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Abstract

In this paper, we study the problem of passivity for uncertain neural
networks with interval time-varying delay. Firstly, a suitable augmented
Lyapunov-Krasovskii functional (LKF) containing two triple integral terms
is constructed and an auxiliary function-based integral inequality (AFBI) is
used to manipulate the augmented single integral terms in the derivative of
LKF. Secondly, a special form of the AFBI is applied to deal with the delay-
product-type term, which was used to be ignored in the time derivative of a
triple integral term. As a result, less conservative delay-dependent passivity
criteria are derived for normal delayed neural networks (DNNs) in the form
of linear matrix inequalities (LMIs). In addition, with the same LKF, delay-
dependent passivity criteria are obtained for normal DNNs without the delay-
product-type term. Subsequently, these criteria are extended to DNNs with
parameter uncertainties. Finally, four numerical examples and simulations
are provided to illustrate the effectiveness of the proposed criteria.
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1. Introduction

In the past few decades, a few scholars have been devoted to the research
of neural networks (NNs) due to their potential applications in pattern recog-
nition, associative memories, optimization problem and other scientific fields
[1–3]. In the implementations of NNs, time delay is unavoidable due to the fi-
nite switching speed of amplifiers and communication time, and its existence
may lead to instability, oscillatory or other undesirable system behaviors.
Recently, many interesting topics such as filter design [4], synchronization
[5, 6], state estimation [7] and dissipativity [8, 9] have been undergoing rapid
development. Because such applications greatly rely on whether the equilib-
rium points of delayed neural networks (DNNs) are stable or not, stability is
one of the most important dynamic properties of DNNs [10–13].

On the other hand, in many scientific and engineering problems, stability
issues are often related to the theory of dissipative systems. Dissipativity
theory was originally introduced by Willems [14] from electrical network the-
ory, which indicates that the quantity of energy dissipated inside dynamical
systems is less than the one supplied from outside, and it plays a crucial role
in analysis and synthesis of dynamical systems based on the input-output
energy-related consideration [15, 16]. Passivity theory, as a part of dissipa-
tivity one, is a powerful tool for analyzing the stability of dynamical systems.
The reason is that the passive properties of the system can keep the systems
internally stable. As was pointed out in [17], the passive system utilizes the
product of input and output as energy provision and only burns energy with-
out energy production, and thus passivity embodies the energy attenuation
character. In this regard, the passivity theory is a great important subject
for analysis and synthesis of DNNs. Meanwhile, the network parameters of a
neural system depend on certain resistance and capacitance values, which are
subject to uncertainties. The parameter uncertainties are still the potential
sources of instability of systems and may result in difficulty or complexity of
passivity analysis [18–22].

Generally speaking, delay-dependent passivity criteria [17–33] are less
conservative than delay-independent ones [34, 35] especially when the size
of time delay is small. Until now, based on the Lyapunov stability theory,
there are two effective ways to improve passivity criteria for DNNs. One is to
construct a suitable LKF. Some techniques, such as augmenting the terms of
a simple type LKF [18, 24], using the idea of the relaxation on the positive-
definiteness of every Lyapunov-matrix [19, 25], and introducing triple integral
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terms [26] or quadruple integral terms [27, 28], were employed to construct
LKF. While the other is to develop new inequalities to estimate the derivative
of LKF. The free-weighting matrix (FWM) technique [36] was applied to
deal with the derivative of LKF in [29]. In [20], Wirtinger-based integral
inequality (WBII) [37] was employed to handle the derivative of LKF, and the
refined Jensen-based integral inequality (JBII) [38] was used to manipulate
the derivative of LKF in [30]. Recently, the free-matrix-based inequality
(FMBI) [39], which encompasses the WBII and the Jensen integral inequality
(JII), was utilized to derive less conservative passivity criteria [31] than those
of [20, 30]. However, the FMBI [39] involves more decision variables than the
WBII, and some slack matrices in the FMBI do not seem to be helpful for
the reduction of conservativeness. Very recently, the AFBI, which contains
several existing integral inequalities as special cases, was applied to derive
stability criteria of DNNs in [10].

However, it should be pointed that: (i) the JII was employed to deal
with single integral terms with the augmented vectors [10, 30, 31], which
may result in conservativeness to some extent. In [30], the derivative of∫ −τ1
−τ2

∫ −τ1
s

∫ t
t+u

ẋT (θ)R2ẋ(θ)dθduds was estimated as 1
2
(τ2− τ1)2ẋT (t)R2ẋ(t)−∫ t−τ(t)

t−τ2
∫ t−τ(t)
s

ẋT (θ)R2ẋ(θ)dθds−
∫ t−τ1
t−τ(t)

∫ t−τ1
s

ẋT (θ)R2ẋ(θ)dθds, but the term

−(τ(t)− τ1)
∫ t−τ(t)
t−τ2 ẋT (s)R2ẋ(s)ds was ignored, which may lead to conserva-

tiveness. (ii) The impact of the delay in system state has been fully consid-
ered in [24, 25], but the impact of the time delay in system output [26, 30]
was always ignored in the previous literatures [18, 20, 21]. As we all know,
the existences of parameter uncertainties in system models [18–22] and time
delay may cause performance degradation even instability of NNs. To the
best of our knowledge, the problem of passivity analysis of uncertain neural
networks with time-varying delay in both the system state and output has
not yet been completely investigated in the literature.

Based on the above analysis, this paper focuses on the problem of pas-
sivity of uncertain NNs with time-varying delay in both the system state
and output, the main contributions of the paper are summarized as follows.
Firstly, delay-dependent passivity criteria for normal DNNs will be intro-
duced in Theorem 1 and Corollary 1 by constructing a suitable augmented
LKF with two triple integral terms. The AFBI is used to manipulate the
augmented single integral terms in the derivative of LKF. Secondly, different

from [30], the delay-product-type term −(τ(t)− τ1)
∫ t−τ(t)
t−τ2 ẋT (s)R2ẋ(s)ds is

retained and Lemma 2 is applied to estimate its upper bound. The advantage
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of such term lies in the fact that the relationship among the time-varying de-
lay, its upper bound and its lower bound is fully taken into account. In this
case, a nonlinear function with respective to τ(t) is induced which cannot be
handled directly by Matlab LMI toolbox. Inspired by [40], a new method
(Lemma 4) is employed to transform nonlinear matrix inequalities into LMIs.
Thirdly, with the same LKF considered in Theorem 1 and Corollary 1, delay-
dependent passivity criteria for normal DNNs will be proposed in Theorem
2 and Corollary 2 without the delay-product-type term. In addition, the
methods are extended to study the problem of passivity of uncertain DNNs.

