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a b s t r a c t 

Recent years have witnessed significant advances in deep learning based object detection. Despite being 

extensively explored, most existing detectors are designed to detect objects with relatively low-quality 

prediction of locations, i.e., they are often trained with the threshold of Intersection over Union (IoU) set 

as 0.5. This can yield low-quality or even noisy detections. Designing high quality object detectors which 

have a more precise localization (e.g. IoU > 0.5) remains an open challenge. In this paper, we propose 

a novel single-shot detection framework called Bidirectional Pyramid Networks (BPN) for high-quality 

object detection. It comprises two novel components: (i) Bidirectional Feature Pyramid structure and An- 

chor Refinement (AR). The bidirectional feature pyramid structure aims to use semantic-rich deep layer 

features to enhance the quality of the shallow layer features, and simultaneously use the spatially-rich 

shallow layer features to enhance the quality of deep layer features, leading to a stronger representa- 

tion of both small and large objects for high quality detection. Our anchor refinement scheme gradually 

refines the quality of pre-designed anchors by learning multi-level regressors, giving more precise local- 

ization predictions. We performed extensive experiments on both PASCAL VOC and MSCOCO datasets, and 

achieved the best performance among all single-shot detectors. The performance was especially superior 

in the regime of high-quality detection. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Object detection is a fundamental research problem in com-

uter vision. Recent years have witnessed remarkable progress in

bject detection algorithms catalyzed by the success of powerful

eep learning techniques [1–3] . Currently, the state-of-the-art

eep learning based object detection frameworks can be gener-

lly categorized into two major groups: (i) two-stage detectors,

uch as the family of Region-based CNN (R-CNN) [2] and their

ariants [1,4] and (ii) one-stage detectors, such as SSD [5] and

ts variants [6,7] . Two-stage RCNN-based detectors first learn to

enerate a sparse set of proposals followed by training region

lassifiers, while one-stage SSD-like detectors directly make cate-

orical prediction of objects based on the predefined anchors on

he feature maps without a proposal generation step. Two-stage

etectors usually achieve better detection performance and often
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eport state-of-the-art results on benchmark data sets, while

ne-stage detectors are significantly more efficient and thus more

uitable for many real-word practical/industrial applications where

ast/real-time detection speed is of crucial importance. 

Despite being studied extensively, most existing object detec-

ors are designed for achieving localization with relatively low-

uality precision (e.g. Intersection over Union (IoU) threshold of

.5 is considered good enough). When the goal is to achieve higher

uality localization precision (IoU > 0.5), the detection perfor-

ance often drops significantly [8] . A naive solution to address this

ssue is to increase the IoU threshold when selecting positive sam-

les (e.g., from 0.5 to 0.7) during training, such that the detector is

rained on only high quality examples. Unfortunately, such a strat-

gy will lead to very few (positive) training samples, and will con-

equently lead to overfitting, especially for single-shot SSD-like de-

ectors. In addition, most object detectors aim to use the strength

f deep features for object localization. This can have adverse ef-

ects as deep features (while being semantically rich) lack detailed

nformation about the spatial location of the objects. 

In this paper, we aim to develop a novel high-quality single-

hot detector. We follow the family of single-stage SSD-like detec-
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tors, and design an approach that makes it amenable for high qual-

ity detection. We identify two critical drawbacks of SSD-like detec-

tors for learning high quality detectors: first, the single-shot fea-

ture representations may not be discriminative and robust enough

for precise localization; and second, the singe-stage detection

scheme relies on the predefined anchors which are very rigid and

often inaccurate. To overcome these drawbacks for high-quality

object detection tasks, in this paper, we propose a novel single-

shot detection framework named “Bidirectional Pyramid Networks”

(BPN). Specifically, BPN uses a novel Bidirectional Pyramid Struc-

ture, that boosts the vanilla feature pyramid [3] by reinforcing it

with a Reverse Feature Pyramid to fuse both deep and shallow

features to learn more effective and robust representations. Un-

like Feature Pyramid Network (FPN) which aims to enhance the

shallow features with semantically rich deep features, the Reverse

FPN aims to enhance the deep features with spatially rich shal-

low features, thereby improving the representation for better lo-

calization. BPN is also augmented with a novel Anchor Refinement

scheme that learns to gradually improve the quality of predefined

anchors which are often inaccurate at the beginning. Specifically,

we train the bounding box regressors at different levels of qualtiy

(IoU thresholds), and in an incremental manner, feed the bound-

ing box predictions of a specific quality into the predictions of the

next higher quality. We conducted extensive experiments on PAS-

CAL VOC and MSCOCO showed that the proposed method achieved

the state-of-the-art results for high-quality object detection while

still maintaining the advantage of computational efficiency of sin-

gle shot detectors. 

