =0 αk = ∞ ,
 ∞ 

k =0 α
2 
k 

< ∞ , and the vector ∇ f k 
i 

is a (sub)gradient of f i at x k 
i 
.

or the sake of argument, consider W to be row-stochastic but

ot column-stochastic. Clearly, 1 is a right eigenvector of W , and

et π = { πi } be its left eigenvector corresponding to eigenvalue 1.

umming over i in Eq. (1) , we get 

 

 

k +1 � 

n ∑ 

i =1 

πi x 

k +1 
i 

, 

= 

n ∑ 

j=1 

( 

n ∑ 

i =1 

πi w i j 

) 

x 

k 
j − αk 

n ∑ 

i =1 

πi ∇ f i (x 

k 
i ) , 

= ̂

 x 

k − αk 

n ∑ 

i =1 

πi ∇ f k i , (2)

here π j = 

∑ n 
i =1 πi w i j , ∀ i, j. If we assume that the agents reach an

greement, then Eq. (2) can be viewed as an inexact (central) sub-

radient descent (with 

∑ n 
i =1 πi ∇ f i (x k 

i 
) instead of 

∑ n 
i =1 πi ∇ f i ( ̂  x k ) )

inimizing a new objective, ̂ f (x ) � 

∑ n 
i =1 πi f i (x ) . As a result, the

gents reach consensus and converge to the minimizer of ̂ f (x ) . 

Now consider the weight matrix, W , to be column-stochastic

ut not row-stochastic. Let x 
k 

be the average of agents estimates

t time k , then Eq. (1) leads to 

 

k +1 � 

1 

n 

n ∑ 

i =1 

x 

k +1 
i 

, 

= 

1 

n 

n ∑ 

j=1 

( 

n ∑ 

i =1 

w i j 

) 

x 

k 
j −

αk 

n 

n ∑ 

i =1 

∇ f i (x 

k 
i ) , 

= x 

k −
(
αk 

n 

) n ∑ 

i =1 

∇ f k i . (3)

q. (3) reveals that the average, x 
k 
, of agents estimates follows

n inexact (central) subgradient descent ( 
∑ n 

i =1 ∇ f i (x k 
i 
) instead of

 n 
i =1 ∇ f i ( x 

k ) ) with stepsize αk / n , thus reaching the minimizer of

 ( x ). Despite the fact that the average, x 
k 
, reaches the optima, x ∗,

f f ( x ), the optima is not achievable for each agent because con-

ensus can not be reached with a matrix that is not necessary row-

tochastic. 
ptimization over directed networks, Neurocomputing (2017), 
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Fig. 1. Illustration of the message passing between agents by Eq. (4). 
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Eqs. (2) and (3) explain the importance of doubly-stochastic

atrices in consensus-based optimization. The row-stochasticity

uarantees all of the agents to reach a consensus, while column-

tochasticity ensures each local (sub)gradient to contribute equally

o the global objective. 

.2. Directed-distributed subgradient descent (D-DSD) 

From the above discussion, we note that reaching a consen-

us requires the right eigenvector (corresponding to eigenvalue 1)

o lie in span{ 1 n }, and minimizing the global objective requires

he corresponding left eigenvector to lie in span{ 1 n }. Both the

eft and right eigenvectors of a doubly-stochastic matrix are 1 n ,

hich, in general, is not possible in directed graphs. In this pa-

er, we introduce Directed-Distributed Subgradient Descent (D-DSD)

hat overcomes the above issues by augmenting an additional vari-

ble at each agent and thus constructing a new weight matrix,

 ∈ R 

2 n ×2 n , whose left and right eigenvectors (corresponding to

igenvalue 1) are in the form: [ 1 � n , v 
� ] and [ 1 � n , u 

� ] � . Formally, we

escribe D-DSD as follows. 