Notations: Let Rn and Rn×m denote the n-dimensional Euclidean space
with vector norm ‖ · ‖ and the set of n×m matrices, respectively. diag{· · · }
represents the block diagonal matrix. The transposed term in a symmetric
matrix is denoted by ∗. For any square matrix A, Sym{A} = A + AT . Let
S+
n denote the set of symmetric positive define matrices in Rn×n. D+

n means
the set of positive diagonal matrices. I (0) mean identity (zero) matrix with
appropriate dimension, respectively.

2. Problem formulation and preliminary

In this section, we will formulate the problem and provide related prelim-
inaries.

2.1. Problem formulation

Consider a class of uncertain NNs with interval time-varying delay





ẋ(t) = −A(t)x(t) +W0(t)f(x(t)) +W1(t)f(x(t− τ(t))) + u(t),

y(t) = C1f(x(t)) + C2f(x(t− τ(t))) + C3u(t),

x(t) = φ(t) t ∈ [−τ2, 0],

(1)

where x(t) = [x1(t) x2(t) · · · xn(t)]T ∈ Rn denotes the neuron state vector.
n is the number of neuron in the network. y(t) ∈ Rn and u(t) ∈ Rn are
the output vector and the external input vector, respectively. φ(t) ∈ Rn

is the initial condition. f(·) = [f1(·) f2(·) · · · fn(·)]T ∈ Rn represents the
neuron activation function with f(0) = 0. A(t) = A + 4A(t), W0(t) =
W0 +4W0(t), W1(t) = W1 +4W1(t), A = diag{a1, a2, · · · , an} ∈ D+

n and
W0,W1 are the interconnection weight matrices. Ci(i = 1, 2, 3) are given
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real matrices. 4A(t),4W0(t),4W1(t) are the time-varying structured un-
certainties, which are assumed to be of the form

[4A(t) 4W0(t) 4W1(t)] = HF (t)[E1 E2 E3], (2)

where H and Ei are known real constant matrices with appropriate dimen-
sions. F (t) is the time-varying uncertain matrix and satisfies

F T (t)F (t) ≤ I,∀t ≥ 0. (3)

τ(t) is a time-varying delay and satisfies

0 ≤ τ1 ≤ τ(t) ≤ τ2, (4)

where τ1, τ2 are known constants and represent the lower bound and the up-
per bound of delay, respectively.
The neuron activation functions are assumed to satisfy the following assump-
tion.
Assumption 1[12]. For any i ∈ {1, 2 · · · , n}, fi(0) = 0, there exist constants
l+i , l

−
i such that

l−i ≤
fi(α1)− fi(α2)

α1 − α2

≤ l+i ,∀α1, α2 ∈ R, α1 6= α2, (5)

where L1 = diag{l−1 , l−2 , · · · , l−n }, L2 = diag{l+1 , l+2 , · · · , l+n } and α1, α2 are
constants.

2.2. Problem preliminary

To derive our results, it is necessary to introduce the following definition
and lemmas.
Definition 1[18]. The system (1) is said to be passive, if there exists a scalar
γ > 0, such that

2

∫ tf

0

yT (s)u(s)ds ≥ −γ
∫ tf

0

uT (s)u(s)ds, (6)

for all tf ≥ 0 and all solution of (1) with x(0) = 0.
Lemma 1 [10, 11]. For a matrixR ∈ S+

n , scalars α, β satisfying α < β, vector
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ω : [α, β] → Rn and any matrices N1, N2, δ1, δ2 such that the integration
concerned is well defined, then, the following inequality holds

−
∫ β

α

ωT (s)Rω(s)ds ≤ χT
(

(β − α)
2∑

i=1

1

2i− 1
NiR

−1NT
i + Sym

{ 2∑

i=1

Niδi
})
χ,

(7)

where χ is any vector and δ1χ =
∫ β
α
ωT (s)ds, δ2χ = −δ1χ+ 2

β−α
∫ β
α

∫ β
s
ω(u)duds.

Letting ω(s) = ẋ(s) in (7), we can easily yield the following Lemma 2.
Lemma 2. For a matrix R ∈ S+

n , scalars α, β satisfying α < β, a differen-
tiable function x : [α, β]→ Rn, and any matrices N1, N2, δ1, δ2, the following
inequality holds

−
∫ β

α

ẋT (s)Rẋ(s)ds ≤ χT
(

(β − α)
2∑

i=1

1

2i− 1
NiR

−1NT
i + Sym

{ 2∑

i=1

Niδi
})
χ,

(8)

where χ is any vector and δ1χ = x(β)−x(α), δ2χ = x(β)+x(α)− 2
β−α

∫ β
α
x(s)ds.