2. Related work 

Object detection has been extensively studied for decades [2,9] .

In early stages of research, object detection was based on sliding

windows, and dense image grids were encoded by hand-crafted

features, which were followed by training classifiers to find and

locate objects. Viola and Jones [9] proposed cascaded classifiers by

AdaBoost with Haar features for face detection and obtained excel-

lent performance with high efficiency. After the remarkable success

of applying Deep Convolutional Neural Networks on image classi-

fication tasks [10–12] , deep learning based approaches have been

actively explored for object detection, in particular, the region-

based convolutional neural networks (R-CNN) [2] and its variants

[1,3,4] . Currently deep learning based detectors can be generally

categorized into two groups: (i) two-stage RCNN-based methods

and (ii) one-stage SSD-based methods. RCNN-based methods, such

as RCNN [2] , Fast RCNN [4] , Faster RCNN [1] , and R-FCN [13] , first

generate a sparse set of proposals followed by region classifiers

and location regressors. Two-stage detectors usually achieve better

detection performance (than one-stage detectors) and report state-

of-the-art results on many common benchmarks. This is largely be-

cause the proposals are often carefully generated (e.g., by selective

search [14] or RPN [1] ) and the proposed regions tightly bound the

objects in the image. However, they often suffer from very slow in-

ference speed due to having two-stages to perform detection. Un-

like the two-stage RCNN-based methods, SSD-style methods (one-

stage detectors), such as SSD [5] , YOLO [15] , YOLOv2 [6] ), ignore

the proposal generation step by directly making predictions with

manually designed pre-defined anchors and thus reduce the in-

ference time significantly, enabling real-time detection. However,

these anchors are often sub-optimal and sometimes ill-designed,

and are unable to preciely match with the location of the objects

in the image. Thus, SSD-style detectors [5] often struggle in the

regime of high quality detection. 

In literature, most object detection studies have focused on de-

tection with relatively low localization quality, with a default IoU

threshold of 0.5. There are have been limited efforts for high-
uality detection. LocNet [16] learns a single postprocessing net-

ork for location refinement without changing the distribution of

ypotheses in different quality stages. Their method is only opti-

al for the initial anchor distribution, while our method learns

ulti-level anchor refinements for different quality stages. Multi-

ath Network [17] proposed to learn multiple detection branches

or different quality thresholds. However, this model suffered from

ot having sufficient training samples. Moreover, it was computa-

ionally slow by virtue of being a two-stage detectors. Cascaded

CNN [8] learned regressors in a cascaded way, which refined the

roposal predictions sequentially. However, this was also based on

wo-stage RCNN which prevented its use in real time object detec-

ion. Moreover, they consider only refining the anchor quality, and

gnore the quality of feature representation for high quality detec-

ion. 

Our work is also related to studies for multi-scale feature fu-

ion, which has proved to be an effective structure for object de-

ection with different scales. ION [18] extracted region features

rom different layers by ROI Pooling; HyperNet [19] directly con-

atenated features at different layers using deconvolution layers.

PN [3] and DSSD [20] fused features of different scales with

ateral connection in a bottom-up manner, which effectively im-

roved the detection of small objects. However, the vanilla feature

yramid [3] only considers boosting shallow layer features with

eep layer features, but does not consider that shallow layer fea-

ures could be helpful to deep semantic layer features by enriching

hem with crucial spatial information. We overcome this limitation

y the proposed Bidirectional Feature Pyramid structure, where a

everse Feature Pyramid fuses the spatial information from shal-

ow features with the deep leayer features. Moreover, none of these

ethods aim to refine the bounding box predictions, and are often

usceptible to obtaining low quality predictions. In contrast, our

nchor refinement strategy improves the model’s ability to make

igh quality predictions. 

. Single-shot high-quality object detection 

To train a detector, predefined anchors are often used. These

nchors are generated densely or sparsely across the image, and

he goal is to predict the class of object and the appropriate cor-

ections to the original anchor localization. Each anchor is assigned

o some object class label (including background) according to the

nchor’s Jaccard overlap score with ground-truth objects, a.k.a. “In-

ersection over Union” (IoU). When an anchor matches with the

bject for a given threshold, it is termed as a positive anchor. These

ositive anchors serve as ground truth for training. For objects that

o not meet this threshold with any anchor, the best anchor is as-

igned as a positive anchor during the training stage. Our aim is

o devise a new single-shot detector for high-quality object detec-

ion tasks by overcoming the drawbacks of state-of-the-art detec-

ors. We tackle this challenge from both feature representation and

nchor-refining perspectives. Existing single-shot object detectors,

eature representations may not be discriminate and robust enough

or precise localization, as they rely primarily on the deep layer

eatures which while being semantically-rich, lack spatial informa-

ion. We propose to strengthen deep layer features with spatially

ich shallow feature to improve the localization performance. Sec-

nd, for many state-of-the-art detectors, a group of anchors are of-

en generated/pre-defined on the feature maps densely or sparsely,

ollowed by location regression and object classification prediction.

