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perspective

Chuong H. Nguyena,∗, Panagiotis Artemiadisa

aSchool for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287 USA

Abstract

This paper presents a framework to classify motor imagery in the context of multi-class Brain Computer Interface based on elec-
troencephalography (EEG). Covariance matrices are extracted as the EEG signal descriptors, and different dissimilarity metrics on
the manifold of Symmetric Positive Definite (SPD) matrices are investigated to classify these covariance descriptors. Specifically,
we compare the performance of the Log Euclidean distance, Stein divergence, Kullback-Leibler divergence and Von Neumann
divergence. Furthermore, inspired from the conventional Common Spatial Pattern, discriminant analysis performed directly on
the SPD manifold using different mentioned metrics are proposed to improve the classification accuracy. We also propose a new
feature, namely Heterogeneous Orders Relevance Composition (HORC), by combining different relevance matrices, such as Co-
variance, Mutual Information or Kernel Matrix under the Tensor Framework and Multiple Kernel fusion. Multiple Class-Multi
Kernel Relevance Vector Machine is adopted to provide a sparse classifier and Bayesian confidence prediction. Finally, we com-
pare the performance of total 16 methods on the dataset IIa of the BCI Competition IV. The results shows that the mentioned
dissimilarity metrics perform quite equally on the original manifold, whereas the proposed discrimination methods can improve the
accuracy by 3-5% on the reduced dimension manifold.

Keywords: Brain Computer Interface (BCI), Discriminant Analysis, Electroencephalography (EEG), Multi-class, Multi-kernel,
Riemannian Manifold, Relevance Vector Machine

1. INTRODUCTION

Brain Computer Interface (BCI) applications allow human to
communicate and control computer aided systems using electri-
cal activity recorded from the brain. A typical process of BCI
system is to capture and analyze the electrical brain signals, ex-
tract their distinguished features and classify the mental tasks.

Scalp Electroencephalography (EEG) is commonly used as
a noninvasive method to capture the brain’s electrical activity.
Over the past decade, a variety of EEG features has been pro-
posed for many specific BCI applications. Several important
EEG features include amplitude values of EEG signals, band
powers, power spectral density, autoregressive and adaptive au-
toregressive parameters, mixed time-frequency representations,
time-frequency synthesized spatial patterns, spatial deconvolu-
tion, inverse model-based features, and extreme energy ratio,
where details of the aforementioned features can be found from
the publications reviewed in [1–3].

However, these aforementioned methods are sub-optimal
ways to extract the features. First, the energy of the scalp
EEG signals is simultaneously distributed in 3 domains: Time
- Space - Frequency. Hence, their original feature space is a
3-dimensional tensor. Unfortunately, the classical approaches
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in one way or another extract the feature descriptor into a vec-
tor in Euclidean space. This is rooted from the fact that these
descriptors rely on some statistic parameters, such as mean,
variance, median, which are defined as scalars. Furthermore,
pattern recognition and dissimilarity metrics between features
are built only for vectors in Euclidean space. Thus, the clas-
sical approaches fail to notice a very distinctive characteristic
of data: their structure, or more specific, the manifolds and the
interrelation across the tensor dimensions. Recently, data treat-
ment based on the concept of manifold and tensor analysis have
been proved to be more effective and adopted in many applica-
tions. Geometric control [4] has been extensively studied to
model and control mechanical system dynamics under the con-
cept of Riemannian manifolds. In computer vision, covariance
matrix [5] is considered as a specific class of Riemannian Man-
ifolds and currently is the state-of-the art descriptor used for
object and action recognition in video. In [6], Barachant et. al.
obtained very promising results by using covariance matrix as
the EEG descriptor and adopting the Log Euclidean distance
to discriminate among them. In [7], Phan et. al. proposed a
Fisher Discrimination Analysis for higher-order dimension ten-
sor, and also achieved encouraging results. In this paper, we
revise the classical EEG features under the perspective of Rie-
mannian manifold and Tensor analysis, and conduct an empiri-
cal study to compare the performance of different approaches.

Furthermore, classical approaches often rely only a single
feature, i.e power spectrum, to characterize the mental tasks.

Preprint submitted to Elsevier October 30, 2017
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This is acceptable for some simple binary motor imagery tasks,
i.e right-left hand control, mostly studied in current BCI re-
search. However, in general brain activities are very compli-
cated and hardly be represented just by a single feature. In
contrast, an appropriate combination of different features may
provide different perspectives to the signals and hence be more
distinctive. The common approach is to concatenate all the fea-
ture vectors into one long vector and utilize dimension reduc-
tion techniques, such as Principle Component Analysis (PCA),
Linear Discriminant Analysis (LDA) or Canonical Correlation
Analysis (CCA) to remove noisy and redundant features. How-
ever, these approaches often require the features to be in the
same range and are not suitable for heterogeneous features, e.g.
combination of features in the vector form with binary or his-
togram form. Furthermore, the dimension reduction techniques
are designed independently from the classifiers, hence they do
not take into account the bias of trained classifiers [8]. In this
paper, we utilize a Multi-kernel learning method, namely Multi-
class Multi-kernel Relevance Vector Machine [9], to promote a
framework for more efficient fusion of EEG features.

This paper is organized as follows. Section 2 introduces no-
tation and basic concepts used in the paper. A review of EEG
features is presented in Section 3. Section 4 revises the classi-
cal features under the perspective of Riemannian Manifold, and
extends the concepts of discriminant analysis from Euclidean to
Riemannian using different kinds of manifold distance. Hetero-
geneous Orders Relevance Composition (HORC) is introduced
in Section 5. In Section 6, the multi-class multi-kernel machine
learning approach proposed in [9] is adopted for feature fusion
and recognition. Section 7 presents the experimental results and
discussion. Section 8 concludes the paper and discusses future
work.

2. Preliminary

This section establishes notations and definitions used in the
paper. We denote m,mmm,MMM and MMM as a scalar, vector, matrix and
tensor form respectively. Let Rn (Cn) be an n dimension real
(complex) space, 111n ∈ Rn be a vector with all entries equal to
1, and IIIn ∈ Rn×n be the identity matrix. E{xxx} is the expected
value of xxx and diag(xxx) is a diagonal matrix constructed from xxx.

AAAT denotes the (conjugate) transpose of AAA, and vec(AAA) is the
vectorizing operator on matrix AAA. If AAA is symmetric then vec(AAA)
only takes an upper half of the matrix. We denote ‖vvv‖p and ‖vvv‖
as the Lp norm and L2 norm of a vector vvv, respectively. ‖A‖F

denotes the Frobenius norm of matrix AAA.

Definition 2.1. An n× n matrix AAA is Symmetric Positive Defi-
nite (SPD) if AAA=AAAT,xxxTAAAxxx> 0,∀xxx 6= 0. Equivalently, the eigen-
values of AAA, denoted as λ (AAA), are positive.

Definition 2.2. An n× d matrix AAA is orthogonal if its columns
are orthogonal unit vector, i.e. AAATAAA = IIId .

Definition 2.3. AAAk, exp(AAA) and log(AAA) of matrix AAA ∈ Cn×n are
defined through its eigenvalues ΛΛΛ and eigenvectors UUU as

AAAk ,UUUdiag([λ k
1 , . . . ,λ

k
n ])UUU

T =UUUΛΛΛkUUUT,

exp(AAA),UUUdiag([eλ1 , . . . ,eλn ])UUUT =UUUeΛΛΛUUUT,

log(AAA),UUUdiag([log(λ1), . . . , log(λn)])UUU
T =UUU log(ΛΛΛ)UUUT.

Definition 2.4. xxx|µ,α ∼ N (xxx|µ,α−1) denotes that the ran-
dom variable xxx follows a Gaussian distribution with the mean
µ and variance σ2 = α−1, i.e, its probability P(xxx|µ,α) =
N (xxx|µ,α−1).

2.1. Multiple kernel learning for heterogeneous feature fusion
[10]

Let {xxxi, l(xxxi)}n
i=1 be a set of labeled patterns where xxxi ∈

X is a feature of a sample i and l(xxxi) ∈ {±1} is its out-
put label. For a chosen feature map φ : X → RRRm assuming
that a set {φ(xxxi), l(xxxi) = −1} can be linearly separated from
{φ(xxx j), l(xxx j) = 1}, the training process for classification at-
tempts to find an optimal hyperplane aaa ∈ RRRm such that

y(xxx) = aaaTφ(xxx)+wo ∈R, s.t: y(xxx)l(xxx)> 0. (1)

The solution’s principle is to minimize the cost function

J(aaa,w0) =
1
2

n

∑
i=1

(aaaTφ(xxxi)+wo− ti)
2 +

λ
2

h(aaa2),

where h(aaa2) > 0 is a constraint function on aaa, and λ is the
Lagrange multiplier. By setting ∂J

∂aaa = 0, we obtain

aaa =
n

∑
i=1
−
( ∂h

∂aaa222

)−1 aaaTφ(xxxi)+wo− ti
λ︸ ︷︷ ︸

wi

φ(xxxi) =
n

∑
i=1

wiφ(xxxi). (2)

Substituting (2) to (1) yields the dual form of optimization

y(xxx) =
n

∑
i=1

wiφ T(xxx)φ(xxxi)+wo =
n

∑
i=1

wik(xxx,xxxi)+wo = wwwTΦ(x),

(3)
where k(xxx,xxxi) = φ T(xxx)φ(xxxi) ∈ R is called kernel at xxxi, www =
[w0, . . . ,wn]

T and Φ(x) = [1, k(xxx,xxxi), . . . ,k(xxx,xxxn)]
T ∈Rn+1.