At k th iteration, each agent, j ∈ V, maintains two vectors: x k 
j 

nd y k 
j 
, both in R 

p . Agent j sends its state estimate, x k 
j 
, as well as

 weighted auxiliary variable, b i j y 
k 
j 
, to each out-neighbor, i ∈ N 

out 
j 

,

here b ij ’s are such that: 

 i j = 

{
> 0 , i ∈ N 

out 
j 

, 

0 , otw. , 

n ∑ 

i =1 

b i j = 1 , ∀ j. 

gent i updates the variables, x k +1 
i 

and y k +1 
i 

, with the information

eceived from its in-neighbors, j ∈ N 

in 

i 
, as follows: 

 

k +1 
i 

= 

n ∑ 

j=1 

a i j x 

k 
j + εy k i − αk ∇ f i (x 

k 
i ) , (4a) 

 

k +1 
i 

= x 

k 
i −

n ∑ 

j=1 

a i j x 

k 
j + 

n ∑ 

j=1 

b i j y 
k 
j − εy k i , (4b) 

here: 

 i j = 

{
> 0 , j ∈ N 

in 

i 
, 

0 , otw. , 

n ∑ 

j=1 

a i j = 1 , ∀ i. 

he diminishing step-size, αk ≥ 0, satisfies the persistence condi-

ions, [8,12] : 
∑ ∞ 

k =0 αk = ∞ , 
∑ ∞ 

k =0 α
2 
k 

< ∞ . The scalar, ε, is a small

ositive number, which plays a key role in the convergence of

he algorithm 

2 . For an illustration of the message passing between

gents in the implementation of Eq. (4), see Fig. 1 on how agent

 sends information to its out-neighbors and agent l receives in-

ormation from its in-neighbors. In Fig. 1 , the weights b j 1 i and

 j 2 i 
are designed by agent i , and satisfy b ii + b j 1 i + b j 2 i = 1 . To ana-

yze the algorithm, we denote z k 
i 

∈ R 

p , g k 
i 

∈ R 

p , and M ∈ R 

2 n ×2 n as

ollows: 

z k i = 

{
x 

k 
i 
, i ∈ { 1 , ..., n } , 

y k 
i −n 

, i ∈ { n + 1 , ..., 2 n } , 

 

k 
i = 

{∇ f i (x 

k 
i 
) , i ∈ { 1 , ..., n } , 

0 p , i ∈ { n + 1 , ..., 2 n } , 

M = 

[
A εI 

I − A B − εI 

]
, (5) 
2 Note that in the implementation of Eq. (4), each agent needs the knowledge of 

ts out-neighbors. In a more restricted setting, e.g., a broadcast application where it 

ay not be possible to know the out-neighbors, we may use b i j = |N 

out 
j 

| −1 ; thus, 

he implementation only requires knowing the out-degrees, see, e.g., [15,16] for 

imilar assumptions. 

h  

W  

s  

W

L  

i  
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here A = { a i j } is row-stochastic, B = { b i j } is column-stochastic.

onsequently, Eq. (4) can be represented compactly as follows: for

ny i ∈ {1, ..., 2 n }, at k + 1 th iteration, 

 

k +1 
i 

= 

2 n ∑ 

j=1 

[ M] i j z 
k 
j − αk g 

k 
i . (6) 

e refer to the iterative relation in Eq. (6) as the Directed-

istributed Subgradient Descent (D-DSD) method, since it has the

ame form as DSD except the dimension doubles due to a new

eight matrix M ∈ R 

2 n ×2 n as defined in Eq. (5) . It is worth men-

ioning that even though Eq. (6) looks similar to DSD, [17] , the

onvergence analysis of D-DSD does not exactly follow that of DSD.

his is because the weight matrix, M , has negative entries. Be-

ides, M is not a doubly-stochastic matrix, i.e., the row sum is

ot 1. Hence, the tools in the analysis of DSD are not applica-

le, e.g., ‖ ∑ 

j [ M] i j z j − x ∗‖ ≤ ∑ 

j [ M] i j ‖ z j − x ∗‖ does not necessarily

old because [ M ] ij are not non-negative. In next section, we prove

he convergence of D-DSD. 