ue to the scale variance of the objects, and several downsampling

teps from the original image, the manually designed anchors will

ften not be able to find a good match with the ground truth ob-

ect locations. This issue becomes more prominent when we aim

o train high-quality detectors with a high IoU threshold (e.g., 0.7)

ince the number of positive anchors would decrease significantly
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Fig. 1. The proposed framework of Bidirectional Pyramid Networks (BPN) for single-shot high-quality detection. FP denotes Feature Pyramid building block, and rFP denotes 

the Reverse Feature Pyramid building block. Bidirectional Feature Pyramid block generates more robust and discriminative feature map and the Anchor Refinement ( AR ) is 

utilized for relocating anchors, each level of which is responsible for a certain quality of detection. Training sample quality improves as the Anchor Refinement progresses 

(with higher IoU). 
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s IoU increases. This would consequently result in poor detection

erformance due to overfitting. Thus, we propose a novel anchor

efinement procedure to improve the localization prediction. 

.1. Framework of bidirectional pyramid networks 

We propose a novel framework called Bidirectional Pyramid

etworks (BPN) to overcome the above drawbacks of SSD-style de-

ectors, with the aim of developing a high-quality object detector.

o address the weak feature representation issue of SSD-style de-

ectors, we adapt the structure Feature Pyramid Networks (FPN)

3] and develop a novel Bidirectional Feature Pyramid structure

hat significantly boosts the effectiveness of Feature Pyramid(FP)

tructure. To address the issue of anchor quality, the key idea is to

evise an effective yet efficient multi-level learning scheme to re-

ne the quality of the anchors. We have classifiers and regressors

t multiple levels, and for each level we train the classifier and

egressor to refine anchors, before training the classifiers and re-

ressors in the next level. Fig. 1 gives an overview of the proposed

ingle-shot Bidirectional Pyramid Networks (BPN) for high-quality

bject detection, where the backbone network (as shown in the

lue branch of Fig. 1 ) can be any CNN network, such as Alexnet

12] , GoogleNet [21] , VGG [11] , ResNet [10] , etc. For simplicity, we

hoose VGG-16 and ResNet-101 as backbone networks. 

Similar to typical single-shot detectors, at the lowest quality

evel with the default IoU = 0.5, the proposed BPN detector makes

he prediction based on the predefined anchors. Then, the fea-

ures are further enhanced by the Bidirectional Feature Pyramid

hich aggregates features from different depths. It consists of stan-

ard feature pyramids in a bottom-up fashion (the purple branch

f Fig. 1 ) and reverse feature pyramid in a top-down fashion (the

reen branch of Fig. 1 ). These three-level branches not only aggre-

ate multi-level features to provide robust feature representations,

ut also enable multi-quality training. For the joint training with

ultiple quality levels, the Anchor Refinement scheme with multi-

evel learning optimizes anchors from the previous level/branch

nd sends them to the next level/branch. 

The above two key components, Bidirectional Feature Pyramid

nd Anchor Refinement, are seamlessly integrated in the proposed
ramework and can be trained end-to-end to achieve high-quality

etection in a synergic manner. In the following, we present the

etailed functioning of these components. 

.2. Bidirectional feature pyramid structure 

We denote the index of feature maps for prediction as L , where

 ∈ {1, 2, 3, 4} in our setting, and the levels of quality Q ∈
 

1 , 2 , 3 , . . . } with the corresponding IoU thresholds as IoU (Q ) ∈
 

0 . 5 , 0 . 6 , 0 . 7 , . . . } . The feature map in depth L for quality Q predic-

ion is denoted as F Q 
L 

, and anchors for training quality Q detector

n depth L are denoted as A 

Q 
L 

. Specifically for this work, we choose

hree types of detectors with different quality levels: Low, Mid and

igh with the corresponding IoU threshold as 0.5, 0.6 and 0.7, re-

pectively (See Fig. 1 for details). 