Lemma 3 [38, 41]. For matrices R, Z ∈ S+
n , scalars α, β satisfying α < β,

a differentiable function x : [α, β]→ Rn, the following inequalities hold

−
∫ β

α

ẋT (s)Rẋ(s)ds ≤ − 1

β − ας
T (x, α, β)ΓT1 R̄Γ1ς(x, α, β), (9)

−
∫ β

α

∫ β

s

ẋT (u)Zẋ(u)duds ≤ −ςT (x, α, β)ΓT2 Z̄Γ2ς(x, α, β), (10)

where R̄ = diag{R, 3R, 5R}, Z̄ = diag{2Z, 4Z}, and

ς(x, α, β) = [xT (α) xT (β)
1

β − α

∫ β

α

xT (s)ds
2

(β − α)2

∫ β

α

∫ β

s

xT (u)duds]T ,

(11)

Γ1 =



−I I 0 0
I I −2I 0
−I I 6I −6I


 , Γ2 =

[
0 I −I 0
0 I 2I −3I

]
. (12)

Remark 1. It is noted that the auxiliary functions fi(s), i ∈ {0, 1, · · · , n}
satisfy

∫ β
α
fi(s)fj(s)ds = 0, (0 ≤ i, j ≤ n, i 6= j), f0(s) = 1 in inequality (10)

of Lemma 5 in [10], as a special case, inequality (10) of Lemma 5 in [10] can
change into inequalities (7)−(9) of Lemmas 1−3 by appropriately choosing
the auxiliary functions, which indicates Lemma 5 in [10] is more general.
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Specifically,
• by choosing f1(s) = 2s−β−α

β−α , inequality (10) of Lemma 5 in [10] becomes ex-

actly the same as Lemma 5 in [11], namely Lemma 1 in this paper. Moreover,
Lemma 2 can be easily obtained by replacing ω(s) with ẋ(s) in inequality
(7) of Lemma 1.

• by choosing f1(s) = 2s−β−α
β−α , f2(s) = 6(s−α)2

(β−α)2 −
6(s−α)
β−α +1, χ = ς(x, α, β),N1 =

− 1
β−αδ

T
0 R, N2 = − 3

β−αδ
T
1 R, N3 = − 5

β−αδ
T
2 R, δ0 = [−I I 0 0], δ2 =

[I I − 2I 0], δ3 = [−I I 6I − 6I], and ω(s) = ẋ(s), inequality (10) of
Lemma 5 in [10] is exactly the same as inequality (12) of Corollary 1 in [38]
and inequality (24) of Lemma 5.1 in [41], namely inequality (9) of Lemma 3
in this paper.
Lemma 4 Let us consider a quadratic function f(x) = k2x

2 + k1x+ k0, ki ∈
R, (i = 0, 1, 2), if the following inequalities hold

(I) f(a) < 0, (II) f(b) < 0, (III) − (b− a)2k2 + f(a) < 0, (13)

then f(x) < 0, ∀x ∈
[
a, b
]
.

Remark 2. By employing a similar proof of Lemma 2 in [40], Lemma 4 can
be easily obtained. Lemma 4 is a generalized case of Lemma 2 in [40], in
which a can be zero, positive or negative.
Lemma 5 [42]. Let H,E and F (t) be real matrices of appropriate dimensions
with

F T (t)F (t) ≤ I. (14)

Then, for any scalar ε > 0,

HF (t)E + (HF (t)E)T ≤ ε−1HHT + εETE. (15)

3. Main results

3.1. Passivity criteria for normal DNNs

If4A(t) = 4W0(t) = 4W1(t) = 0, system (1) is reduced to the following
normal system





ẋ(t) = −Ax(t) +W0f(x(t)) +W1f(x(t− τ(t))) + u(t),

y(t) = C1f(x(t)) + C2f(x(t− τ(t))) + C3u(t),

x(t) = φ(t) t ∈ [−τ2, 0],

(16)
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In this section, we will develop some delay-dependent criteria which ensure
the passivity of the system (16). For simplicity of vector and matrix repre-
sentations, the following notations are necessary.

ei = [0n×(i−1)n In 0n×(15−i)n], (i = 1, 2, · · · , 15), e0 = [

15︷ ︸︸ ︷
0 0 · · · 0],

xτ (t) = x(t− τ(t)), xτ1(t) = x(t− τ1), xτ2(t) = x(t− τ2),
f(t) = f(x(t)), fτ (t) = f(x(t− τ(t))), fτ1(t) = f(x(t− τ1)),
fτ2(t) = f(x(t− τ2)), α1(t) = τ(t)− τ1, α2(t) = τ2 − τ(t),

ϑ1(t) =
1

τ1

∫ t

t−τ1
x(s)ds, ϑ2(t) =

1

α1(t)

∫ t−τ1

t−τ(t)
x(s)ds,

ϑ3(t) =
1

α2(t)

∫ t−τ(t)

t−τ2
x(s)ds, ϑ4(t) =

2

τ 21

∫ t

t−τ1

∫ t

s

x(u)duds,

ϑ5(t) =
2

α2
1(t)

∫ t−τ1

t−τ(t)

∫ t−τ1

s

x(u)duds, ϑ6(t) =
2

α2
2(t)

∫ t−τ(t)

t−τ2

∫ t−τ(t)

s

x(u)duds,

ξ1(t) = [xT (t) xTτ1(t) x
T
τ (t) xTτ2(t)]

T , ξ2(t) = [fTτ (t) fTτ (t) fTτ2(t) f
T
τ1

(t)]T ,

ξ3(t) = [ϑT1 (t) ϑT2 (t) ϑT3 (t)]T , ξ4(t) = [ϑT4 (t) ϑT5 (t) ϑT6 (t)]T ,

ξ(t) = [ξT1 (t) ξT2 (t) ξT3 (t) ξT4 (t) uT (t)]T .