. Convergence analysis 

The convergence analysis of D-DSD can be divided into two

arts. In the first part, we discuss the consensus property of D-DSD,

.e., we capture the decrease in ‖ z k 
i 

− z 
k ‖ for i ∈ {1, ..., n }, as the D-

SD progresses, where we define z 
k 

as the accumulation point: 

 

k � 

1 

n 

2 n ∑ 

j=1 

z k i = 

1 

n 

n ∑ 

j=1 

x 

k 
i + 

1 

n 

n ∑ 

j=1 

y k i . (7) 

he decrease in ‖ z k 
i 

− z 
k ‖ reveals that all agents approach a com-

on accumulation point. We then show the optimality property in

he second part, i.e., the decrease in the difference between the

unction evaluated at the accumulation point and the optimal so-

ution, f ( z k ) − f (x ∗) . We combine the two parts to establish the

onvergence. 

.1. Consensus property 

To show the consensus property, we study the convergence be-

avior of the weight matrices, M 

k , in Eq. (5) as k goes to infinity.

e use an existing results on such matrices M , based on which we

how the convergence behavior as well as the convergence rate.

e borrow the following from [3] . 

emma 1. (Cai et al. [3] ) Assume the graph is strongly-connected. M

s the weighting matrix defined in Eq. (5) , and the constant ε in M
timization over directed networks, Neurocomputing (2017), 
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satisfies ε ∈ (0, Y), where ϒ := 

1 
(20+8 n ) n 

(1 − | λ3 | ) n , where λ3 is the

third largest eigenvalue of M in Eq. (5) by setting ε = 0 . Then the

weighting matrix, M, defined in Eq. (5) , has a simple eigenvalue 1 and

all other eigenvalues have magnitude smaller than one. 

Based on Lemma 1 , we now provide the convergence behavior

as well as the convergence rate of the weight matrix, M . 

Lemma 2. Assume that the network is strongly-connected, and M is

the weight matrix that defined in Eq. (5) .Then, 

(a) The sequence of { M 

k }, as k goes to infinity, converges to the

following limit: 

lim 

k →∞ 

M 

k = 

[
1 n 1 

� 
n 

n 
1 n 1 

� 
n 

n 

0 0 

]
;

(b) For all i, j ∈ V, the entries [ M 

k ] ij converge to their limits as

k → ∞ at a geometric rate, i.e., there exist bounded constants,

� ∈ R , and 0 < γ < 1, such that ∥∥∥∥M 

k −
[

1 n 1 
� 
n 

n 
1 n 1 

� 
n 

n 

0 0 

]∥∥∥∥
∞ 

≤ �γ k . 

Proof. Note that the sum of each column of M equals one, so 1

is an eigenvalue of M with a corresponding left (row) eigenvector

[ 1 � n 1 � n ] . We further have M[ 1 � n 0 � n ] 
� = [ 1 � n 0 � n ] 

� , so [ 1 � n 0 � n ] 
� is a

right (column) eigenvector corresponding to the eigenvalue 1. Ac-

cording to Lemma 1 , 1 is a simple eigenvalue of M and all other

eigenvalues have magnitude smaller than one. We represent M 

k in

the Jordan canonical form for some P i and Q i 

M 

k = 

1 

n 

[ 1 

� 
n 0 

� 
n ] 

� [ 1 

� 
n 1 

� 
n ] + 

n ∑ 

i =2 

P i J 
k 
i Q i , (8)

where the diagonal entries in J i are smaller than one in magnitude

for all i . The statement (a) follows by noting that lim k →∞ 

J k 
i 

= 0 , for

all i . 