Equation (3) is referred as the “kernel trick” as it embeds the
feature from the original space X to the Reproducing Kernel
Hilbert space. Hence, if a sample xxx is represented by a set of
m features {xxx( j)}m

j=1, where each xxx( j) lies in its own space X j

equipped with a map φ j(xxx), the weighted feature map φ(xxx) =
[
√

β1φ1(xxx), . . . ,
√

βmφm(xxx)]T yields the kernel at xxxi at

k(xxx,xxxi) =
m

∑
j=1

β jk j(xxx,xxxi), k j(xxx,xxxi) = φ T
j (xxx)φ j(xxxi). (4)

Thus, multi-kernels function in form of linear combination of
different kernels provides a clever way to combine heteroge-
neous features. In practice, the explicit map φ(xxx) are mostly
avoided by directly defining the kernel. For example, the Gaus-
sian Kernel is commonly used:

k(xxx1,xxx2) = e−γd2(xxx1,xxx2),

where d(xxx1,xxx2) is the distance between two points xxx1 and xxx2

defined in its original space X , i.e d(xxx1,xxx2) = ‖xxx1− xxx2‖ for

2
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xxx1,xxx2 ∈Rq. Using Gaussian kernel implies that the dimension
of the mapped feature space is infinite, φ : X → RRR+∞ while
still limits the dimension of www by the number of training sam-
ples, i.e. www ∈ Rn+1. Hence, multi-kernels function efficiently
combines heterogeneous features.

3. Literature Review

3.1. Temporal - Spatial - Frequential Decomposition

In feature extraction process, we aim to extract from the
recored EEG signals the most salient characteristics that are
correlated to the observed outcome. Since EEG signal captures
brain’s electrical activity, its energy is distributed over three do-
mains: time, spatial and frequency. This section summarizes
the main techniques to decompose the signals.

3.1.1. Temporal Filters
This consists of several preprocessing steps. First, the EEG

signal is band-bass filtered into a suitable narrow frequency
band. For example, frequency band for motor imagery is often
found in 7-30Hz. After that, artifacts due to EOG such as eye-
blinking need to be removed. Finally, since the brain activation
can only maintained in a short period of time, the recorded EEG
in one trial can be separated into several possibly overlapped
segments. Heuristically, a time segment can be from 1-2s.

3.1.2. Spatial Filters
The recorded EEG signals XXX(t) = [x1(t), . . . ,xN(t)] from N

channels can be thought as ”results echoed” from n unknown
sources SSS(t) = [s1(t), . . . ,sn(t)] and assumed to be a linear com-
bination as XXX(t) = WWWSSS(t), where WWW ∈ RN×n is the linear fu-
sion matrix [11]. Since SSS(t) is unknown, additional assump-
tions must be imposed to cast the constraints on the optimal
problem of estimating WWW . Once WWW is determined from the cal-
ibration process, SSS(t) can be obtained for an incoming XXX(t).
Among several available approaches, Independent Component
Analysis (ICA) [11], Canonical Correlation Analysis (CCA)
[12] and standardized Low Resolution Electromagnetic Tomog-
raphy (sLORETA) [13] have been successfully used in BCI ap-
plications.

3.1.3. Frequential Filters
Among several approaches for time-frequency analysis, such

as autoregressive model (ARM), Short-Time Fourier Transform
(SFFT) and wavelet transform (WT), discrete wavelet trans-
form (DWT) is proved to be more effective to characterize EEG
as it can handle non-stationary signals [2, 7, 14, 15]. However,
the performance of WT critically depends on the similarity be-
tween the shape of input signal and that of the chosen basis
function. Thus, using one fixed WT basis function may not op-
timally capture the dynamics and nonlinearity of the brain sig-
nal. Recently, Hilbert Huang Transform (HHT) [16] offers an
alternative time-frequency tool, in which the basis function is
adaptively constructed by the data itself. Hence, HHT is more
attractive to EEG processing than the conventional mentioned
frequency transformation methods [17].

3.2. Features in Euclidean Space

After being time-space-frequency filtered, the input EEG is
transformed to XXX(t) ∈ RNc×Nb×Ts , where Nc is the number of
channels, Nb is number of frequency bands and Ts is the number
of sampling points. From here, distinguished feature can be
extracted to recognize the mental tasks.

Classical approaches found in the literature, e.g. in [1, 3, 14,
15, 18] and their references, share the same principle: The fea-
tures are extracted from the original n-dimension space into a
1-dimension feature vector. A typical framework involves ex-
tracting statistic measurements along the temporal dimension,
and then vectorizing them along the spatial and frequential di-
mension. Finally, feature selection is utilized to remove any
redundant and irrelevant elements. Hence, classification can be
performed based on the dissimilarity between the features vec-
tors, which can be measured by several well-established metrics
in Euclidean space.

Let aaai,k(t) ∈ RTs and ϕi,k(t) ∈ RTs be the amplitude and
phase of the analytic signal xxxi,k = ai,k∠ϕi,k(t) ∈ CTs at the
channel i and sub-band frequency k where i = {1, . . . ,Nc},k =
{1, . . . ,Nb}.

3.2.1. Features commonly used in BCI
Power spectrum (e), mean coefficients (µ), and standard de-

viation (σ ) of individual sub-band xxxi,k(t) is computed as:

ei,k = aaaT
i,kaaai,k, µµµ i,k =

111Taaai,k

Ts
, σ2

i,k =
(aaai,k−µµµ i,k)

T(aaai,k−µµµ i,k)

Ts−1
.

The final feature vector is a concatenation of all individual com-
ponents, e.g. eee = [e1,1 . . .ei,k . . .eNc,Nb ]

T.
Maximum cross-correlation (R) [19, 20] between xxx∈CTs and

yyy ∈ CTs is defined as

Rxy =
Ts

max
k=1
|ρ(k)|, ρ(k) =

Ts−k−1

∑
t=0

xxx(t + k)yyy(t).

The correlation matrix RRR ∈Rn̄×n̄ is obtained by computing Rxy

across all channels i and sub-band k using amplitude and phase
i.e RRRa( j, l) = Raaa jaaal and RRRφ ( j, l) = Rφ jφl .

Coherence (COH) [21, 22] is the auto-correlation at a spe-
cific frequency bank k across the channels

coh(xxxi,k,xxx j,k) =
xxxT

i,kxxx j,k

Ts−1
=

∑Ts
t=0 aaai,k(t)aaa j,k(t)e

i(ϕi,k(t)−ϕ j,k(t))

Ts−1
.

The Coherence matrix COH ∈ RNc×Nc is typically defined as
the maximal coherence magnitude among all frequency bands

COH(i, j) =
NB

max
k=1
|coh(xxxi,k,xxx j,k)|.

Covariance (COV ) [6] is a special case of Coherence matrix,
where only the amplitude is considered

COV =
AAAAAAT

Ts−1
∈Rn̄×n̄.

3
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Phase Locking Value (PLV ) [23, 24] is a special case of co-
herence when only the phase information is considered and the
amplitude is set to 1

plv(xxxi,k,xxx j,k) =
1
Ts
|

Ts

∑
t=0

ei(ϕi,k(t)−ϕ j,k(t))|.

It can be seen that all the aforementioned features are the
variants of cross-correlation matrix, which essentially captures
the linear relationships between the channels. The coherence
matrix COH and phase locking value matrix PLV are com-
monly used to construct graphs of brain-functional connectivity
[22]. Among them, COH and COV are SPD. However, the final
feature vector in classical approach is often obtained by vector-
izing the upper half of the matrices. Mapping the feature into
the Euclidean space yields sub-optimal results since it ignores
this unique structure.

3.3. Feature Selection and Dimension Reduction

There are several techniques to reduce the features’ dimen-
sion, either through a linear mapping, such as Principle Compo-
nent Analysis (PCA), Linear Discrimination Analysis (LDA),
Local Preserving Projection (LPP) and Local Fisher Discrimi-
nation Analysis (LFDA) [25, 26], or by performance ranking,
such as Fisher Score [15] or Mutual Information [27], or a com-
bination of them.

