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Modelling greenhouse temperature using system
identi#cation by means of neural networks

Hugo Uchida Frausto∗ , Jan G. Pieters
Biosystems Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

Abstract

An NNARX system is proposed for modelling the internal greenhouse temperature as a func-
tion of outside air temperature and humidity, global solar radiation and sky cloudiness. The
models show a good performance over a complete year using only two training periods, 1 week
in winter and one in September. Finding the balance between the number of neurons in the
hidden layer of the NNARX system and the number of iterations for model training is found to
play an important role in obtaining this good performance.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The greenhouse microclimate provides the plants with good environmental condi-
tions for growing, one of which is the inside air temperature. This temperature is the
result of complex and interactive heat and mass exchanges between the inside air and
the several elements of the greenhouse (construction, vegetation, etc.) and the outside
boundaries (outside air, sky, solar radiation). Over the last decades, numerous deter-
ministic greenhouse climate models have been built. In general, these models have a
high degree of complexity with lots of parameters that have to be determined by cal-
ibration. In contrast to deterministic models, black box models do not su<er from the
need to determine appropriate values for lots of parameters. These models cannot be
used to investigate the internal functioning of the system, but they can be very help-
ful for climate control purposes, certainly when combined with automated parameter
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identi#cation techniques. In a previous paper [6], the authors presented applications of
the linear auto-regressive models ARX (auto-regressive model with external input) and
ARMAX (auto-regressive moving average model with external input) for the simula-
tion of the inside air temperature in greenhouses. The major drawback of such models,
however, is their inability to perform well over long periods, because of the lack of
adaptation. This implies that frequent retuning is necessary, which greatly reduces the
practical use of such models in greenhouse climate control. In this paper it will be
investigated to what extent combining an ARX model with Neural Network architec-
tures, resulting in a so-called NNARX, can improve model performance as a basis for
greenhouse climate control.

2. Methods and procedures

2.1. Data sets

The inside air temperature data used for training and validation of the model were
not measured, but determined via simulation using the extensively investigated and
validated deterministic Gembloux Dynamic Greenhouse Climate Model (GDGCM).
More information on this model can be found in [5], while the simulation circumstances
and the characteristics of the unheated, ventilated greenhouse, used in the simulations,
can be found in [6]. The GDGCM was fed with data from the Belgian typical reference
year [1], namely the outside air temperature, the outside air relative humidity, the
outside global solar radiation Hux density, and the cloudiness of the sky. In this way,
data for the inside air temperature and the outside climate were obtained for every
5 min of a complete year.

2.2. Model description

The model structure was a multi-layer perceptron network with only one hidden
layer containing neurons with a hyperbolic tangential activation function and an output
layer with one neuron with a linear activation function. The input to this structure was
the vector containing the regressors of an ARX model. The governing overall equation,
giving the inside air temperature Ti, can then be written as

T̂ i(w;W ) =
q∑
j=0

Wj tanhj

(
m∑
l=1

wjl’(t)l + wj0

)
+W0; (1)

where w represents the nh × (ni + 1) matrix that contains the weights from the inputs
to the hidden layer and W represents the vector that contains the ni+1 weights (where
the 1 is due to the bias) from the hidden to the output layer and with ’(t)l the vector
that contains the regressors of the ARX model, q the number of internal neurons, and
m the number of input variables. The idea is to select the regressors based on inspi-
ration from linear system identi#cation and then determine the best possible network
architecture with the given regressors as inputs. More details on NNARX models can
be found in [4].
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For the determination of the number of neurons in the hidden layer, two di<erent
criteria were used: the sum of the number of inputs and the number of outputs or
twice the square root thereof. Based on the results of [6], the inputs to the model were
the four previous (5 min) samples of the four outside climate data and the inside air
temperature. This implies that the number of neurons in the hidden layer was 20 or 8,
according to both criteria, respectively. The model was implemented under MATLAB
using a toolbox described in [3].