From Eq. (8) , and with the fact that all eigenvalues of M ex-

cept 1 have magnitude smaller than one, there exist some bounded

constants, � and γ ∈ (0, 1), such that ∥∥∥∥M 

k −
[

1 n 1 
� 
n 

n 
1 n 1 

� 
n 

n 

0 0 

]∥∥∥∥ = 

∥∥∥∥∥ n ∑ 

i =2 

P i J 
k 
i Q i 

∥∥∥∥∥, 

≤
n ∑ 

i =2 

‖ 

P i ‖ ‖ 

Q i ‖ 

∥∥J k i 

∥∥ ≤ �γ k , 

from which we get the desired result. �

Using the result from Lemma 1, Lemma 2 shows the con-

vergence behavior of the power of the weight matrix, and fur-

ther show that its convergence is bounded by a geometric rate.

Lemma 2 plays a key role in proving the consensus properties of

D-DSD. Based on Lemma 2 , we bound the difference between

agent estimates in the following lemma. More specifically, we

show that the agent estimates, x k 
i 
, approaches the accumulation

point, z 
k 
, and the auxiliary variable, y k 

i 
, goes to 0 n , where z 

k 
is

defined in Eq. (7) . 

Lemma 3. Let the Assumptions A1 hold. Let 
{

z k 
i 

}
be the sequence

over k generated by the D-DSD algorithm, Eq. (6) . Then, there exist

some bounded constants, � and 0 < γ < 1, such that: 

(a) for 1 ≤ i ≤ n, and k ≥ 1, ∥∥∥z k i − z 
k 
∥∥∥ ≤�γ k 

2 n ∑ 

j=1 

∥∥z 0 j 

∥∥ + n �D 

k −1 ∑ 

r=1 

γ k −r αr−1 
+ 2 Dαk −1 ;
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(b) for n + 1 ≤ i ≤ 2 n, and k ≥ 1, ∥∥z k i 

∥∥ ≤�γ k 
2 n ∑ 

j=1 

∥∥z 0 j 

∥∥ + n �D 

k −1 ∑ 

r=1 

γ k −r αr−1 . 

roof. For any k ≥ 1, we write Eq. (6) recursively 

 

k 
i = 

2 n ∑ 

j=1 

[ M 

k ] i j z 
0 
j −

k −1 ∑ 

r=1 

2 n ∑ 

j=1 

[ M 

k −r ] i j αr−1 g 

r−1 
j 

− αk −1 g 

k −1 
i 

. (9)

ince every column of M sums up to one, we have for any r
 2 n 
i =1 [ M 

r ] i j = 1 . Considering the recursive relation of z k 
i 

in Eq. (9) ,

e obtain that z 
k 

can be represented as 

 

k = 

2 n ∑ 

j=1 

1 

n 

z 0 j −
k −1 ∑ 

r=1 

2 n ∑ 

j=1 

1 

n 

αr−1 g 

r−1 
j 

− 1 

n 

2 n ∑ 

j=1 

αk −1 g 

k −1 
j 

. (10)

ubtracting Eq. (10) from (9) and taking the norm, we obtain that

or 1 ≤ i ≤ n , 

z k i − z 
k 
∥∥∥ ≤

2 n ∑ 

j=1 

∥∥∥[ M 

k ] i j −
1 

n 

∥∥∥∥∥z 0 j 

∥∥
+ 

k −1 ∑ 

r=1 

n ∑ 

j=1 

∥∥∥[ M 

k −r ] i j −
1 

n 

∥∥∥αr−1 

∥∥∇ f j (x 

r−1 
j 

) 
∥∥

+ αk −1 

∥∥∇ f i (x 

k −1 
i 

) 
∥∥ + 

1 

n 

n ∑ 

j=1 

αk −1 

∥∥∇ f j (x 

k −1 
j 

) 
∥∥. (11)

he proof of part (a) follows by applying the result of Lemma 2 to

q. (11) and noticing that the (sub)gradient is bounded by a con-

tant D . Similarly, by taking the norm of Eq. (9) , we obtain that for

 + 1 ≤ i ≤ 2 n, 

z k i 

∥∥ ≤
2 n ∑ 

j=1 

∥∥[ M 

k ] i j 

∥∥∥∥z 0 j 

∥∥
+ 

k −1 ∑ 

r=1 

n ∑ 

j=1 

∥∥[ M 

k −r ] i j 

∥∥αr−1 

∥∥∇ f j (x 

r−1 
j 

) 
∥∥. 