Among the linear transform techniques, Common Spatial
Pattern (CSP) [28, 29] has been successfully used in BCI
contest. CSP seeks for a linear transform WWW ∈ RNC×m com-
posed of m spatial filters w j ∈ RNc that maps the original data
XXX ∈RNc×Ts to another space YYY =WWW TXXX in which the following
Rayleigh quotient is extremized

J(www j) =
E{YYY 1

jYYY
1
j
T}

E{YYY 2
jYYY

2
j
T}

=
wwwT

j E{XXX1XXXT
1}www j

wwwT
j E{XXX2XXXT

2}www j
=

wwwT
j CCC1www j

wwwT
j CCC2www j

, (5)

where XXX1 and XXX2 are samples belong to class 1 and class 2,
and CCC1 and CCC2 are the average of the covariance of each class.
The optimal solution for www j are then the eigenvectors of CCC−1

2 CCC1

which correspond to the largest and smallest eigenvalues of
CCC−1

2 CCC1. After CSP transformation, the variance of the data is
used as feature descriptor.

Among the performance ranking techniques, Mutual Infor-
mation (MI) is the most general and statistically confident in-
dex. MI between two random variables X and Y , where X is
often denoted the features and Y is the corresponding labels,
measures their mutual dependence and is defined by Shannon’s
formula as

I(X ,Y ) = ∑
x∈X

∑
y∈Y

p(xy) log
p(xy)

p(x)p(y)
= H(X)−H(X |Y ), (6)

where H(x) and H(X |Y ) are the Shannon Entropy and Condi-
tional Entropy defined respectively as

H(X) =−∑
x∈X

p(x) log p(x),

H(X |Y ) =−∑
y∈Y

p(y) log p(x) ∑
x∈X

p(x|y) log p(x|y),

and p(x), p(y), p(xy) and p(x|y) are the probability density
function (PDF) of X ,Y and their joint PDF and conditional PDF
respectively. Hence, a feature X can be selected based on its
MI with the class label Y . Despite that MI is powerful, sim-
ple and intuitive, estimating MI is not easy since the PDFs are
unknown. In practice, these PDFs are often estimated either
by assumption of foreknown distribution, such as Gaussian, or
by constructing their discrete histograms. In [30], the authors
combined MI and Joint Approximate Diagonalization to extend
CSP to a Multiclass-CSP application.

4. Feature in Riemannian Manifold and Tensor

One problem of classical features is that they might discard
discriminative information hidden in the original high dimen-
sion space. Recently, developments in manifold geometry and
tensor analysis promote a new trend in feature descriptors. That
is, the dissimilarity between features can be measured directly
in the original high dimension space, which allows unveiling
hidden features overlooked by the classical approaches. In this
section, we summarize some basic definitions of manifolds and
tensors, more details can be found in [31]. Then, some suc-
cessful methods on using Manifold and Tensor features are an-
alyzed.

4.1. Features in Natural Manifold
Definition 4.1. A topological space (X ,N) is a set of points
X = {x} equipped with a neighborhood function N, which as-
signs each point x to a subset N(x)⊂ X ,N(x) 6=∅.

Definition 4.2. A function f : X → Y between two topological
spaces (X ,Nx) and (Y,NY ) is called homeomorphism if f is
bijection, continuous and its inversion function f−1 is also con-
tinuous. Then, X and Y are called homeomorphic.

Definition 4.3. A n-dimensional manifold (X ,N) is a topologi-
cal space if each point x ∈ X has a neighborhood N(x) homeo-
morphic to Euclidean spaceRn by a function f : N(x)→Rn. A
differentiable manifold is a manifold equipped with a globally
differentiable function f .

Definition 4.4. At each point x of the differentiable manifold
X, one can attach a tangent space TX (x) that consists of real
tangent vectors of all possible curves passing through x.

Definition 4.5. A Riemannian manifold is a differentiable
manifold equipped with a smoothly varying inner product on
each tangent space.

Definition 4.6. A geodesic distance between two points on the
manifold is the length of the shortest curve (called geodesic)
connecting the two points.

Symmetric Positive Definite (SPD) Matrix belongs to a spe-
cial Riemannian Manifold, often denoted by Sym+

n . Several
dissimilarity metrics are proposed to estimate the distance in
Sym+

n as follow.

4
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• Riemannian distance daf [32] defines the geodesic dis-
tance between two SPD SSSi and SSS j as

dR(SSS,SSSi), ‖ log(SSS−1
i SSS2‖=

√
n

∑
i=1

log2 λi,

where λi = eigi(SSS
−1
1 SSS2). This metric is invariant to an

affine transformation and inversion. However, solving the
generalized eigenvector is very computationally expensive
for practical application.

• Tangent Space distance The Riemannian metric can be
approximated by the distance between tangent vectors
through a common reference point CCC. The tangent vector
S̄SSi of a point SSSi at the reference point CCC is defined as.

S̄SSi = logCCC SSSi , log(CCC−
1
2 SSSiCCC

− 1
2 ).

This logCCC mapping defines a Lie group equipped by the
multiplication and inverse operators [33] as

SSS1�SSS2=exp(logC SSS1+logC SSS2), SSS−1=exp(− logCCC SSS).

This Lie group forms a Hilbert inner product between SSS1

and SSS2 in the Sym+
D manifold as

〈SSS1,SSS2〉CCC = tr(logCCC(SSS1) logCCC(SSS2)),

and the distance between SSSi and SSS j are derived as

d2
T S(SSS1,SSS2)CCC , ‖S̄SSi− S̄SS j‖2

F = tr((S̄SSi− S̄SS j)(S̄SSi− S̄SS j)
T),

To obtain a good approximation with Rienmannian
geodesics, the reference point CCC needs to be close to the
two points. Hence, CCC is heuristically selected as the geo-
metric mean of the point set {SSSi}. However, mapping to
the tangent space flattens the manifold and does not pre-
serve the true geodesic distance. Furthermore, for a set of
non stationary points, the mean CCC shifts over time, hence
the mean CCC needs to be iteratively re-estimated for any new
collected data point SSSt [6, 34].

• Log-Euclidean distance [35] selects the reference point CCC
at the identity matrix III, hence the distance is simplified as

d2
LE(SSS1,SSS2), ‖ log(SSS1)− log(SSS2)‖2

F .

In fact, if the dataset is first whitened by a map ŜSSi =

CCC−
1
2 SSSiCCC

− 1
2 where CCC can be the geodesic mean, the Tan-

gent Space distance is reduced to Log Euclidean distance.
Intuitively, Log-Euclidean distance first maps the SPDs
from the Riemannian manifold to the Euclidean space by
the log operator, then compute the Euclidean distance.

• Kullback-Leibler (KL) divergence [36] is not a geodesics
but instead based on informative geometry. If two random
multivariate samples XXX1 ∈ Rd×T and XXX2 ∈ Rd×T are as-
sumed to be Gaussian distribution, i.e.

XXX1 ∼N1(µ1,SSS1), XXX2 ∼N2(µ2,SSS2),

where µi and SSSi are the mean and covariance of XXX i respec-
tively, the KL divergence from N1(µ1,SSS1) to N2(µ2,SSS2)
is defined as

d2
KL(N1|N2),

1
2
(tr(SSS−1

2 SSS1)+∆T
µ SSS−1

2 ∆µ +ln(
detSSS2

detSSS1
)−d),

where ∆µ , µ2− µ1. Since the KL divergence is asym-
metric, its symmetric distance is defined as d2

KL(SSS1,SSS2),
d2

KL(N1|N2) + d2
KL(N2|N1). For µ2 = µ1 = 0, the KL

distance is simplified to

d2
KL(SSS1,SSS2),

1
2

tr(SSS−1
1 SSS2 +SSS−1

2 SSS1)−d. (7)

• Stein divergence [37] or LogDet Divergence [36] defines
the distance between two SPD SSS1 and SSS2 as

d2
SD(SSS1,SSS2), logdet(

SSS1 +SSS2

2
)− logdet(SSS1SSS2)

2
.

Similar to Kullback-Leibler (KL) divergence, the distance
dSD is not geodesic.

• Von Neumann divergence [36] defines quantum relative
entropy between two SPD covariance matrices as

d2
V N(SSS1|SSS2), tr(SSS1(log(SSS1)− log(SSS2))−SSS1 +SSS2).

Note that dV N is also asymmetric. Hence, one can de-
fine the symmetric distance version as d2

V N(SSS1,SSS2) ,
d2

V N(SSS1|SSS2)+d2
V N(SSS2|SSS1)

d2
V N(SSS1,SSS2) = tr((SSS1−SSS2)(log(SSS1)− log(SSS2))).