2.3. Model training and validation

The NN training method used was the backpropagation algorithm. Two di<erent data
sets were used for training: those of the #rst week of winter and those of the second
week of September (late summer). These two periods were chosen because the former
corresponds to the #rst week of the data set that is rather easy to simulate, while
the latter period was found to be very diKcult to model accurately using an ARX or
ARMAX model without NN architecture. The number of iteration steps in the training
was increased in steps of 100 until an acceptable goodness of #t was obtained. The
goodness of #t was de#ned as

G =


1−

√∑n
i=1(ym; i − yo; i)2√∑n

i=1

(
yo; i − 1

n
∑n

k=1 yo; k

)2


× 100% =

(
1− s

�

)
× 100%; (2)

where ym is the output of the NNARX model; yo represents the original output data;
s is the square mean error of modelled output versus original data (results of the
GDGCM); and � is the standard deviation of the original system output [2]. From
Eq. (2), it is clear that the highest goodness of #t that can be obtained is 100%, while
the lowest value is −˙%. For the validation of the model, the data of the other weeks
of the year were used.

3. Results and discussion

Fig. 1 shows the original data versus the NNARX results for both the winter and
September trained models. From this #gure, it can be directly deduced that for both
periods, using only eight neurons in the hidden layer of the NNARX resulted in an
unacceptably poor performance. It is clear that in September, when ventilation is very
important for climate control during hot days, the use of eight neurons resulted in a
model which could not take into account the e<ect of ventilation, coming in action from
19◦C on. When comparing the results for both training periods, no large di<erences in
performance can be found on this #gure. This model behaviour was also reHected by
the values for the goodness of #t. When using eight neurons, even after 800 iterations
the goodness of #t was lower than 40%, while the ones for the 20 neurons models
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Fig. 1. Original data versus results of the NNARX model trained with data of the #rst winter week and the
second week of September using (a) eight neurons in the hidden layer and (b) twenty neurons in the hidden
layer; —, original; —, model; ........, residuals.

resulted in a goodness of #t of more than 75% for the winter and the September trained
model after 500 and 200 iterations, respectively. Consequently, models with only eight
neurons in the #rst hidden layer were not investigated any longer.
Results for the validation of the models trained during winter and during the #rst

week of September are shown in Fig. 2. For a complete year, daily averages of the ab-
solute values of the di<erences between simulated results and original data are shown.
From this #gure, it can be concluded that the models performed the best in the peri-
ods during which they were trained, as was to be expected. However, looking at the
complete year, it is observed that the September trained model performed much better
than the winter trained model. This is most likely to be explained by the fact that
in September, ventilation plays an important role in climate control, while in winter
its role is limited. As a result, training the model with September data enables the
NNARX to take the non-linear ventilation e<ects into account. This also explains why
the addition of a NN architecture to the ARX model allows much better performances
to be obtained, with much less need to retune the models. As a matter of fact, it is
possible to keep the daily average absolute simulation error smaller than about 1◦C
during most of the year by using the September trained model from day 80 to day 350
and the winter trained model during the other days.
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Fig. 2. Daily mean of the absolute value of the di<erences between original data and the results of the
NNARX trained with data of (—) the #rst winter week and (.......) the second week of September using 20
neurons in the hidden layer for a complete year, starting on 1 December.

In general, it can be concluded that the NNARX system allows fairly reliable mod-
els to be built, which could be further investigated for inclusion in climate control. It
should be kept in mind, however, that such models can only be applied as long as the
conditions are similar to those of the training period. Under exceptional circumstances,
such as snow storms or other situations which lead to a change in the thermal charac-
teristics of the greenhouse, the model might give erroneous results. Use of such models
for greenhouse climate control will thus necessarily imply the simultaneous inclusion
of feedback mechanisms.

4. Conclusions

An NNARX system was proposed for modelling the internal greenhouse temperature.
The models showed a good performance over long periods without the need of frequent
retuning the parameters, as indicated by the simulation results and the goodness of #t.
The number of neurons in the hidden layer of the NNARX system was found to play
an important role in obtaining this good performance. Introduction of such models in
climate control systems needs further investigation, amongst others to #nd a balance
between the number of neurons in the hidden layer and the number of iterations in the
training procedure.
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