In order to improve the power of feature representation of SSD-

tyle detectors, we apply Feature Pyramids (FP) [3] , which ex-

loits the inherent multi-scale and pyramidal hierarchy of deep

onvolutional networks to construct the representation of feature

yramids. Specifically, FPN fuses semantically-strong deep layer

eatures with shallow features which are semantically-weak but

patially-strong. The idea is to strengthen the features by help-

ng them with stronger semantic information. We propose to aug-

ent this structure via a reverse Feature Pyramid (rFP), where

he deep features are strengthened by the spatially strong shallow

eatures. 

Reverse Feature Pyramid has several strengths. First, the deep

eature representations are enhanced to for better localization of

arge objects in the high quality scenario; second, compared to

tacked CNN for image classification, rFP reduces the distance

rom shallow features to deep features by using much fewer con-

olution filters and thus more effectively preserves spatial in-

ormation. Finally, the lateral connections reuse different shallow

ayer features to reduce information attenuation from shallow fea-

ures to deep features. We demonstrate this concept in Fig. 2 .

pecifically, Fig. 2 (a) is the vanilla Feature Pyramid building block

hat fuses features in a bottom-up manner with lateral connec-

ions. It is worth noting that there is no strengthening of the
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Fig. 2. Proposed bidirectional feature pyramid structure. 
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deepest feature layer from the Feature Pyramid (the right dia-

gram of Fig. 1 ). Thus, we further build the Reverse Feature Pyra-

mid by top-down aggregation (as shown in Fig. 2 (b)) with lat-

eral connections to enhance deep layer features with rich spatial

information. 

The formulations of Feature Pyramid (FP) and reverse Feature

Pyramid (rFP) can be represented as: 

FP : F Q 
L 

= Deconv s 2 (F Q 
L +1 

) � Conv (F Q−1 
L 

) (1)

rFP : F Q 
L 

= Conv s 2 (F Q 
L −1 

) � Conv (F Q−1 
L 

) (2)

where Deconv s 2 denotes the deconvolution operation for feature

map up-sampling with stride 2 and Conv denotes convolution op-

eration. � denotes element-wise summation. In this paper, we use

3 × 3 convolution kernels with 256 channels to build the Feature

Pyramid and Reverse Feature Pyramid in our BPN detector. 

3.3. Anchor refinement 

In order to both increase the number of positive anchors during

training and improve their quality, we propose the Anchor Refine-

ment (“AR”). We denote the anchors used at quality Q , depth L as

AR 

Q 
L 

. In particular, AR has two parts: location regressor Reg Q 
L 

and

a categorical classifier Cls Q 
L 

. At each level of quality, regressors re-

ceive the processed anchors from the previous level of quality for

further optimization ( A 

1 
L is the set of manually defined anchor): 

A 

Q 
L 

= Reg Q (A 

Q−1 
L 

; F Q 
L 

) , Q = 2 , 3 , . . . , L = 1 , 2 , . . . (3)

A set of offsets is learned from the regressors to adjust the location

of the predicted bounding boxes. Different from vanilla SSD, these

bounding boxes are conditioned on the refined anchors and are be

used as new anchors in next stage. 

Categorical classifiers learn to predict categorical confidence

scores and assign them to these anchors: 

 

Q 
L 

= Cls Q (F Q 
L 

) , Q = 1 , 2 , 3 . . . , L = 1 , 2 , . . . (4)

Thus, the training loss at quality level Q can be written as: 

� Q = 

1 

N Q 

∗
∑ 

L 

∑ 

i 

(
� 

Q 
Cls 

({ C Q 
L i 
} , { t L i } ) 

+ λ ∗ � 
Q 
Reg 

({ A 

Q 
L i 
} , { g L i } ) 

)
(5)
here N Q is the positive sample number at quality level Q, L i is

he index of anchor in depth L feature map within a mini-batch,

 L i 
is the ground truth class label of anchor L i , g L i is the ground

ruth location and size of anchor L i , λ is the balance weighting pa-

ameter which is simply set to 1 in our settings. L Q 
Cls 

(. ) is softmax

oss function over multiple classes confidences and L Q 
Reg 

(. ) is the

mooth L1-loss which is also used in [5] . The total training loss is

he summation of losses at all the quality levels: 

 BPN = 

∑ 

Q 

� Q (6)

.4. Implementation details 

CNN backbone architecture: We choose VGG16 [11] and ResNet-

01 [10] pre-trained on ImageNet as the backbone networks in

ur experiments. For VGG16, we follow [5] to transform the last

wo fully-connected layers “fc6” and “fc7” to convolutional lay-

rs “conv_fc6” and “conv_fc7” via reducing parameters. To increase

eceptive fields and capture large objects, we attached two addi-

ional convolution layers after the VGG16 (denoted as conv6_1 and

onv6_2). Due to different scale norm in different feature maps,

e re-scale the norms of the first two feature blocks to 10 and

 respectively. For ResNet-101, we added one extra residual block

res6” at the end of the network. 