4.2. Manifold Discrimination Analysis and Connection with
Common Spatial Pattern

4.2.1. Common Spatial Pattern revisited under Manifold Dis-
tance

In [38], Samek et. al. unveiled that the classical CSP [28]
and their variants can be casted into a unified framework based
on Kullback-Leibler divergence. Specifically, let ΣΣΣ1 and ΣΣΣ2 ∈
RD×D are the mean covariance matrix of class 1 and class 2,
CCC = (ΣΣΣ1+ΣΣΣ2), and PPP =CCC−

1
2 is the whitening transform matrix,

so that

Σ̃ΣΣ1 + Σ̃ΣΣ2 = III, Σ̃ΣΣ1 = PPPΣΣΣ1PPPT, Σ̃ΣΣ2 = PPPΣΣΣ2PPPT.

The spatial filter VVV = IIIdRRR∈Rd×D,RRRRRRT = III is searched to max-
imize the distance between the means of each class

L (VVV ), (1−λ )d2
KL(VVV

TΣ̃ΣΣ1VVV ,VVV TΣ̃ΣΣ2VVV )−λ∆∆∆, (8)

where dKL is the Kullback-Leibler (KL) divergence given in (7),
and ∆ is the regularization defined as

∆∆∆ , 1
N1 +N2

2

∑
c=1

Nc

∑
i=1

d2
KL(VVV

TΣ̃ΣΣi
cVVV ,VVV TΣ̃ΣΣcVVV ),

where Σ̃ΣΣi
c are the covariance matrix of trial i in the class c which

has total Nc trials. The optimal VVV can be solved iteratively by
the gradient descent method. In [38], the authors prove that
span(WWW ) = span(VVV ), where WWW is the conventional CSP coeffi-
cients given in (5).
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Figure 1: Dimension reduced mapping from Sym+
D 7→ Sym+

d under Log Eu-
clidean operator.

4.2.2. Connection between CSP and LDA in Tangent Space and
Log-Euclidean Space

If one replaces the Kullback-Leibler divergence in the cost
function (8) by another distance, e.g Log Euclidean, so that

L (VVV ), d2
T S(VVV

TΣ̃ΣΣ1,VVV
TΣ̃ΣΣ2)−

λ
1−λ

2

∑
c=1

Nc

∑
i=1

d2
T S(VVV

TΣ̃ΣΣi
c,VVV

TΣ̃ΣΣc)

N1 +N2
.

where the first term is to maximize the distance between the
classes’ means, and the second term is to minimize the sum of
distances between the samples within each class.

This is the exact meaning of LDA in the Euclidean space,
hence the CSP accomplished with Log Euclidean distance is
equivalent to the Tangent Space LDA proposed in [6]. In short,
these approaches have identical meaning with the only differ-
ence in defining the manifold distances.

4.2.3. Discriminant Analysis on Riemannian Manifold
Let f (VVV ,SSSi) : Sym+

D 7→ Sym+
d be the function that maps SSSi

from the original manifold D to the lower dimension, more dis-
criminable one, i.e. d < D, using the projector VVV . If Stein
divergence or Kullback divergence is used, it can be defined as

f (VVV ,SSSi),VVV TSSSiVVV .

In case of the Log Euclidean distance, there are two ap-
proaches. First, the mapping can be defined as f (VVV ,SSSi),VVV Tsssi,
where sssi is the vectorized Logarithm mapping of SSSi to Eu-
clidean space. Second, if one prefers to preserve the SPD struc-
ture, the transforming can also be defined by the nonlinear map:

f (VVV ,SSSi), exp(VVV TX̄XXVVV ), X̄XX = log(XXX), (9)

which leads to a linear transform in its tangent space as illus-
trated in Fig 1. It can be proved that the projected points defined
by the mapping (9) also form another Lie Group (Appendix A).

Follow the convention of formulating the discriminant analy-
sis problems [25], one can define the between class and with-in
class cost functions as

D(w) , 1
2

n

∑
i, j 6=i

WWW (w)
i, j d2( f (VVV ,SSSi), f (VVV ,SSS j)), (10a)

D(b) , 1
2

N

∑
i, j 6=i

WWW (b)
i, j d2( f (VVV ,SSSi), f (VVV ,SSS j)). (10b)

where d( f (SSSi), f (VVV ,SSS j)) is the corresponding Riemannian dis-

tance, and WWW (w)
i, j and WWW (b)

i, j are the within and between weighted

matrices characterizing the relation between the samples. WWW (w)
i, j

and WWW (b)
i, j are defined in Table 1.

Condition yi = y j = c yi 6= y j

WWW (w)
i, j ai, j

1
Nc

0

WWW (b)
i, j bi, j(

1
N − 1

Nc
) 1

N

Table 1: Between and Within weighted matrices.

There are several manners to define the weight ai, j and bi, j,
such as Fisher Discriminant Analysis (FDA), k-Nearest Neigh-
bor (kNN), Heat kernel (HK), and Local Scaling (LS) ([25])
which are specified in Table 2. In the case of kNN, only k near-
est neighbors of the sample SSSi are considered to apply the con-
ditions. In the heat kernel, γ > 0 is the tuning parameter. In

the local scaling, γ−1
i = d(SSSi,SSS

(k)
i ) where SSS(k)i is the kth nearest

neighbor of SSSi. Heuristicly, k = 7 is recommended [25].

FDA kNN Heat Kernel Local Scaling

ai, j 1 Nc/N e−γd2(SSSi,SSS j) e−γiγ jd2(SSSi,SSS j)

bi, j 1 0 e−γd2(SSSi,SSS j) e−γiγ jd2(SSSi,SSS j)

Table 2: Affinity Coefficients

For the chosen weights WWW (w)
i, j and WWW (b)

i, j , we seek for an or-

thonormal matrix VVV , VVV TVVV = IIId , that simultaneously minimizes
the with-in class D(w) and maximizes the between class D(b)

cost functions, VVV = argminVVV L (VVV ) , where

L (VVV ), D(w)−D(b) or L (VVV ), D(w)

D(b)
. (11)

This optimization problem can be solved by the conjugate gra-
dient descent on Grassmann manifold method [39]. The gradi-
ent ∇VVV L (VVV ) on the manifold at an iterative step is

∇VVV L (VVV ) = (IIID−VVVVVV T)
n

∑
i, j 6=i

∂L (VVV )

∂d2
i j

∂d2
i j

∂VVV
,

where the Jacobian ∂d2

∂VVV of the squared distance for each metrics
is given in Table 3 (proof in Appendix A). The optimization on
manifold can be solved efficiently by the Manopt toolbox [40].

The advantage of the proposed discriminant analysis on Rie-
mannian Manifold is that it is applied for multiple classes in
a natural way while the conventional CSP is only applied to
binary classification problem [38, 41]. Hence, it avoids the bur-
den of designing one-vs-one strategy of CSP.

It is worth to emphasize that Log Det and Kullback Leibler
distance are invariant to a linear transform of any full rank ma-
trix PPP ∈RD×D, i.e.

d(SSS1,SSS2) = d(PPPSSS1PPPT,PPPSSS2PPPT).
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Distance Transform Map Jacobian ∂d2

∂VVV (XXX ,YYY )

Log Euclid X̂XX =VVV T log(XXX)VVV 4(log(XXX)− log(YYY ))VVV (X̂XX− ŶYY ),

LogDet X̂XX =VVV TXXXVVV (XXXVVV X̂XX
−1−YYYVVVŶYY

−1
)(X̂XX− ŶYY )(X̂XX + ŶYY )−1

Kullback-Leibler X̂XX =VVV TXXXVVV (XXXVVV X̂XX
−1−YYYVVVŶYY

−1
)(X̂XXŶYY

−1− ŶYY X̂XX
−1
)

Von Neumann X̂XX =VVV TXXXVVV 2(∆+∆T), ∆ = 2(XXX−YYY )VVVVVV T(log(XXX)− log(YYY ))VVV

Table 3: Transform Map and Jacobian Matrix

Hence, under the purpose of increasing distance between
classes, any blind source separation, such as ICA or CCA, are
unnecessary. Therefore, the discrimination can only be im-
proved if d < D when assuming that the noise and artifact ef-
fects contained in D−d components are removed.

4.3. Tensor Discriminant Analysis
Different with manifold, tensor is a multiple dimension array

data without strictly constrained structure. Basic definitions and
notations of tensor are summarized as follow.

Definition 4.7. An m-order tensor is a multidimensional data
XXX ∈ Cn1×n2×...nm . The tensor XXX can be unfolded at a mode i
into a matrix XXX (i) ∈ Cni×n̄i , where n̄i =

1
ni

∏m
j=1 n j.