he proof of part (b) follows by applying the result of Lemma 2 to

he preceding relation and considering the boundedness of

sub)gradient in Assumption 1 (e). �

Using Lemma 3 , we now draw our first conclusion on the con-

ensus property at the agents. Proposition 1 reveals that all agents

symptotically reach consensus. 

roposition 1. Let the Assumptions A1 hold. Let 
{

z k 
i 

}
be the se-

uence over k generated by the D-DSD algorithm, Eq. (6) . Then, z k 
i 

atisfies 

(a) for 1 ≤ i ≤ n , 

∞ ∑ 

k =1 

αk 

∥∥∥z k i − z 
k 
∥∥∥ < ∞;

(b) for n + 1 ≤ i ≤ 2 n, 

∞ ∑ 

k =1 

αk 

∥∥z k i 

∥∥ < ∞ . 

roof. Based on the result of Lemma 3 (a), we obtain, for 1 ≤ i ≤
 , 

K 
 

k =1 

αk 

∥∥∥z k i − z 
k 
∥∥∥ ≤ �

( 

2 n ∑ 

j=1 

∥∥z 0 j 

∥∥) 

K ∑ 

k =1 

αk γ
k 
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E

o

w

C

C

+ n �D 

K ∑ 

k =1 

k −1 ∑ 

r=1 

γ (k −r) αk αr−1 + 2 D 

K−1 ∑ 

k =0 

α2 
k . (12) 

ith the basic inequality ab ≤ 1 
2 (a 2 + b 2 ) , a, b ∈ R , we have: 

 

K ∑ 

k =1 

αk γ
k ≤

K ∑ 

k =1 

[
α2 

k + γ 2 k 
]

≤
K ∑ 

k =1 

α2 
k + 

1 

1 − γ 2 
;

nd 

K 
 

k =1 

k −1 ∑ 

r=1 

γ (k −r) αk αr−1 ≤ 1 

2 

K ∑ 

k =1 

α2 
k 

k −1 ∑ 

r=1 

γ (k −r) 

+ 

1 

2 

K−1 ∑ 

r=1 

(αr−1 ) 
2 

K ∑ 

k = r+1 

γ (k −r) ≤ 1 

1 − γ

K ∑ 

k =1 

α2 
k . 

he proof of part (a) follows by applying the preceding relations to

q. (12) along with 

∑ K 
k =0 α

2 
k 

< ∞ as K → ∞ . Following the same

pirit in the proof of part (b), we can reach the conclusion of part

b). �

Since 
∑ ∞ 

k =1 αk = ∞ , Proposition 1 shows that all agents reach

onsensus at the accumulation point, z 
k 
, asymptotically, i.e., for all

 ≤ i ≤ n , 1 ≤ j ≤ n , 

lim 

 →∞ 

z k i = lim 

k →∞ 

z 
k = lim 

k →∞ 

z k j , (13) 

nd for n + 1 ≤ i ≤ 2 n, the states, z k 
i 
, asymptotically, converge to

ero, i.e., for n + 1 ≤ i ≤ 2 n, 

lim 

 →∞ 

z k i = 0 . (14) 

e next show how the accumulation point, z 
k 
, approaches the op-

ima, x ∗, as D-DSD progresses. 