Theorem 1. For given scalars 0 ≤ τ1 ≤ τ2, DNNs (16) satisfying (4)
is passive, if there exist matrices P ∈ S+

4n, Q1, S2 ∈ S+
2n, Q2, Q3, R1, R2, S1 ∈

S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices P1, P2 ∈
Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n, N5, N6 ∈ R3n×n and a scalar
γ > 0 such that the following LMIs hold

Ψ1 =




Ψ(τ(t))|τ(t)=τ2 − τ12Ξ1 τ12G
T
7N1 τ12G

T
7N2

∗ −τ12S̄2 0
∗ ∗ −3τ12S̄2


 < 0, (17)

Ψ2 =




Ψ(τ(t))|τ(t)=τ1 − τ12Ξ2 τ12G
T
7N3 τ12G

T
7N4

∗ −τ12Ŝ2 0

∗ ∗ −3τ12Ŝ2


 < 0, (18)

Ψ3 =




Ψ1 τ12ℵ1 τ12ℵ2
∗ −R2 0
∗ ∗ −3R2


 < 0, (19)
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where

Ψ(τ(t)) =
3∑

i=0

Υi(τ(t)) +
10∑

i=1

Πi + Π14 + Sym{Λ}, τ12 = τ2 − τ1,

Υ1(τ(t)) = Sym{GT (τ(t))PG0}, Υ2(τ(t)) =
2∑

i=1

αi(t)(Ξi + Π1i),

Υ3(τ(t)) = α1(t)Π13,

Π1 = eT1 (Q2 +Q3)e1 − eT2Q2e2 − eT4Q3e4 +GT
1Q1G1 −GT

2Q1G2,

Π2 = Sym{[e5 − L1e1]
TD1B + [L2e1 − e5]TD2B},

Π3 = BT (τ 21S1 +
τ 21
2
R1 +

τ 212
2
R2)B + τ 212G

T
3 S2G3,

Π4 = eT2 P1e2 − eT3 (P1 − P2)e3 − eT4 P2e4,

Π5 = −GT
4 ΓT1 S̄1Γ1G4, Π6 = −GT

4 ΓT2 R̄1Γ2G4,

Π7 = −GT
5 ΓT2 R̄2Γ2G5, Π8 = −GT

6 ΓT2 R̄2Γ2G6,

Π9 = Sym{
2∑

i=1

GT
7NiG7+i}, Π10 = Sym{

2∑

i=1

GT
7Ni+2G11+i},

Π11 = Sym{
2∑

i=1

GT
7NiG9+i}, Π12 = Sym{

2∑

i=1

GT
7Ni+2G13+i},

Π13 = Sym{
2∑

i=1

GT
16[N5 N6]G17},

Π14 = Sym{eT15(C1e5 + C2e6)}+ eT15(γIn + CT
3 + C3)e15,

Ξ1 =
2∑

i=1

1

2i− 1
GT

7NiS̄
−1
2 NT

i G7,

Ξ2 =
2∑

i=1

1

2i− 1
GT

7Ni+2Ŝ
−1
2 NT

i+2G7,

Ξ3 =
2∑

i=1

1

2i− 1
GT

16Ni+4R
−1
2 NT

i+4G16,

Λ = GT
18Λ1G19 +GT

20Λ2G21 +GT
22Λ3G23 +GT

24Λ4G25 +GT
26Λ5G27

+GT
28Λ6G29 +GT

30Λ7G31 +GT
32Λ8G33,

S̄1 = diag{S1, 3S1, 5S1}, R̄i = diag{2Ri, 4Ri} (i = 1, 2),

9
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S̄2 = S2 +

[
0 P1

∗ 0

]
, Ŝ2 = S2 +

[
0 P2

∗ 0

]
,

B = −Ae1 +W0e5 +W1e6 + e15,

G(τ(t)) = [eT1 τ1e
T
9 α2e

T
11 + α1e

T
10

1

2τ 21
eT12]

T ,

G0 = [BT eT1 − eT2 eT2 − eT4 τ1e
T
1 − τ1eT9 ]T , G1 = [eT2 e

T
8 ]T ,

G2 = [eT2 e
T
7 ]T , G3 = [eT1 B

T ]T , G4 = [eT2 e
T
1 e

T
9 e

T
12]

T ,

G5 = [eT3 e
T
2 e

T
10 e

T
13]

T , G6 = [eT4 e
T
3 e

T
11 e

T
14]

T ,

G7 = [eT2 e
T
3 e

T
4 e

T
10 e

T
11 e

T
13 e

T
14]

T , G8 = [eT0 eT2 − eT3 ]T ,

G9 = [eT0 eT2 + eT3 − 2eT10]
T , G10 = [eT10 e

T
0 ]T ,

G11 = [−eT10 + eT13 eT0 ]T , G12 = [eT0 eT3 − eT4 ]T ,

G13 = [eT0 eT3 + eT4 − 2eT11]
T , G14 = [eT11 e

T
0 ]T ,

G15 = [−eT11 + eT14 eT0 ]T , G16 = [eT3 e
T
4 e

T
11]

T ,

G17 = [eT3 − eT4 eT3 + eT4 − 2eT11]
T , G18 = [eT5 − eT1L1]

T ,

G19 = [−eT5 + eT1L2]
T , G20 = [eT6 − eT3L1]

T ,

G21 = [−eT6 + eT3L2]
T , G22 = [eT5 − eT6 − (eT1 − eT3 )L1]

T ,

G23 = [−eT5 + eT6 + (eT1 − eT3 )L2]
T , G24 = [eT5 − eT8 − (eT1 − eT2 )L1]

T ,

G25 = [−eT5 + eT8 − (eT1 − eT2 )L2]
T , G26 = [eT5 − eT7 − (eT1 − eT4 )L1]

T ,

G27 = [−eT5 + eT7 − (eT1 − eT4 )L2]
T , G28 = [eT7 − eT8 − (eT4 − eT2 )L1]

T ,

G29 = [−eT7 + eT8 − (eT4 − eT2 )L2]
T , G30 = [eT6 − eT8 − (eT3 − eT2 )L1]

T ,

G31 = [−eT6 + eT8 − (eT3 − eT2 )L2]
T , G32 = [eT7 − eT6 − (eT4 − eT3 )L1]

T ,

G33 = [−eT4 + eT3 − (eT7 − eT6 )L2]
T , ℵi = [NT

i+4G16 0 0]T , (i = 1, 2).
(20)

Proof. Construct the following LKF candidate

V (xt) = ηT1 (t)Pη1(t) + 2
n∑

i=1

(
d1i

∫ xi(t)

0

(
fi(s)− l−i s

)
ds+ d2i

∫ xi(t)

0

(
l+i s

− fi(s)
)
ds
)