Definition 4.8. The product of a tensor XXX and a matrix VVV ∈
Cd×ni along the mode-i is denoted as

YYY = XXX×i VVV ⇔ YYY (i) =VVV XXX (i), YYY ∈ Cn1...×ni−1×d×ni+1...×nm .

Definition 4.9. An m-order tensor XXX ∈ Cn1×n2...×nm can be de-
composed by a set of matrix VVV i ∈ Cni×di as

XXX = GGG×{VVV}= GGG×1 VVV 1 . . .×m VVV m, GGG ∈ Cd1×d2...×dm .

where GGG is the core tensor.
All the classical dimension reduction techniques, such as

PCA, LPP, or LDA, can be extended to Tensor decomposition (
He et al. [42] , Dai et al. [43] and Phan et al. [7]). For example,
for the case of second order tensor (matrix) XXX i ∈Rd1×d2 , tensor
discriminant analysis is formulated as

VVV = argmin
VVV={VVV 1,VVV 2}

n

∑
i, j 6=i

WWW i, j‖VVV T
1 XXX iVVV 2−VVV T

1 XXX jVVV 2‖2
F , (12)

where WWW i j =WWW w
i j−WWW b

i j is the weight defined similarly in Table
1. In principle, the set of factorization matrix {VVV} are obtained
by iteratively finding one mode VVV i while fixing other modes.
Consequently, the problem for a single mode is simplified to the
conventional linear discrimination analysis that can be solved
easily by eigenvector decomposition. The optimal {VVV} are se-
lected as the eigenvectors corresponding to the maximal eigen-
values. Hence, an incoming feature XXX can be decomposed to
the core tensor GGG, where di < ni. The final feature is obtained
by vectorizing GGG followed by a feature selection. In general,
performing dimension reduction directly on Tensor space yields
better discriminant than that on the Euclidean since it exploits
the dissimilarity across dimensions [44].

5. Heterogeneous Order Relevance Composition

Covariance matrix or Cross-correlation is a simple and ef-
fective method to capture the linear relationship between two
multivariate random variables. However, beyond the linear re-
lationship, there may also exist the nonlinear or conditional de-
pendence between them.

As noticed by Wang et. al. [45], Covariance matrix can be
interpreted as a linear kernel, i.e. the dot product of the feature
vector in its original space, e.g. COV (XXX) = XXXTXXX . Hence, this
definition can be generalized to any nonlinear kernel, i.e. the
dot product in the Hilbert space, e.g, KKK(XXX) = 〈φ(XXX),φ(XXX)〉.
Other advantages of Kernels are that they always satisfy the
SPD condition regardless of the input vector’s dimension and
they do not require the explicit map φ(XXX).

We investigate several commonly used Kernels as follows:

• Linear Kernel (Covariance): COV (i, j) = xxxT
i xxx j.

• Polynominal Kernel: Kp(i, j) = (xxxT
i xxx j +a)d ,a > 0.

• Gaussian Kernel: KG(i, j) = exp(−γ‖xxxi− xxx j‖2),γ > 0.

• Rational Quadratic: KQ(i, j) = (1+ γ‖xxxi−xxx j‖2)−d ,γ > 0.

• Mutual information (MI)):

I(i, j) = ∑
a∈xxxi

∑
b∈xxx j

p(ab) log
p(ab)

p(a)p(b)
,

To compute MI, we can use the k-neighbors approach [46]
implemented in the Information Theoretical Estimators
(ITE) toolbox provided by the Szabo [47]. The Mutual In-
formation Matrix (MIM) is not always SPD as pointed out
by Jakobsen [48]. However, the counter examples are very
specific, while the author also claims that MIM is very of-
ten SPD in practice. In our experiment dataset, by using
the Energy-weighted MI, i.e. KMI(i, j) = (exiex j)

1/2I(i, j),
it is always SPD.

To combine these heterogeneous relationships, one can just
simply concatenate all matrices into a high-dimension vector.
However, considering that the relevance matrices are all sym-
metric, we proposed two methods, named Heterogeneous Order
Relevance Composition (HORC) Tensor and Kernel, to com-
bine these features more efficient as follows:

Definition 5.1. Given a set of m symmetric relevance matrices
{SSSi}m

i=1,SSSi ∈ Rd×d , the HORC Tensor HHHT is extracted as fol-
lows.

HHHT = [HHH1 . . .HHHm]
T ∈Rm×l , l = d(d +1)/2, (13)

HHH i =

{
vec(logC(SSSi)), if SSSi ∈ Sym+

d ,

vec(SSSi), otherwise.
(14)

In HORC Tensor, each column captures different order rele-
vances of a pairwise EEG channels while each row contains
a unique relationship across all pairwise channels. Thus, it
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forms a meaningful tensor, and dissimilarity between HORC
features can be performed using Tensor Discriminant Analysis.
In practice, to avoid the expensive computation when l � m,
we first reshape the HORC features into a three order tensor
Rm× d

2×(d+1) or Rm× d+1
2 ×d .

Definition 5.2. Given a set of m symmetric relevance matrices
{SSSi}m

i=1,SSSi ∈Rd×d , the HORC Kernel HHHK is defined as follows.

HHHK = ∑βi jK j(γ j,Hi)

where Hi is defined in (14), K j is the Gaussian kernel with ker-
nel width γ j, and βi j is the optimal weighted of each Kernel.

The optimal βi j can be obtained from the multi-kernel Relevant
Vector Machine, which performs feature selection and fusion
simultaneously.

6. Multi Class - Multi Kernel Relevance Vector Machine

The aforementioned features can be optimally combined us-
ing the Multi-Kernel Learning approach introduced in Section
2.1. Among several kernel-based classifiers, such as Kernel
PCA, Kernel Fisher Discrimination Analysis, and Support Vec-
tor Machine (SVM) [10], Relevant Vector Machine (RVM) is
selected due to the following advantages.

• RVM does not require a positive definite kernel. Thus, we
can use Gaussian kernel on any geodesic distances. This
is important since not all geometric distance yields SPD
Gaussian kernel as noticed by Jayasumana et. al. [49].

• The number of basis vectors1 returned from RVM is much
sparser than that of SVM. Hence, incoming data can be
classified much faster. This advantage is very meaning-
ful in practice since estimating manifold distances is much
more computationally expensive relatively to Euclidean
distance.

• RVM does not require a tuning process to avoid the over-
fitting problem2 induced in the other methods. This is crit-
ical since the size of training data in BCI applications is
often very limited thus over-fitting very likely happens.
Therefore, when using SVM, one must experimentally se-
lect the penalized parameters through a cross-validation
process. However, doing so still can not guarantee the hy-
perplane is safe to the outliers.

• RVM returns a probability of a sample belonging to a
class. Hence, the results also provide the prediction con-
fidence in contrast with true-or-false results returned from
other classifiers.

1Basis vector is called “Support Vector” in SVM and “Relevant Vector” in
RVM. These basis vectors help determine the classifier boundary.

2When a classifier performs very well in training but poorly in testing. This
is due the hyperplane overfits to the outliers in the training set.

• RVM is a multiple-class classifier, which is different from
the strategy of one-vs-all or one-vs-one voting in other bi-
nary classifiers, such as SVM.

In this paper, we use the multi class RVM (mRVM) fast version
proposed by [9, 50], and the algorithm is summarized in the
Appendix B.

7. EXPERIMENT & RESULTS

The aforementioned approaches are evaluated by using the
datasets IIa from the BCI competition IV [51]. The datasets
consist EEG signals from nine subjects, each was asked to per-
form four different motor imagery tasks: Left hand, right hand,
tongue and foot. The EEG signals are recorded and sampled
at the rate of 250 Hz using 22 electrodes. The experiment was
conducted in two days, and 288 trials were recorded in each
day. Each trial contained 7.5 s long samples, in which the trig-
ger cue was shown in the period of [2− 3.25] s. The subjects
was asked to perform corresponding motor imagery after the
cue and maintain for 3 s.

The same preprocessing steps with [6] are applied. Specifi-
cally, the signals are first bandpass filtered in [8−30] Hz using
5-order Butterworth filter, and the data epoch XXX is taken from
2.5s to 4.5s of the trial, which yields XXX ∈RNc×Ts ,Nc = 22,Ts =
500. Missing values (denoted as NaN in the dataset) are re-
placed by its neighbor values, and any trial with more than 20
missing values are excluded. No EOG correction is performed.

In the following experiments, each reported result is an av-
erage over fifteen fold trials. In each trial, the whole dataset
is randomly participated into two sets: a haft for training
and a haft for testing. For each participant, mRVM is run
three times to avoid the problem of falling into local maxima,
and the highest result is reported for each trial. For Gaus-
sian kernel exp(−γd2(xxxi,xxx j)), we use multiple kernel widths
γ ∈ [10−3,0.1] with 3 to 5 different values depending on the
distance, and the optimal combination of the parameters are se-
lected by mRVM algorithms.