.2. Optimality property 

The following lemma gives an upper bound on the difference

etween the objective evaluated at the accumulation point, f ( z k ) ,

nd the optimal objective value, f ∗. 

emma 4. Let the Assumptions A1 hold. Let 
{

z k 
i 

}
be the sequence

ver k generated by the D-DSD algorithm, Eq. (6) . Then, 

 

∞ ∑ 

k =0 

αk 

(
f ( z 

k 
) − f ∗

)
≤ n 

∥∥z 
0 − x 

∗∥∥2 + nD 

2 
∞ ∑ 

k =0 

α2 
k 

+ 

4 D 

n 

n ∑ 

i =1 

∞ ∑ 

k =0 

αk 

∥∥∥z k i − z 
k 
∥∥∥. (15) 

roof. Consider Eq. (6) and the fact that each column of M sums

o one, we have 

 

k +1 = 

1 

n 

2 n ∑ 

j=1 

[ 

2 n ∑ 

i =1 

[ M] i j 

] 

z k j − αk 

1 

n 

2 n ∑ 

i =1 

g 

k 
i , 

= z 
k − αk 

n 

n ∑ 

i =1 

∇ f i (z k i ) . 

herefore, we obtain that 

z 
k +1 − x 

∗
∥∥∥2 

= 

∥∥∥z 
k − x 

∗
∥∥∥2 

+ 

∥∥∥∥∥αk 

n 

n ∑ 

i =1 

∇ f i (z k i ) 

∥∥∥∥∥
2 

− 2 

αk 

n 

n ∑ 

i =1 

〈 
z 

k − x 

∗, ∇ f i (z k i ) 
〉 
. (16) 
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enote ∇ f k 
i 

= ∇ f i (z k 
i 
) . Since ‖∇ f k 

i 
‖ ≤ D, we have 

 

z 
k − x 

∗, ∇ f k i 

〉 
= 

〈 
z 

k − z k i , ∇ f k i 

〉 
+ 

〈
z k i − x 

∗, ∇ f k i 

〉
≥

〈 
z 

k − z k i , ∇ f k i 

〉 
+ f i (z k i ) − f i (x 

∗) 

≥ −D 

∥∥∥z k i − z 
k 
∥∥∥ + f i (z k i ) − f i ( z 

k 
) + f i ( z 

k 
) − f i (x 

∗) 

≥ −2 D 

∥∥∥z k i − z 
k 
∥∥∥ + f i ( z 

k 
) − f i (x 

∗) . (17) 

y substituting Eq. (17) in Eq. (16) , and rearranging the terms, we

btain that 

 αk 

(
f ( z 

k 
) − f ∗

)
≤ n 

∥∥∥z 
k − x 

∗
∥∥∥2 

− n 

∥∥∥z 
k +1 − x 

∗
∥∥∥2 

+ nD 

2 α2 
k + 

4 D 

n 

n ∑ 

i =1 

αk 

∥∥∥z k i − z 
k 
∥∥∥. (18) 

he desired result is achieved by summing Eq. (18) over time from

 = 0 to ∞ . �

We are ready to present the main result of this paper, by com-

ining all the preceding results. 

heorem 1. Let the Assumptions A1 hold. Let 
{

z k 
i 

}
be the sequence

ver k generated by the D-DSD algorithm, Eq. (6) . Then, for any agent

, we have 

lim 

 →∞ 

f (z k i ) = f ∗. 

roof. Since that the step-size follows that 
∑ ∞ 

k =0 α
2 
k 

< ∞ ,

nd 

∑ ∞ 

k =0 αk ‖ z k i 
− z 

k ‖ < ∞ from Lemma 1 , we obtain from

q. (15) that 

 