+

∫ t−τ1

t−τ2
ηT2 (s)Q1η2(s)ds+

2∑

i=1

∫ t

t−τi
xT (s)Qi+1x(s)ds

+ τ1

∫ 0

−τ1

∫ t

t+s

ẋT (u)S1ẋ(u)duds+

∫ −τ1
−τ2

∫ t

t+s

ηT3 (u)S2η3(u)duds

10
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+

∫ 0

−τ1

∫ 0

s

∫ t

t+u

ẋT (θ)R1ẋ(θ)dθduds+

∫ −τ1
−τ2

∫ −τ1
s

∫ t

t+u

ẋT (θ)R2ẋ(θ)dθduds,

(21)
with η1(t) = [xT (t)

∫ t
t−τ1 x

T (s)ds
∫ t−τ1
t−τ2 x

T (s)ds
∫ t
t−τ1

∫ t
s
xT (u)duds]T ,

η2(t) = [xT (t) fT (t)]T , η3(t) = [xT (t) ẋT (t)]T .
Taking derivation of V (xt) in t along the solution of (16), we can obtain

V̇ (xt) = ξT (t)
(
Sym

{
Υ1(τ(t))

}
+

3∑

i=1

Πi

)
ξ(t)−

2∑

i=1

(
=i(t) + ℘i(t)

)
, (22)

where

=1(t) =τ1

∫ t

t−τ1
ẋT (s)S1ẋ(s)ds,

=2(t) =

∫ t−τ1

t−τ2
ηT3 (s)S2η3(s)ds,

℘1(t) =

∫ t

t−τ1

∫ t

s

ẋT (θ)R1ẋ(θ)dθds,

℘2(t) =

∫ t−τ1

t−τ2

∫ t−τ1

s

ẋT (θ)R2ẋ(θ)dθds.

(23)

Note that =2(t) = =21(t) + =22(t), ℘2(t) = ℘21(t) + ℘22(t) + ℘23(t), where

=21(t) =

∫ t−τ1

t−τ(t)
ηT3 (s)S2η3(s)ds,

=22(t) =

∫ t−τ(t)

t−τ2
ηT3 (s)S2η3(s)ds,

℘21(t) =

∫ t−τ1

t−τ(t)

∫ t−τ1

s

ẋT (θ)R2ẋ(θ)dθds,

℘22(t) =

∫ t−τ(t)

t−τ2

∫ t−τ(t)

s

ẋT (θ)R2ẋ(θ)dθds,

℘23(t) = α1(t)

∫ t−τ(t)

t−τ2
ẋT (s)R2ẋ(s)ds.

(24)

Applying Lemma 3 yields

−=1(t) ≤ −ςT1 (t)ΓT1 S̄1Γ1ς2(t), − ℘1(t) ≤ −ςT1 (t)ΓT2 R̄1Γ1ς2(t),
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−℘21(t) ≤ −ςT2 (t)ΓT2 R̄2Γ2ς2(t), − ℘22(t) ≤ −ςT3 (t)ΓT2 R̄3Γ2ς3(t), (25)

where Γ1,Γ2 are defined in (12), and ς1(t) = ς(x, t − τ1, t), ς2(t) = ς(x, t −
τ(t), t − τ1), ς3(t) = ς(x, t − τ2, t − τ(t)) with ς(·, ·, ·) being defined in (11).
For symmetric matrices P1, P2, the following zero-value term is obtained

0 = xTτ1(t)P1xτ1(t)− xTτ (t)P1xτ (t)− 2

∫ t−τ1

t−τ(t)
xT (s)P1ẋ(s)ds+ xTτ (t)P2xτ (t)

− xTτ2(t)P2xτ2(t)− 2

∫ t−τ(t)

t−τ2
xT (s)P2ẋ(s)ds.

(26)
Substituting (25)−(26) into (22) yields

V̇ (xt) = ξT (t)
(
Sym

{
Υ1(τ(t))

}
+

8∑

i=1

Πi

)
ξ(t)−

2∑

i=1

=̄2i(t)− ℘23(t), (27)

where Υ1(τ(t)),Πi, (i = 1, 2, · · · , 8) are defined in (20), and ℘23(t) is defined
in (24), and

=̄21(t) =

∫ t−τ1

t−τ(t)
ηT3 (s)S̄2η3(s)ds, =̄22(t) =

∫ t−τ(t)

t−τ2
ηT3 (s)Ŝ2η3(s)ds.

For any matrices N1, N2, N3, N4 ∈ R7n×2n, letting χ in (7) be χ = G7ξ(t),
and using Lemma 1 obtains

−=̄21(t)− =̄22(t) ≤ ξT (t)
(
Υ2(τ(t)) + Π9 + Π10

)
ξ(t), (28)

where Υ2(τ(t)),Πi, (i = 9, 10) are defined in (20).
Then, for any matrices N5, N6 ∈ R3n×n, letting χ in (7) be χ = G16ξ(t), using
Lemma 2, we can obtain

− ℘23(t) ≤ ξT (t)
(
α1(t)α2(t)Ξ3 + Υ3(τ(t))

)
ξ(t), (29)

where Ξ3 and Υ3(τ(t)) are defined in (20).
Since Λi ∈ D+, (i = 1, 2, · · · , 8), it follows from (5) that

$i(s) = 2[L2x(s)− f(x(s))]TΛi[f(x(s))− L1x(s)] ≥ 0, (i = 1, 2), (30)

and

$i(s1, s2) = 2[L2(x(s1)− x(s2))− (f(s1)− f(s2))]
TΛi[(f(s1)− f(s2))

− L1(x(s1)− x(s2))] ≥ 0, (i = 3, 4, · · · , 8),
(31)
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which imply

$1(t) +$2(t− τ(t)) +$3(t, t− τ(t)) +$4(t, t− τ1) +$5(t, t− τ2)
+$6(t− τ2, t− τ1) +$7(t− τ(t), t− τ1) +$8(t− τ2, t− τ(t)) ≥ 0.

(32)

Substituting (28)−(29) and (32) into (27), we can obtain

V̇ (xt)− γuT (t)u(t)− 2yT (t)u(t) ≤ ξT (t)
(
Ψ(τ(t)) + α1(t)α2(t)Ξ3

)
ξ(t).