Data augmentation: We adopt the augmentation strategies in

5] to make the detectors robust to objects with the changes in

cale and color. Specifically, images are randomly expanded or

ropped with additional photometric distortion to generate addi-

ional training samples. 

Feature blocks for prediction: In order to detect objects at differ-

nt scales, we use multiple feature maps for prediction. The vanilla

onvolution feature blocks in backbone are used for low-quality

etection, feature pyramid blocks are used for mid-quality detec-

ion, and the reverse feature pyramid blocks are used for high-

uality detection. We use four feature blocks with stride 8, 16, 32

nd 64 pixels in training each quality detector. In VGG16, conv4_3,

onv5_3, conv_fc7, conv6_2 and their corresponding feature pyra-

id blocks FP3, FP4, FP5 and FP6, and reverse feature pyramid

locks rFP3, rFP4, rFP5 and rFP6 are used, while in ResNet-101,

es3b3, res4b22, res5c, res6 and their corresponding feature pyra-

id blocks and reverse feature pyramid blocks are used. 
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Table 1 

Detection results on PASCAL VOC dataset. All the methods were trained on VOC2007 and VOC2012 trainval sets and tested on VOC2007 

test set. 

Method Backbone Input size FPS mAP (%) 

IoU@0.5 IoU@0.6 IoU@0.7 

Two-stage Detectors: 

Fast R-CNN [4] VGG-16 ~ 1000 × 600 0.5 70.0 62.4 49.4 

Faster R-CNN [1] VGG-16 ~ 1000 × 600 7 73.2 67.7 54.4 

OHEM [23] VGG-16 ~ 1000 × 600 7 74.6 68.9 55.9 

HyperNet [19] VGG-16 ~ 1000 × 600 0.88 76.3 - - 

Faster R-CNN [10] ResNet-101 ~ 1000 × 600 2.4 76.4 69.5 57.3 

ION [18] VGG-16 ~ 1000 × 600 1.25 76.5 - - 

LocNet [16] VGG-16 ~ 1000 × 600 - 77.5 - 64.5 

R-FCN [13] ResNet-101 ~ 1000 × 600 9 80.5 73.2 61.8 

R-FCN Cascade [8] ResNet-101 ~ 1000 × 600 7 81.0 75.8 66.7 

CoupleNet [24] ResNet-101 ~ 1000 × 600 8.2 81.7 76.6 66.8 

One-stage Detectors: 

RON384 [25] VGG-16 384 × 384 15 75.4 66.8 54.2 

SSD300 [5] VGG-16 300 × 300 46 77.3 72.3 61.3 

DSOD300 [26] DS/64-192-48-1 300 × 300 17.4 77.7 73.4 63.6 

YOLOv2 [6] Darknet-19 544 × 544 40 78.6 69.1 56.5 

SSD512 [5] VGG-16 512 × 512 19 79.8 74.7 64.0 

RefineDet320 [7] VGG-16 320 × 320 40.3 80.0 74.2 63.6 

RefineDet512 [7] VGG-16 512 × 512 24.1 81.8 76.9 66.0 

RFBNet300 [27] VGG-16 300 × 300 83.0 80.7 75.5 65.5 

RFBNet512 [27] VGG-16 512 × 512 38.0 82.2 - - 

BPN320(ours) VGG-16 320 × 320 32.4 80.3 75.5 66.1 

BPN512(ours) VGG-16 512 × 512 18.9 82.2 77.6 68.3 
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Anchor design: Originally a group of anchors are pre-designed

anually. For each prediction feature block, one scale-specific set

f anchors with three aspect ratios isssociated. In our approach, we

et the scale of anchors as 4 times that of the feature map stride

nd set the aspect ratios as 0.5, 1.0 and 2.0 to cover different scales

f objects. We first match each object to the anchor box with the

est overlap score, and then match the anchor boxes to any ground

ruth with overlap higher than the quality thresholds. 

Optimization: We use “Xavier” method in [22] to randomly ini-

ialize the parameters in extra added layers in VGG16 and ResNet-

01. We set the mini-batch size as 32 in training and the whole

etwork is optimized via the SGD optimizer (momentum = 0.9,

eight decay = 0.005, and initial learning rate = 0.001). The training

trategy varies a bit for different datasets. For PASCAL VOC dataset,

he models are completely finetuned for 120k iterations and we

ecrease the learning rate to 10 −4 and 10 −5 after 80k and 100k

terations, respectively. For MSCOCO, the models are finetuned for

00k iterations and we decrease the learning rate to 10 −4 and 10 −5 

fter 280k and 360k iterations, respectively. All the detectors were

rained and optimized end-to-end. 