∞ ∑ 

k =0 

αk 

(
f ( z 

k 
) − f ∗

)
< ∞ , (19) 

hich reveals that lim k →∞ 

f ( z k ) = f ∗, by considering that
 ∞ 

k =0 αk = ∞ . In Eq. (13) , we have already shown that

im k →∞ 

z k 
i 

= lim k →∞ 

z 
k 
. Therefore, we obtain the desired result. �

. Convergence rate 

In this section, we show the convergence rate of D-DSD. Let

f m 

:= min k f ( z 
k ) , we have 

( f m 

− f ∗) 
K ∑ 

k =0 

αk ≤
K ∑ 

k =0 

αk ( f ( z 
k 
) − f ∗) (20) 

By combining Eqs. (12) , (15) and (20) , it can be verified that

q. (15) can be represented in the following form: 

( f m 

− f ∗) 
K ∑ 

k =0 

αk ≤ C 1 + C 2 

K ∑ 

k =0 

α2 
k , 

r equivalently, 

( f m 

− f ∗) ≤ C 1 ∑ K 
k =0 αk 

+ 

C 2 
∑ K 

k =0 α
2 
k ∑ K 

k =0 αk 

, (21) 

here the constants, C 1 and C 2 , are given by 

 1 = 

n 

2 

∥∥z 
0 − x 

∗∥∥2 − n 

2 

∥∥z 
K+1 − x 

∗∥∥2 

+ D �
2 n ∑ 

j=1 

∥∥z 0 j 

∥∥ 1 

1 − γ 2 
, 

 2 = 

nD 

2 

2 

+ 4 D 

2 + D �
2 n ∑ 

j=1 

∥∥z 0 j 

∥∥ + 

2 D 

2 �

1 − γ
. 
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Fig. 2. Strongly-connected but non-balanced digraphs. 

Fig. 3. Plot of residuals 
‖ x k −x ∗‖ F ‖ x 0 −x ∗‖ F for digraph G a , G b , G c as D-DSD progresses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Sample paths of states, x k 
i 
, and y k 

i 
, for all agents on digraphs G a with ε = 0 . 7 

as D-DSD progresses. 

Fig. 5. Plot of residuals 
‖ x k −x ∗‖ F ‖ x 0 −x ∗‖ F . (For interpretation of the references to color in 

this figure, the reader is referred to the web version of this article). 
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t  
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p  

o  
Eq. (21) actually has the same form as the equations in analyzing

the convergence rate of DSD (recall, e.g., [17] ). In particular, when

αk = k −1 / 2 , the first term in Eq. (21) leads to 

C 1 ∑ K 
k =0 αk 

= C 1 
1 / 2 

K 

1 / 2 − 1 

= O 

(
1 √ 

K 

)
, 

while the second term in Eq. (21) leads to 

C 2 
∑ K 

k =0 α
2 
k ∑ K 

k =0 αk 

= C 2 
ln K 

2( 
√ 

K − 1) 
= O 

(
ln K √ 

K 

)
. 

It can be observed that the second term dominates, and the overall

convergence rate is O 

(
ln k √ 

k 

)
. As a result, D-DSD has the same con-

vergence rate as DSD. The restriction of directed graph does not

effect the speed. 

5. Numerical experiment 

5.1. Distributed least square problem 

We first consider a least squares problem on a directed graph:

each agent owns a private objective function, s i = R i x + n i , where

s i ∈ R 

m i and R i ∈ R 

m i ×p are measured data, x ∈ R 

p is unknown

states, and n i ∈ R 

m i is random unknown noise. The goal is to esti-

mate x . This problem can be formulated as a distributed optimiza-

tion problem solving 

min f (x ) = 

1 

n 

n ∑ 

i =1 

‖ 

R i x − s i ‖ 

. 

We consider the network topology as the digraphs shown in Fig. 2 .