In the first experiment, we evaluate the performance of each
metric described in Section 4.1 using the mRVM classifier with
the full dimension covariance matrix COV ∈ Sym+

D=22. The
result accuracy is reported in Table 4. As seen from the av-
eraged accuracy across subjects, the performance of the met-
rics are quite similar. The Log Euclidean distance performs
worst (e.g. 62%) as expected due to the unjustified usage of the
Identity matrix as the reference point. In contrast, the Tangent
Space distance, which is the Log Euclidean distance using the
Geometric Mean as the reference point, yields similar results
with Kullback-Leiber, Log Det and Von Neumann distance (e.g.
66%). The Tangent Space distance has a disadvantage since its
performance depends on a suitable reference point, which may
not work well for a scattering dataset or if the data is shifted
over time. In contrast, other distances can be computed directly
regardless the data point distribution.

To evaluate the computational cost, the algorithms depend
on three main steps: (1) build the kernel for training dataset
KKKT ∈ RRR288×288 using one of the mentioned distance and kernel
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TS + Gauss TS + dot Prod. LE + Gauss LE + dot Prod LD + Gauss KL + Gauss VN + Gauss

Subject 1 77.2±3.8 76.3±2.0 77.1±1.3 76.7±1.7 78.5±2.8 79.2±2.3 79.2±1.3

Subject 2 49.6±2.5 50.0±1.9 46.7±2.9 49.8±2.6 49.9±2.1 49.8±2.8 51.1±2.1

Subject 3 83.6±1.1 83.2±2.2 77.7±1.7 80.8±1.3 84.0±0.6 83.6±1.9 83.7±1.5

Subject 4 57.1±2.8 56.6±2.9 53.7±3.5 55.8±2.3 56.1±1.3 57.5±2.1 54.2±2.2

Subject 5 39.4±2.9 39.4±2.5 35.3±1.5 34.2±1.9 40.3±1.7 39.2±4.3 38.4±2.9

Subject 6 44.6±2.3 40.0±2.6 37.5±2.1 39.9±3.7 44.7±2.3 43.1±4.4 42.0±2.7

Subject 7 78.3±1.9 77.6±1.5 72.3±1.8 75.9±1.8 77.7±2.4 76.6±2.7 78.7±1.6

Subject 8 81.9±1.6 81.3±2.2 77.7±1.7 79.9±1.4 81.4±2.5 81.3±1.6 82.6±1.7

Subject 9 83.2±1.3 82.0±2.5 80.3±1.8 81.3±1.7 84.0±1.2 84.1±1.6 84.1±1.7

Average 66.0±2.3 65.2±2.3 62.0±2.0 63.8±2.0 66.3±1.9 66.0±2.6 66.0±2.0

Table 4: Mean and Standard Deviation of the classification accuracy (%) using COV ∈ Sym+
D=22 for different metrics: Tangent Space (TS), Log Euclidean (LE),

Log Det (LD), Kullback-Leiber (KL) and Von Neumann (VN) and kernels: Gaussian (Gauss) or Dot Product (dot Prod.). The highest and lowest accuracy are
marked as bold and italics.

Average TS TS LE LE LD KL VN TS -SVM

+ Gauss + dot Prod. + Gauss + dot Prod + Gauss + Gauss + Gauss + Gauss

Kernel KKKT (s) 1.11 1.1 0.03 0.026 2.49 2.52 2.68 1.11

Train Classifier(s) 14.1 12.14 16.21 13.34 13.68 10.33 14.31 34.86

Number of RVs 13.3 14.52 16.98 15.7 13.5 14.2 16.2 613.1

Predict (s) 0.004 0.003 0.006 0.003 2.70 2.74 3.44 0.023

Total (s) 15.21 13.24 16.24 13.37 18.87 15.59 20.43 35.99

Table 5: Averaged computing times (s) for constructing Kernel KKKT ∈ RRR288×288 of the 288 training trials data, training RVM classifer and predicting labels for the
288 testing trials data. Number RVs is the average number of Relevant Vectors or Support Vectors selected from 288 training trials

S1 S2 S3 S4 S5 S6 S7 S8 S9

81.5±1.9 44.8±10.3 84.5±1.3 59.1±2.9 42.2±2.9 52.1±2.3 75.9±2.3 83.1±1.9 84.4±1.4

Table 6: Mean and Standard Deviation of the classification accuracy using Tangent Space features and Support Vector Machine with Gaussian Kernel

type, (2) train the RVM classifier to extract the Relevant Vec-
tors and their weights, (3) predict labels for the testing dataset.
Table 5 shows the averaged computational time of the men-
tioned steps, and the averaged number of Relevant Vectors for
one cross-validation partition. The test is conducted on a Com-
puter with i7-3930 3.2Ghz, 16G RAM. The Log-Euclidean is
the fastest since we only need to map the Covariance to the Eu-
clidean space once, and hence can be precomputed efficiently.
The Tangent Space distance is slower since it depends on the
reference point, which needs to be recomputed for each dataset.
The Kullback-Leiber, Log Det and Von Neumann are more
computationally expensive. Hence, the time to construct Kernel
and predict the labels is significantly longer.

The classification performance of the mRVM is illustrated in
Fig 2. The top four sub-figures show the probability of a test
sample belongs to each class, and the bottom shows the clas-
sification results based on the maximum probability. The test

samples are grouped from class 1 to class 4 for readability pur-
pose. It can be seen that classification for Right Hand and Left
Hand is almost perfect, as their probability is approximately
at 100% confidence. The classification of tongue and foot is
less consistent, and the misclassification often happens when
the highest probability is just above 50%. This is important
for robotics BCI application as we can neglect a BCI command
if its highest probability is less than a certain threshold value.
Furthermore, this prediction probability can also serve as the
feedback to user.

We also compare the performance of RVM with SVM clas-
sifier. Note that, among the considered metrics, only the Log-
Euclidean or Tangent Space distance can yield a positive def-
inite Gaussian Kernel for all kernel width γ > 0 [49]. Thus,
in this test, only these two metrics can be used with SVM. In
our implementation, for each partitioned training dataset, SVM
classifier is trained by 10-fold cross validation, and the optimal
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Figure 2: Classification Motor Imagery Task results and the corresponding confidence of Subject 3.

box-constraint C and kernel width γ are tuned by the Matlab’s
Bayesian Optimization function bayesopt [52]. The bound val-
ues are set to C = [10−5,105], γ = [10−5,105], and the Mat-
lab function fitcecoc is used to train multiple-class SVM. Since
there are n = 4 classes, we need to train total n(n− 1)/2 = 6
binary one-vs-one classifiers. The last column of Table 5 shows
the computation time and the number of Support Vectors (SVs),
which are significantly larger than that of RVM, due to the a
large number of binary classifiers combination and the cross-
validation process to find the optimal parameters. Note that,
while the training set only has 288 data points, SVM needs to-
tal 613 points (212%), many of which are redundant, to con-
struct 6 classifier boundaries for 4 classes. In contrast, RVM
only requires 14 points (5%) in average, which is very sparse.

In this test, SVM provides slightly higher accuracy, as re-
ported in Table 6. The difference in the performance may due
to the selection of the kernel widths. Specifically, while we
implement the Bayesian Optimization function to tune the pa-
rameters for SVM in each training dataset, RVM only performs
kernels fusion using a set of fixed kernel widths. However, no-
tice that RVM does not suffer the over-fitting problem, while
SVM relies mainly on tuning the box-constraint parameter C.
This can be seen in Subject 2, where the over-fitting in SVM
still happens in several cross-validation partition, as the mini-
mal accuracy drops to 25.7%, i.e. close to the chance level.

In the second experiment, we evaluate the performance of
Discriminant Analysis methods for each manifold distance
(MDA) described in Section 4.2.3 3. The manifold dimension

3We modified the source code published in [39] for our implementation.

is reduced to Sym+
d=12 for Log Euclidean, Log Det and Von

Neumann distance, and Sym+
d=16 for Kullback-Leibler distance.

The within and between weighted matrices WWW (w)
i, j and WWW (b)

i, j are
constructed using Local Scaling method with k = 7, and the ra-
tional cost function is used. The results in terms of accuracy
are reported in Table 7. In general, MDA not only reduces the
dimension of the manifold but also improves the accuracy by
2−5%. For Tangent Space distance, we apply two techniques:
the shrinkage LDA ([53, 54]) on Euclidean space and the MDA
on SPD. In this test, we found that the Tangent Vector combined
with Shrinkage LDA yields the highest performance by boost-
ing the accuracy approximately 5% comparing with that of the
original dimension. The other MDA algorithms increases the
accuracy by 2% in most subjects. However, we also observe
that MDA occasionally does not improve or even decrease the
accuracy such as the case of Subjects 5 and 9. The reason is that
shrinkage LDA uses regularized Covariance while MDA does
not. Hence, MDA is sensitive to the outliers.