Sampling strategy: The ratio of positive and negative anchors are

mbalanced after the anchor matching step, so proper sampling

trategy is necessary to address this imbalance. We sample a sub-

et of negative anchors to keep the ratio of positive and negative

nchors as 1:3 in training process. To achieve faster convergence,

nstead of randomly sampling negative anchors, we sort the neg-

tive anchors according to the loss sufferred by them and select

he hardest ones for training. Different IoU thresholds are used for

ifferent quality levels. We use three quality levels (low, mid and

igh) for IoU as 0.5, 0.6 and 0.7, respectively. 

Inference: During the inference phase, the anchor refinement

ifferent quality stage makes prediction and send the refined an-

hors to the next quality stage. We take the predictions from AR in

ll quality stages to ensure they are suitable for all the low-, mid-

nd high-quality detection. 

. Experiments 

We conduct extensive experiments on two publicly available

enchmark datasets: Pascal VOC and MSCOCO. The evaluation met-
ic for the detector performance is mean average precision which

s widely used in evaluating object detection. 

.1. Pascal VOC experiment 

We use Pascal VOC2007 trainval set and Pascal VOC2012 train-

al set as our training set, and VOC2007 test set as testing set.

here are 16k images for training and 5k images for testing. All

odels are based on VGG16 architecture as ResNet-101 has limited

enefits for this dataset [20] . We train BPN with two resolutions of

he input (320 × 320 and 512 × 512) and compare them with the

tate-of-the-art methods on low, mid and high quality detection

cenarios (IoU thresholds as 0.5, 0.6 and 0.7, respectively). 

We show the comparison of performance of our proposed

ethod BPN320 and BPN512 against several state of the art two-

tage and one-stage baseline detectors in Table 1 . BPN320 obtains

n accuracy of 80.3%, 75.5% and 66.1% in low, mid and high quality

etection scenario respectively, which outperforms many detectors

e.g., SSD320, Faster RCNN, etc.). BPN512 achieves the state-of-the-

rt results of 82.2%, 77.6% and 68.3% for three scenarios respec-

ively. Notably, BPN has clear advantage in high quality detection

cenario(IoU = 0.7). BPN is one-stage detector, and can thus be used

or real-time inference. BPN320 can perform inference at 32.4fps

hile BPN512 at 18.9fps on a Titan XP GPU. 

.2. Ablation studies 

In this section, we conduct a series of ablation studies to ana-

yze the impact of different components of BPN. We use VOC2007

nd VOC2012 trainval set as our training set and test on

OC2007 test set. We use mean average precision on three dif-

erent IoU thresholds (0.5, 0.6 and 0.7) as our evaluation metric.

he results are shown in Table 2 . 

Bidirectional feature pyramid: To validate the effectiveness of the

idirectional Feature Pyramid, we remove all Anchor Refinement

omponents from BPN leaving only one classifier, and compare this

odel (called as BPN w / o AR) with vanilla SSD and SSD+FP. Bidi-

ectional Feature Pyramid is built based on vanilla SSD and all

hree models are fine-tuned with IoU threshold as 0.5. In Table 2 ,
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Table 2 

Detection results on PASCAL VOC dataset. For VOC 2007, all methods are trained on VOC 2007 and 

VOC 2012 trainval sets and tested on VOC 2007 test set. Original SSD uses six feature maps 

for prediction, while we use four feature maps to be consistent with BPN, so the detection result 

of SSD here is a bit lower. “Training IoU” denotes IoU thresholds trained for different stages (“-”

means no classifier in this stage). Bold fonts indicate the best mAP. 

Training IoU mAP@IoU = 0.5 mAP@IoU = 0.6 mAP@IoU = 0.7 

SSD (0.5, -, -) 76.3 71.0 60.4 

SSD (0.7, -, -) 68.4 61.9 50.8 

SSD + FP (-,0.5, -) 77.4 72.1 61.6 

BPN w / o AR (-, -,0.5) 78.1 72.7 63.4 

SSD + FP + AR (0.5, 0.5, -) 80.0 74.2 63.6 

SSD + FP + AR (0.5, 0.7, -) 78.1 73.7 63.1 

BPN (0.5, 0.5, 0.7) 80.0 75.1 65.4 

BPN (0.5, 0.6, 0.7) 80.3 75.5 66.1 
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we can see that SSD+FP outperforms vanilla SSD because deep se-

mantic features boost feature representations. Further, BPN w / o

AR outperforms SSD+FP in all quality scenarios, demonstrating its

effectiveness. 