We employ identical setting and graphs as [3] . In [3] , the value of

ε = 0 . 7 is chosen for each G a , G b , G c . Fig. 3 shows the convergence

of the D-DSD algorithm for three digraphs displayed in Fig. 2 . Once

the weight matrix, M , defined in Eq. (5) , converges, the D-DSD en-

sures the convergence. Moreover, it can be observed that the resid-

uals decrease faster as the number of edges increases, from G a to

G c . This indicates faster convergence when there are more commu-

nication channels available for information exchange. In Fig. 4 , we

display the trajectories of both states, x and y , when the D-DSD,
Please cite this article as: C. Xi et al., On the distributed o
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q. (6) , is applied on digraph G a with parameter ε = 0 . 7 . Recall

hat in Eqs. (13) and (14) , we have shown that as times, k , goes

o infinity, the state, x k 
i 

of all agents will converges to a same ac-

umulation point, z 
k 
, which is the optimal solution of the problem,

nd y k 
i 

of all agents converges to zero, which are shown in Fig. 4 .

n the next experiment, we compare the performance between the

-DSD and others distributed optimization algorithms over di-

ected graphs. The red curve in Fig. 5 is the plot of residuals of

-DSD on G a . In Fig. 5 , we also shown the convergence behav-

or of two other algorithms on the same digraph. The blue line is

he plot of residuals with a DSD algorithm using a row-stochastic

atrix. As we have discussed is Section 2 , when the weight ma-

rix is restricted to be row-stochastic, DSD actually minimizes a

ew objective function 

̂ f (x ) = 

∑ n 
i =1 πi f i (x ) where π = { πi } is the

eft eigenvector of the weight matrix corresponding to eigenvalue

. So it does not converge to the true x ∗. The black curve shows

he convergence behavior of the subgradient-push algorithm, pro-

osed in [15,16] . Our algorithm has the same convergence rate as

he subgradient-push algorithm, which is O 

(
ln k √ 

k 

)
. 

.2. Regularized support vector machine 

We now study D-DSD over a larger scale network. We consider

he regularized support vector machine using the hinge loss func-

ion and the 2-norm penalty. We assume that the n examples-label

airs { (a i , b i ) } n i =1 
, where a i ∈ R 

m and b i ∈ { +1 , −1 } , are distributed

ver a directed network. Therefore, the regularized support vector
ptimization over directed networks, Neurocomputing (2017), 
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Fig. 6. Plot of residuals 
‖ x k −x ∗‖ F ‖ x 0 −x ∗‖ F as (D-)DSD progresses. 
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achine can be formulated as follows: 

in f (x ) = 

1 

n 

n ∑ 

i =1 

max { 0 , 1 − b i (a � i x ) } + 

λ

2 

‖ x ‖ 

2 , 

here λ > 0 is the regularization parameter. Note that f is con-

ex but non-differentiable, and the subgradient is bounded. We let

 = 4 , N = 50 , and λ = 0 . 02 . The convergence result is illustrated

n Fig. 6 . We see that D-DSD is in the same order of convergence

ate as the subgradient-push algorithm, which is O 

(
ln k √ 

k 

)
. 

. Conclusions 

In this paper, we describe Directed-Distributed Subgradient De-

cent (D-DSD), to solve the problem of minimizing a sum of con-

ex objective functions over a directed graph. Existing distributed

lgorithms, e.g., Distributed Subgradient Descent (DSD), deal with

he same problem under the assumption of undirected networks.

he primary reason behind assuming the undirected graphs is to

btain a doubly-stochastic weight matrix. The row-stochasticity

f the weight matrix guarantees that all agents reach consensus,

hile the column-stochasticity ensures optimality, i.e., each agents

ocal (sub)gradient contributes equally to the global objective. In

 directed graph, however, it may not be possible to construct a

oubly-stochastic weight matrix in a distributed manner. In each

teration of D-DSD, we simultaneously constructs a row-stochastic

atrix and a column-stochastic matrix instead of only a doubly-

tochastic matrix. The convergence of the new weight matrix, de-

ending on the row-stochastic and column-stochastic matrices, en-

ures agents to reach both consensus and optimality. The analysis

hows that the D-DSD converges at a rate of O ( ln k √ 

k 
) , where k is the

umber of iterations. 
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