(33)
On the other hand, we should note that Ψ(τ(t))+α1(t)α2(t)Ξ3 is a quadratic
function with respective to τ(t) and can not directly be solved by Matlab LMI
toolbox. Combining Lemma 4 with the convex combination method [43], if
(17)−(19) satisfy, then Ψ(τ(t)) + α1(t)α2(t)Ξ3 < 0.
Hence,

V̇ (xt)− γuT (t)u(t)− 2yT (t)u(t) < 0. (34)

By integrating (34) over the time period from 0 to tp, we have

2

∫ tp

0

yT (s)u(s)ds ≥ V (x(tp), t)− V (x(0), 0)− γ
∫ tp

0

uT (s)u(s)ds

≥ −γ
∫ tp

0

uT (s)u(s)ds,

(35)

which shows that DNNs (16) is passive in the sense of Definition 1. The
proof is completed.

Remark 3. In the proof of Theorem 1, slack matrices P1, P2 are intro-
duced in the zero-value FWM equation (26). In addition, different from
[10, 30, 31], the AFBI is used to deal with −

∫ t−τ1
t−τ(t) η

T
3 (s)S̄2η3(s)ds and

−
∫ t−τ(t)
t−τ2 ηT3 (s)Ŝ2η3(s)ds. The term (τ(t) − τ1)

∫ t−τ(t)
t−τ2 ẋT (s)R2ẋ(s)ds is re-

tained and is handled by the AFBI. After the treatment with the AFBI,
more matrix variables are introduced in LMIs, accordingly, Theorem 1 is less
conservativeness.
As considered in many existing works, when the rate of change of delay τ(t)

satisfies
τ̇(t) ≤ µ, (36)

where µ is a known constant, we slightly modify the LKF as follows

V̄ (xt) = V (xt) +

∫ t

t−τ(t)
ηT2 (s)Q4η2(s)ds, Q4 ∈ S+

2n. (37)

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Similar to the proof procedure of Theorem 1, we can obtain the following
Corollary 1.
Corollary 1. For given scalars 0 ≤ τ1 ≤ τ2, µ, DNNs (16) satisfying (4) and
(36) is passive, if there exist matrices P ∈ S+

4n, Q1, Q4, S2 ∈ S+
2n, Q2, Q3, S1, R1,

R2 ∈ S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices P1, P2 ∈
Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n, N5, N6 ∈ R3n×n and a scalar
γ > 0 such that the following LMIs hold

Ψi + diag{Q̄4, 0, 0} < 0, (i = 1, 2), (38)

Ψ3 + diag{Q̄4, 0, 0, 0, 0} < 0, (39)

where

Q̄4 = GT
34Q4G34 + (1− µ)GT

35Q4G35, G34 = [eT1 e
T
5 ]T , G35 = [eT3 e

T
6 ]T ,

(40)
and other notations are the same as given in Theorem 1.
Remark 4. Different from [30], it can be seen that the delay-product-type

term −α1(t)
∫ t−τ(t)
t−τ2 ẋT (s)R2ẋ(s)ds in V̇ (xt) is retained in Theorem 1 and

Corollary 1. In order to clearly check its contribution to conservativeness,
the following Theorem 2 and Corollary 2, which just need to ignore the delay-
product-type term from Theorem 1 and Corollary 1, are given as follows.
Theorem 2. For given scalars 0 ≤ τ1 ≤ τ2, DNNs (16) satisfying (4) is
passive, if there exist matrices P ∈ S+

4n, Q1, S2 ∈ S+
2n, Q2, Q3, S1, R1, R2 ∈

S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices P1, P2 ∈
Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n and a scalar γ > 0 such that the
following LMIs hold

Ψi + diag{(i− 2)iτ12Π13, 0, 0} < 0, (i = 1, 2). (41)

When τ(t) satisfies (36), we also obtain the corresponding result.
Corollary 2. For given scalars 0 ≤ τ1 ≤ τ2, µ, DNNs (16) satisfying (4) and
(36) is passive, if there exist matrices P ∈ S+

4n, Q1, Q4, S2 ∈ S+
2n, Q2, Q3, S1, R1, R2 ∈

S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices P1, P2 ∈
Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n and a scalar γ > 0 such that the
following LMIs hold

Ψi + diag{Q̄4 + (i− 2)iτ12Π13, 0, 0} < 0, (i = 1, 2). (42)
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3.2. Passivity criteria for uncertain system

Now we extend Theorems 1−2 and Corollaries 1−2 to uncertain DNNs
(1), then the following theorems and corollaries can be derived.
Theorem 3. For given scalars 0 ≤ τ1 ≤ τ2, DNNs (1) satisfying (2)−(4)
is passive, if there exist matrices P ∈ S+

4n, Q1, S2 ∈ S+
2n, Q2, Q3, S1, R1, R2 ∈

S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices P1, P2 ∈
Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n, N5, N6 ∈ R3n×n and scalars
γ > 0, εi > 0(i = 1, 2, 3) such that the following LMIs hold

Ωi =




Φi τ1ℵ3 τ1ℵ4 τ12ℵ5 f(τ(t))|τ(t)=τ 3+(−1)i−1

2

εiℵ6
∗ −S1 0 0 τ1S

T
1 H 0

∗ ∗ −2R1 0 τ1R
T
1H 0

∗ ∗ ∗ −2R2 τ12R
T
2H 0

∗ ∗ ∗ ∗ −εiI 0
∗ ∗ ∗ ∗ ∗ −εiI



< 0, (i = 1, 2),

(43)

Ω3 =




Φ1 τ12ℵ1 τ12ℵ2 τ1ℵ3 τ1ℵ4 τ12ℵ5 f(τ(t))|τ(t)=τ2 ε3ℵ6
∗ −R2 0 0 0 0 0 0
∗ ∗ −3R2 0 0 0 0 0
∗ ∗ ∗ −S1 0 0 τ1S