The computational cost of the Discriminant Analysis algo-
rithm depends on the four main steps: (1) reduce the dimen-
sion of the manifold from Sym+

22 to Sym+
d<22 using one of the

mentioned distance, (2) building the kernel for training dataset
KKKT ∈ RRR288×288 using the same distance, (2) train the RVM clas-
sifier to extract the Relevant Vectors and their weights, (3) pre-
dict labels for the testing dataset. Table 8 shows the averaged
computational time of the mentioned steps, and the averaged
number of Relevant Vectors for one cross-validation partition.

mRVM can also perform optimal feature fusion using mul-
tiple kernels framework. To illustrate this idea, we combine
two kinds of distance: the Tangent Space LDA and Log Det or
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vec(TS) vec(LE) TS LD KL VN vec(TS) + LD/KL

Subject 1 80.4±1.7 80.0±2.1 80.2±2.1 80.1±2.1 81.8±2.1 82.3±2.3 81.6±1.6

Subject 2 47.6±2.3 47.8±1.9 51.3±2.8 51.5±2.3 50.7±1.8 51.6±1.5 50.6±1.7

Subject 3 88.4±1.4 84.8±1.0 83.9±1.0 86.9±1.2 86.5±1.5 85.6±1.4 88.1±1.5

Subject 4 62.1±3.5 60.1±2.2 58.3±2.0 59.3±1.6 57.2±2.0 56.2±2.6 62.1±2.5

Subject 5 43.2±2.9 40.9±2.0 39.2±2.7 39.9±1.7 36.9±2.0 38.9±2.1 43.9±1.8

Subject 6 53.3±2.4 49.3±2.1 50.1±2.2 51.4±1.3 48.9±1.3 45.0±1.5 53.1±2.7

Subject 7 77.9±1.8 76.2±2.0 80.4±2.4 80.6±2.1 81.8±1.9 81.0±2.2 79.2±2.0

Subject 8 85.5±1.6 82.3±1.6 83.9±1.8 82.9±1.8 84.3±1.5 83.1±1.6 85.3±1.3

Subject 9 86.7±1.4 83.6±2.1 82.4±1.7 82.7±0.8 83.0±1.9 83.3±2.0 86.9±1.4

Average 69.5±2.0 67.2±1.9 67.7±2.1 68.4±1.7 67.9±1.8 67.4±1.9 70.1±1.8

Table 7: Mean and Standard Deviation of the classification accuracy using COV ∈ Sym+
d<22 for different metrics: vectorized Tangent Space (vec(TS)), vectorized

Log Euclidean (vec(LE)), Tangent Space (TS), Log Det (LD), Kullback-Leiber (KL) and Von Neumann (VN) using Gaussian kernel. The highest accuracy are
marked as bold.

Average vec(TS) vec(LE) TS LD KL VN

Dim. Reduce (s) 2.05 0.94 98.29 219.62 226.35 176.43

Kernel KKKT (s) 0.03 0.026 0.18 1.62 1.56 1.69

Train RVM (s) 10.18 6.09 11.56 10.66 9.43 9.01

Num. RVs 7.48 9.7 12.4 11.9 11.4 13.7

Predict (s) 0.002 0.004 0.19 1.7 1.66 2.08

Total 12.26 7.06 110.22 233.6 239.0 189.21

Table 8: Averaged computing times (s) for constructing Kernel KKKT ∈ RRR288×288 of the 288 training trials data,
training RVM classifer and predicting labels for the 288 testing trials data. Num. RVs is the average number of
Relevant Vector selected from 288 training trials.

Kernel Average

Poly 66.0±1.9

Gauss 69.4±1.9

R.Quad 68.4±1.7

M.I 58.9±2.1

HORCT 68.5±2.1

HORCK 70.3±1.6

Table 9: Averaged accuracy across
subjects using different Relevant Matrix
Types.

Kernel S1 S2 S3 S4 S5 S6 S7 S8 S9

Poly 78.5±1.5 45.8±1.4 84.9±1.5 60.8±1.8 40.9±1.8 41.2±3.1 76.0±2.6 80.1±2.2 85.7±1.5

Gauss 81.7±2.1 49.9±2.2 86.3±1.0 62.1±1.7 42.1±3.2 54.5±2.2 78.2±1.0 84.4±2.0 85.3±1.9

R.Quad 80.5±1.8 50.0±1.9 87.2±1.1 61.2±2.1 43.2±1.3 53.6±2.5 76.9±2.0 81.0±1.0 82.4±1.8

M.I 72.2±1.7 40.0±2.0 75.7±1.0 49.2±2.8 32.6±2.0 43.1±2.9 63.5±1.6 75.7±2.0 78.1±2.8

HORCT 79.5±1.8 48.6±2.4 86.1±1.8 60.2±2.6 41.2±3.6 52.7±1.6 77.4±2.1 84.5±1.5 85.8±1.3

HORCK 81.7±2.1 49.6±1.5 87.8±1.6 62.1±3.0 42.6±1.2 55.4±1.9 80.6±1.1 85.8±1.2 86.9±0.8

Table 10: Mean and Standard Deviation of the classification accuracy using different Kernel forms in place of Covariance matrix with Tangent Space vector
distance.

Kullback Leibler coupled with MDA. Note that although they
use the same covariance matrix, the two features lie in different
spaces and represent different perspectives: manifold geodesics
and informative geometry. The result is reported in the second
last column in Table 7. It can be seen that the combination
approach yields equal or better accuracy relatively to each indi-
vidual method.

For the HORC feature, we first investigate the performance
of each indidual component. For Polynominal kernel KP, we
select a = 1,d = 2. For Gaussian Kernel KG, we use the ker-
nel width γ = 10−4. For Rational Quadratic Kernel KQ, we set
γ = 10−4,d = 2. For Mutual Information (MI) kernel, we use
Shannon Entropy function with 8 neighbor hood. In this exper-
iment, we do not incorporate frequency information since the
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Figure 3: Compare the Cohence’s Kappa values between methods: 1.TS+Gauss, 2.TS +dot Prod., 3.LE + Gauss, 4.LE +dot Prod., 5.LD + Gauss, 6.Kullback +
Gauss, 7.VN + Gauss, 8.Vec(TS) + Gauss, 9.vec(LE) + Gauss, 10.TS + Gauss, 11.LD + Gauss, 12.KL + Gauss, 13.VN + Gauss, 14.vec(TS) +KL/LD, 15. HORC
Tensor, 16. HORC Kernel. The highest and lowest values are specified in each plot.

bandwidth of motor imagery is quite consistent and well de-
scribed by α (8-12Hz) and β (15-25Hz) bands. As shown in
Table 9 and Table 10, the prediction accuracy when using these
kernels as the feature descriptors are quite equivalent, except
for the MI kernel. However, MI kernel’s performance is still
significantly above the chance level.

The last two rows of Table 10 shows the performance of the
HORC descriptor, which combines the covariance matrix COV ,
Gaussian kernel KKKG, Rational Quadratic Kernels KKKQ and Mu-
tual Information kernel KMI . These kernels are selected since
they represent different order relevances, such as linear, nonlin-
ear and statistic relationship. For Tensor discrimination analy-
sis, we use Tensor HODA algorithm [7]. As illustrated in Table
9 and Table 10, the HORC feature yields equal or better perfor-
mance than each single component. The HORC kernel yields
higher accuracy than the HORC Tensor. This is because Ten-

sor Discrimination Analysis only performs linear combination
of the features. In contrast, mRVM is a sparse kernel learning
that tends to suppress the less discriminative features before fu-
sion, as we observe that the average kernel weights for COV ,
Gauss, Rational Quadratic and Mutual Info are 0.02,0.65,0.33
and 0.0, respectively.