Levels of AR: We aim to validate if the level of AR is impor-

tant for training high-quality detectors. We show the results in

Table 2 . Firstly, a vanilla SSD was trained with 0.7 IoU thresh-

old. This model (row 2) performs much worse than the baseline

(row 1) trained with 0.5 IoU threshold in all three quality levels,

which validates that insufficient positive training samples causes

overfitting. Second, we keep a single level of AR block on SSD+FP

(called “SSD+FP+AR”), and train this model with 0.5 IoU thresh-

old. We can see that the detection results improve significantly

compared with “BPN w/o AR” in low and mid quality scenarios,

and is similar in the high-quality scenario (63.6% vs 63.4%). We

further train “SSD+FP+AR” with 0.7 IoU threshold and this model

(row 6) also suffers from overfitting issues but it is less severe

compared to vanilla SSD. This shows that Anchor Refinement can

boost detection performance by refining anchor quality. However,

a single level of AR was not enough to boost the performance of

the model. Finally, to the above model, we add one more level

AR blocks and jointly optimize AR with different quality settings

(0.5,0.5,0.7) and (0.5,0.6,0.7), which utilize high quality anchors for

training. These two models (row 7 and row 8) further improve

the performance significantly especially for high quality scenario

(IoU = 0.6 and IoU = 0.7, etc.). In summmary, single level of AR is ef-

fective in addressing overfitting issues with SSD, and multi-level of

AR are critical for enhancing the detection performance in high-

quality scenarios. 

Proposal quality improved by anchor refinement: In this section,

we validate the effectiveness of the Anchor Refinement blocks to

improve the anchor quality. In Fig. 3 , we count the number of pos-

itive anchors per image for training under different IoU thresh-

olds for SSD, SSD+FP+AR and BPN. For SSD, anchors are generated

manually and only a few anchors matched objects under high IoU

threshold metric, which makes it hard to train effective detectors.

For SSD+FP+AR, anchors have been refined by AR once, and the

number of positive anchors increases significantly under all IoU

thresholds. Further in BPN where anchors are refined by AR twice,

more high quality anchors are generated on more robust feature

maps. Notably, after being refined by AR we have sufficient positive

training samples even under high IoU metrics, so that we could

conduct gradually increasing training positive IoU thresholds (0.5,

0.6 and 0.7). These results show that our AR blocks can gradually

improve anchor qualities and generate more positive anchors for

training. 

Time analysis: As shown in Table 1 , BPN shows significant speed

advances compared with two-stage detectors and thus in this part

we analyze the time complexity. For two-stage object detectors,

the inference time consists of three parts: backbone convolution
 s  
omputation ( T conv ), proposal generation ( T proposal ), and region-

ise operation ( T region , including region classification and region

egression). Assume we have R regions to predict, the time com-

lexity of two-stage detector is: 

 two-stage = T conv + T proposal + T region × R (7)

otably, region operation is operated across all R regions ( R = 300

y default), which makes two-stage detectors slow. BPN is the one-

tage detector and avoids the unshared region operation. BPN has

dditional two blocks: rFP and anchor refinement. For rFP, it only

equires additional 4 convolution layers computation and for an-

hor refinement, only simple coordinate transformation is involved.

ompared with the unshared region operation, the additional com-

utation cost of BPN can be negligible: 

 BPN = T conv + T proposal + T rFP + T AR (8)

 rFP + T AR � T proposal × R (9)

hus our BPN is much faster than two-stage methods. 

.3. MSCOCO experiment 

We also evaluate the performance of BPN on the MSCOCO data

et [42] , which has objects from 80 classes and about 120k images

n trainval set. We use trainval35k set for training and test

n test-dev set. Table 3 shows the results on MS COCO test-dev

et. BPN320 with VGG-16 achieves 29.6% AP and when using larger
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Table 3 

Detection results on MS COCO test-dev set. 

Method Backbone AP AP 50 AP 75 AP S AP M AP L 

Two-stage Detectors: 