T
1 H 0

∗ ∗ ∗ ∗ −2R1 0 τ1R
T
1H 0

∗ ∗ ∗ ∗ ∗ −2R2 τ12R
T
2H 0

∗ ∗ ∗ ∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε3I




< 0,

(44)
where

Φi = Ψi + diag{−Π3 − τ 212GT
3 S2G3, 0, 0}, (i = 1, 2),

ℵ3 = [ST1 B 0 0]T , ℵ4 = [RT
1B 0 0]T , ℵ5 = [RT

2B 0 0]T ,

ℵ6 = [C 0 0]T , C = −E1e1 + E2e5 + E3e6,

M(τ(t)) = GT (τ(t))P [I 0 0 0]T + eT1 (L2D2 − L1D1)− eT5 (D2 −D1),

f(τ(t)) = [HTMT (τ(t)) 0 0]T ,

(45)

and other notations are the same as Theorem 1.
Proof. Using Schur complement, it shows that (17)−(19) are equivalent to
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(46)−(47),

Ψ̄i =




Φi τ1ℵ3 τ1ℵ4 τ12ℵ5
∗ −S1 0 0

∗ −2R1 0
∗ ∗ −2R2


 < 0, (i = 1, 2), (46)

Ψ̄3 =




Φ1 τ12ℵ1 τ12ℵ2 τ1ℵ3 τ1ℵ4 τ12ℵ5
∗ −R2 0 0 0 0
∗ ∗ −3R2 0 0 0
∗ ∗ ∗ −S1 0 0
∗ ∗ ∗ ∗ −2R1 0
∗ ∗ ∗ ∗ ∗ −2R2



< 0. (47)

Replacing A,W0,W1 in (46)−(47) with A+HF (t)E1,W0 +HF (t)E2,W1 +
HF (t)E3, we can obtain

Ψ̄i + ΘdiF (t)Θei + ΘT
eiF

T (t)ΘT
di < 0, (i = 1, 2), (48)

and
Ψ̄3 + Θd3F (t)Θe3 + ΘT

e3F
T (t)ΘT

d3 < 0, (49)

with
Θdi = [fT (τ(t))|τ(t)=τ 3+(−1)i−1

2

τ1H
TS1 τ1H

TR1 τ12H
TR2]

T , (i = 1, 2),

Θd3 = [fT (τ(t))|τ(t)=τ2 0 0 τ1H
TS1 τ1H

TR1 τ12H
TR2]

T ,
Θei = [ℵT6 0 0 0 0], (i = 1, 2), Θe3 = [ℵT6 0 0 0 0 0 0].
Using Lemma 5, for any scalars εi > 0 (i = 1, 2, 3), one can obtain

Ψ̄i + ε−1i ΘdiΘ
T
di + εiΘ

T
eiΘei < 0, (i = 1, 2), (50)

and
Ψ̄3 + ε−13 Θd3Θ

T
d3 + ε3Θ

T
e3Θe3 < 0. (51)

Based on Schur complement, (50)−(51) are equivalent to (43)−(44). The
proof is completed.
Similar to the proof of Theorem 3, we can obtain the following theorem 4
and Corollaries 3−4. Their detailed proofs are omitted here.
Corollary 3. For given scalars 0 ≤ τ1 ≤ τ2, µ, DNNs (1) satisfying (2)−(4)
and (36) is passive, if there exist matrices P ∈ S+

4n, Q1, Q4, S2 ∈ S+
2n, Q2, Q3, S1,

R1, R2 ∈ S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices
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P1, P2 ∈ Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n, N5, N6 ∈ R3n×n and
scalars γ > 0, εi > 0(i = 1, 2, 3) such that the following LMIs hold

Ωi + diag
{
Q̄4, 0, 0, 0, 0, 0, 0, 0

}
< 0, (i = 1, 2), (52)

Ω3 + diag
{
Q̄4, 0, 0, 0, 0, 0, 0, 0, 0, 0

}
< 0, (53)

where Q̄4 is defined in (40) and other notations are the same as given in
Theorem 3.
Theorem 4. For given scalars 0 ≤ τ1 ≤ τ2, DNNs (1) satisfying (2)−(4)
is passive,if there exist matrices P ∈ S+

4n, Q1, S2 ∈ S+
2n, Q2, Q3, S1, R1, R2 ∈

S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices P1, P2 ∈
Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n and scalars γ > 0, εi > 0(i =
1, 2, 3) such that the following LMIs hold

Ωi + diag
{

(i− 2)iτ12Π13, 0, 0, 0, 0, 0, 0, 0
}
< 0, (i = 1, 2). (54)

Corollary 4. For given scalars 0 ≤ τ1 ≤ τ2, µ, DNNs (1) satisfying (2)−(4)
and (36) is passive, if there exist matrices P ∈ S+

4n, Q1, Q4, S2 ∈ S+
2n, Q2, Q3, S1,

R1, R2 ∈ S+
n ,Λk, Dj ∈ D+

n (k = 1, 2, · · · , 8, j = 1, 2), symmetric matrices
P1, P2 ∈ Rn×n, any matrices N1, N2, N3, N4 ∈ R7n×2n and scalars γ > 0, εi >
0(i = 1, 2, 3) such that the following LMIs hold

Ωi + diag
{
Q̄4 + (i− 2)iτ12Π13, 0, 0, 0, 0, 0, 0, 0

}
< 0, (i = 1, 2). (55)

Remark 5. In this paper, Theorems 1−4 and Corollaries 1−4 are presented
to guarantee passive stability for NNs with time-varying delay in the form
of LMIs, which can be easily solved by Matlab LMI toolbox [44]. The allow-
able maximum upper bounds (AMUBs) τ2 can be determined by solving the
following constraint optimization problem (see Theorem 3)

max
P, Si, Ri, Pi, Di, Qj , εj , Nl,Λk, γ

(i = 1, 2, j = 1, 2, 3, l = 1, 2, · · · , 6, k = 1, 2, · · · , 8)

τ2

s.t. (43)− (44) hold

(56)

4. Numerical examples

In the section, four numerical examples are given to demonstrate the
effectiveness of the obtained results in this paper.
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Table 1: The AMUBs τ2 with different τ1 (Example 1)

τ1 0.5 1.5 2.0

[30] 2.3918 3.2386 3.7023
Theorem 1 3.9120 4.5899 5.0897
Theorem 2 3.2090 3.6200 4.1162

Example 1. Consider DNNs (16) with the following parameters [30]

A = diag{2.5, 2}, W0 =

[
1.3 1
−0.5 0.5

]
, W1 =

[
0.9 0.5
−0.3 0.4

]
,

u(t) = [5cos(2t) − 3sin(0.5t)]T , Ci = I (i = 1, 2, 3).