Finally, Fig 3 summarizes the Cohen’s Kappa values, with
the maximum and minimum indication of the mentioned meth-
ods for each subject. The Kappa value is defined as

κ =
Pa−Pc

1−Pc
,

where Pa is the prediction accuracy and Pc is the chance level,
i.e. 25% for 4 classes. Based on the Kappa values, we can see
that all the prediction are significantly above the chance level.
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8. CONCLUSION

In this paper, we revise the classical EEG features under the
perspective of Riemannian Manifold and Tensor. An empirical
study to investigate different dissimilarity metrics for covari-
ance matrix, a special class of Riemannian Manifold, is con-
ducted. Specifically, we compare the performance of Tangent
Space, Log Euclidean, Log Det divergence, Kullback-Leibler
and Von Neumann distance based on the accuracy of classify-
ing four different Motor Imagery tasks. Furthermore, Common
Spatial Pattern is generalized to the Discriminant Analysis in
the Riemannian Manifold using different geometric distances.
We also extend the Covariance matrix in the original space to
the Kernel matrices, which capture different order relevance
of the features in the Hilbert space. Two ways of combining
these different Relevance matrices, named Heterogeneous Or-
ders Relevance Composition (HORC) Tensor and Kernel, are
also examined. The multi-class multi-kernels Relevance Vector
Machines is promoted for classification since it offers several
unique advantages. Based on Baysian Optimizing Principle,
mRVM is a sparse classifier that avoids over-fitting problem
and provides the prediction probability for multiple-class in a
natural way. Especially, its kernel is not restricted by the Mer-
cer condition, thus allows us to use any distance metrics on the
Riemannian Manifold for any radial basic function kernel, such
as the Gaussian kernel. Finally, a thorough study has been con-
ducted to evaluate the performance of total sixteen techniques.
Our future work will be combining reinforcement learning tech-
niques with mRVM to perform online learning BCI based on
the HORC features.

Appendix A. Proof for Jacobian of Manifold Distance

Appendix A.1. Log Euclid distance
The nonlinear mapping (9) forms a Lie group as there exists

the multiplication and inverse operation in the projected space

YYY i�YYY j = exp(log(YYY i)+ log(YYY j)) = exp(VVV T(X̄XX i + X̄XX j))VVV ),

YYY−1 = exp(− log(YYY )) = exp(−VVV TX̄XXVVV ),

where X̄XX = log(XXX)). Since XXX and YYY are SPD, YYY i�YYY j and YYY−1

are also SPD, which concludes the proof.
The Jacobian of d2

LE(YYY i,YYY j) w.r.t VVV is given as

∂d2
LE(YYY i,YYY j)

∂VVV
=

∂ tr(VVV T(X̄XX i− X̄XX j)VVVVVV T(X̄XX i− X̄XX j)VVV )

∂VVV
= 4(X̄XX i− X̄XX j)VVVVVV T(X̄XX i− X̄XX j)VVV .

Appendix A.2. Log Det distance
It follows Eq.(17) in [39] and the definition in Table 3 that

the Jacobian of d2
LE(X̂XX ,ŶYY ) w.r.t VVV can be obtained as

∂d2
LD(X̂XX ,ŶYY )

∂VVV
=−XXXWWWX̂XX

−1−YYYWWWŶYY
−1

+2(XXX +YYY )WWW (X̂XX + ŶYY )−1

= (2(XXX+YYY )WWW −XXXWWWX̂XX
−1
(X̂XX+ŶYY )−YYYWWWŶYY

−1
(X̂XX+ŶYY ))(X̂XX+ŶYY )−1

= (XXXWWW (1− X̂XX
−1

ŶYY )+YYYWWW (1− ŶYY
−1

X̂XX))(X̂XX + ŶYY )−1

= (XXXWWWX̂XX
−1−YYYWWWŶYY

−1
)(X̂XX− ŶYY ))(X̂XX + ŶYY )−1.

Appendix A.3. Kullback Leibler distance

It follows Eq.(19) in [39] and the definition in Table 3 that
the Jacobian of d2

KL(X̂XX ,ŶYY ) w.r.t VVV can be obtained as

∂d2
KL(X̂XX ,ŶYY )

∂VVV
= XXXWWW (ŶYY

−1−X̂XX
−1

ŶYY X̂XX
−1
)+YYYWWW (X̂XX

−1−ŶYY
−1

X̂XXŶYY
−1
)

= XXXWWWX̂XX
−1
(X̂XXŶYY

−1− ŶYY X̂XX
−1
)+YYYWWWŶYY

−1
(ŶYY X̂XX

−1− X̂XXŶYY
−1
)

= (XXXWWWX̂XX
−1−YYYWWWŶYY

−1
)(X̂XXŶYY

−1− ŶYY X̂XX
−1
).

Appendix A.4. Von Neumann distance

Since there is no close form to compute ∂ log(VVV TXXXVVV )
∂VVV , we uti-

lize the trick in Lemma 6 [39], log(VVV TXXXVVV ) ≈ VVV T log(XXX)VVV , to
approximate the Jacobian of d2

V N(X̂XX ,ŶYY ) w.r.t VVV as

∂d2
V N(X̂XX ,ŶYY )

∂VVV
=

∂ tr(VVV T(XXX i−XXX j)VVVVVV T(X̄XX i− X̄XX j)VVV )

∂VVV
=

∆+∆T

2
,

where ∆ = 2(XXX−YYY )VVVVVV T(log(XXX)− log(YYY ))VVV .

Appendix B. Summary of multi-class Relevant Vector Ma-
chine [9]

Let XXX = {xxxi}N
i=1 be a training set of N observations, each

sample xxxi has m features {xxx( j)
i ∈ X j}m

j=1 in its feature space
X j and a corresponding label li ∈ {1, . . . ,C}, where C > 1 is
the number of classes.

According to (3) and (4), we aim to build a model consist-
ing of a multi-class hyperplane WWW ∈ RN×C and a multi-kernel
weighted vector βββ ∈Rm written as




y1
...

yC




︸ ︷︷ ︸
yyy(xxx)∈RC

=




w11. . .w1N
...

...
...

wC1. . .wCN




︸ ︷︷ ︸
WWW T∈RC×(N)




k1(xxx1,xxx). . .km(xxx1,xxx)
...

...
...

k1(xxxN ,xxx). . .km(xxxN ,xxx)




︸ ︷︷ ︸
KKK(x)∈R(N)×m




β1
...

βm




︸ ︷︷ ︸
β∈Rm

where each element KKKi j(xxx) is the kernel function evaluated at

the training sample xxxi using the feature xxx( j)
i and kernel function

k j(·, ·). yyy(xxx) =WWW TKKK(xxx)βββ is the response of the model to a data
sample xxx. For a training sample xxxi ∈ XXX , the response is

yyy(xxxi) = [y1 . . .yc . . .yC]
T, yc =

{ 1 if l(xi) = c,
0 otherwise.

and for a new sample xxx, its label can be predicted as

l(xxx) = c, if yyyc(xxx)> yyy j(xxx) ∀ j 6= c. (B.1)

mRVM finds the optimal parameter WWW and βββ using the
Bayesian rule with the following probabilistic constraints.

First, the true label ti = l(xi) is assumed to be the measure
of the prediction y(x) corrupted by a standardized normal noise
ε ∼N (0,1), i.e l(xxx) = y(xxx)+ ε , or

P(ti = c|xxxi,www
T
c ,β ) = N (wwwT

c KKK(xxxi)β ,1). (B.2)
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Second, the over-fitting problem is solved by assuming that
only a few sample in the training set are representative for its
class, while the rest is redundant and safely ignored. This casts
the sparsity on WWW , which can be modeled as

P(WWW |ααα) = N (WWW |0,ααα−1). (B.3)

Third, since some features are more important than the other,
we can set ∑m

i=1 βi = 1, βi > 0, which implies a Dirichlet distri-
bution of βββ , i.e.

P(βββ |ρρρ) = Dir(βββ |ρ j). (B.4)

Hence, the maximal magnitudes of WWW and βββ are controlled
by ααα and ρρρ , which are also enforced to follow Gamma distri-
bution, i.e.

P(αci|τci,υci) = γ(αci|τci,υci), P(ρρρ|µ,λ ) = γ(ρρρ|µ,λ ). (B.5)

The parameter Ξ = [τ,υ ,µ,λ ] can be automatically tuned as
the arguments maximizing the evidence approximation, which
is the following marginal likelihood function

P(l(XXX)|XXX ,Ξ) = P(l(XXX)|XXX ,WWW ,βββ )P(WWW |τττ,υυυ)P(βββ |µ,λ ) (B.6)

where P(WWW |τττ,υυυ) = P(WWW |ααα)P(ααα|τττ,υυυ) and P(βββ |µ,λ ) =
P(βββ |ρρρ)P(ρρρ|µ,λ ). Substituting (B.2) - (B.5) to (B.6), one
can iteratively update Ξ by following the gradient de-
scent ∂P(l(XXX)|XXX ,Ξ)/∂Ξ . For a new Ξ , one can update
the optimal parameters WWW ∗ = argmaxP(WWW |τττ,υυυ) and βββ ∗ =
argmaxP(βββ |µ,λ ). The process runs iteratively until reaching
some convergence conditions.

Finally, for a new sample xxx, its label can be predicted by (B.1)
with the confidence

P(l(xxx) = c|XXX ,WWW ∗,βββ ∗) = Eε

[
∏
i6=c

Φ(ε +(www∗c−www∗i )
TKKK(x)βββ ∗

]
,

where Eε is the expectation along the variable ε . More details
can be found in [9] 4.
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