Fast R-CNN [4] VGG-16 19.7 35.9 - - - - 

Faster R-CNN [1] VGG-16 21.9 42.7 - - - - 

OHEM [23] VGG-16 22.6 42.5 22.2 5.0 23.7 37.9 

ION [18] VGG-16 23.6 43.2 23.6 6.4 24.1 38.3 

OHEM ++ [23] VGG-16 25.5 45.9 26.1 7.4 27.7 40.3 

R-FCN [13] ResNet-101 29.9 51.9 - 10.8 32.8 45.0 

CoupleNet [24] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8 

Faster R-CNN by G-RMI [28] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0 

Faster R-CNN +++ [10] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9 

Faster R-CNN w FPN [3] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2 

Cascade RCNN w R-FCN [8] ResNet-101 33.3 52.6 35.2 12.1 36.2 49.3 

DeNet-101(wide) [29] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8 

DeNet [29] ResNet-101 33.8 53.4 36.1 12.3 36.1 50.8 

D-FCN [30] Aligned-Inception-ResNet 37.5 58.0 - 19.4 40.1 52.5 

Regionlets [31] ResNet-101 39.3 59.8 - 21.7 43.7 50.9 

Mask-RCNN [32] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2 

Soft-NMS [33] Aligned-Inception-ResNet 40.9 62.8 - 23.3 43.6 53.3 

Fitness NMS [34] ResNet-101 41.8 60.9 44.9 21.5 45.0 57.5 

Cascade RCNN w FPN [8] ResNet-101 42.8 62.1 46.3 23.7 45.5 55.2 

One-stage Detectors: 

YOLOv2 [6] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 

SSD300 [5] VGG-16 25.1 43.1 25.8 6.6 25.9 41.4 

RON384 ++ [25] VGG-16 27.4 49.5 27.1 - - - 

SSD321 [20] ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3 

DSSD321 [20] ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6 

SSD512 [5] VGG-16 28.8 48.5 30.3 10.9 31.8 43.5 

SSD513 [20] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 

DSSD513 [20] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1 

FPN-Reconfig [35] ResNet-101 34.6 54.3 37.3 - - - 

RetinaNet500 [36] ResNet-101 34.4 53.1 36.8 14.7 38.5 49.1 

RetinaNet800 [36] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2 

RefineDet320 [7] VGG-16 29.4 49.2 31.3 10.0 32.0 44.4 

RefineDet512 [7] VGG-16 33.0 54.5 35.5 16.3 36.3 44.3 

RefineDet320 [7] ResNet-101 32.0 51.4 34.2 10.5 34.7 50.4 

RefineDet512 [7] ResNet-101 36.4 57.5 39.5 16.6 39.9 51.4 

ExtremeNet [37] Hourglass-104 40.2 55.5 43.2 20.4 43.2 53.1 

FCOS [38] ResNeXt-101 42.1 62.1 45.2 25.6 44.9 52.0 

FoveaBox [39] ResNeXt-101 42.1 61.9 45.2 24.9 46.8 55.6 

CenterNet-HG [40] Hourglass-104 42.1 61.1 45.9 24.1 45.5 52.8 

CornerNet511 [41] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9 

CornerNet511 ++ [41] Hourglass-104 42.1 57.8 45.3 20.8 44.8 56.7 

BPN320 VGG-16 29.6 48.4 32.3 9.6 32.5 44.3 

BPN512 VGG-16 33.1 53.1 36.3 15.7 37.0 44.2 

BPN320 ++ VGG-16 35.4 55.3 38.5 19.0 37.9 47.0 

BPN512 ++ VGG-16 37.9 58.0 41.5 21.9 41.1 48.1 

BPN512 ResNet-101 37.6 59.1 40.5 18.7 42.2 50.8 

BPN512 ++ ResNet-101 42.3 62.8 46.3 25.7 46.1 53.2 
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nput image size 512, the detection accuracy of BPN512 reaches

3.1%, which is better than all other VGG16-based methods. No-

ably, we notice in high quality detection metric AP 75 , BPN is

learly better than other detectors. As the objects in COCO dataset

re of various scales, we also applied multi-scale testing based on

PN320 and BPN512 to reduce the impact of input size. The im-

roved version BPN320++ and BPN512++ achieve 35.4% and 37.9%

P, which is the state-of-the-art performance among one-stage de-

ectors. Different from Pascal VOC, using a deeper backbone such

s ResNet could further improve detection accuracy compared to

GG16. Thus we report BPN512 with ResNet-101. Single BPN512

chieves 37.6% AP and when using multi-scale and flip horizon-

al inference, it improves to 42.3% AP, which is the state-of-the-

rt performance among one-stage detectors. Notably, BPN512++

chieves 46.3% on AP 75 , which outperforms all other one-stage de-

ectors significantly under high-quality metric. 

. Conclusions 

In this paper, we proposed a novel single-stage detector frame-

ork Bidirectional Feature Pyramid Networks (BPN) for high-
uality object detection. It comprises two novel major compo-

ents: a Bidirectional Feature Pyramid structure for more effec-

ive and robust feature representations and an Anchor Refinement

omponent to gradually refine the quality of pre-designed anchors

or more effective training. The proposed method achieves state-of-

he-art results on Pascal VOC and MSCOCO dataset while enjoying

eal-time inference speed. 
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