The activation functions are given by fi(xi) = 0.5(|xi + 1|− |xi− 1|), (i =
1, 2), which satisfies (5) with l−i = 0, l+i = 1, (i = 1, 2). The delay τ(t) = τ1+
(τ2 − τ1)|sin(ωt)|, where 0 ≤ τ1 ≤ τ2, and ω is a positive scalar. Fig. 1 gives
the curve of τ(t) with ω = 1, t ∈ [0 4π], τ1 = 0.5, and τ2 = 3.2090, which indi-
cates that τ(t) is continuous but non-differentiable at tk = kπ, (k = 1, 2, 3).
Thus, the results derived in [19, 20] can not directly ensure passivity of
DNNs (16) satisfying (4). Based on Theorems 1−2, we calculate the allow-
able maximum upper bounds (AMUBs) τ2 for different τ1, such that DNNs
(16) satisfying (4) is passive, which are given in Table 1. It shows that the
obtained results are clearly better than those in [30], and Theorem 1 indeed
can produce much better results than Theorem 2.
When τ(t) = 0.5 + 2.7090|sint|, Fig. 2 shows the state trajectories of DNNs

(16) with zero input u(t) and 10 random initial states, which indicates DNNs
(16) is stable.

Example 2. Consider DNNs (16) with the following parameters

A = diag{2.2, 1.8}, W0 =

[
1.2 1
−0.2 0.3

]
, W1 =

[
0.8 0.4
−0.2 0.1

]
, C1 = I,

Ci = 0 (i = 1, 2).The activation functions are given by fi(xi) = 0.5(|xi + 1|−
|xi − 1|), (i = 1, 2).

This example has been extensively discussed in [30, 31, 33]. The AMUBs
τ2 with various µ are listed in Table 2 by using Corollaries 1−2. Table 2
also gives the improvements between Corollary 1 and the recent work [31].
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Figure 1: The curve of time delay τ(t) (Example 1)
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Figure 2: The state trajectories with u(t) = [0 0]T (Example 1)
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Table 2: The AMUBs τ2 with different µ and τ1 = 0 (Example 2)

µ 0.5 0.9 1

[21, 23, 29] <1.8500 <1.7700 <1.7500
[20] 3.0430 2.8428 2.8036
[30] 3.1127 2.9415 2.9059
[33] 3.2019 3.0620 3.0612
[31] 3.2659 3.1300 3.0918
Corollary 2 3.2548 3.1277 3.1162
Corollary 1 4.7413 3.7219 3.7133
Improvements over [31] 45.18% 18.19% 20.10%

Table 3: The AMUBs τ2 with different µ and τ1 = 0 (Example 3)

µ 0 0.5 0.7

[25] 0.7340 0.6834 0.6335
[19] 0.9722 0.9368 0.9109
[8] ∞ 1.0760 1.0704
Corollary 2 0.9645 0.9274 0.9263
Corollary 1 1.4945 1.4089 1.3855

Corollary 1 is less conservative than those of [30, 31, 33].
To further comparison, when µ is unknown, we calculate the AMUBs τ2,

such that DNNs (16) is passive. Applying Theorems 1−2, the AMUBs τ2 are
3.7113 and 3.1163, respectively, which are larger than 2.9068 by [30].

Example 3. Consider DNNs (16) with the following parameters

A = diag{1.4, 1.5}, W0 =

[
1.2 1.0
−1.2 1.3

]
, W1 =

[
−0.2 0.5

0.3 − 0.8

]
,

Ci(i = 1, 2, 3) and the activation functions are the same as described in
Example 2. For various µ, we calculate the MAUBs τ2 by using Corollaries
1−2. The obtained results in this paper and those in [8, 19, 25] are listed in
Table 3. It is clear that Corollary 1 is less conservative than others especially
when µ = 0.5 and µ = 0.7.
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Example 4. Consider DNNs (1) with the following parameters

A = diag{2.2, 1.5}, W0 =

[
1 0.6
0.1 0.3

]
, W1 =

[
1 −0.1
0.1 0.2

]
, Ci = 0(i = 2, 3)

F (t) = diag{sint, cost}, C1 = I,H = E1 = 0.1I, E2 = 0.2I, E3 = 0.3I.

The activation functions are assumed to be fi(xi) = tanh(xi), (i = 1, 2).
By applying Corollaries 3−4, we can obtain the AMUBs τ2 with various

µ, which are listed in Table 4, in which Th. indicates Theorem. Table 4 also
gives the improvements between Corollary 3 and the recent work [20]. The
improvements over the existing best results in [20] are 77.49% for µ = 0.3,
56.04% for µ = 0.5, and 49.33% for µ = 0.7, which implies that Corollary 3
has significant improvements over [18, 20, 22].

In addition, we give a comparative result on the total number of the
scalar decision variables (NDVs) to obtain AMUBs τ2 in Table 5. From Table
5, one can see that the NDVs of Corollaries 3 − 4 are bigger than the ones
provided by [18, 20, 22].

To confirm one of the obtained results in Table 4 (τ1 = 0, µ = 0.5, τ2 =
2.1287), the state trajectories and output trajectories of DNNs (1) with and
without the input u(t) are depicted in Figs. 3−6. From Figs. 3−4, we can
see that DNNs (1) with input u = [1 + cos(2t) 1− sin(2t)]T is passive in the
sense of Definition 1 and can keep internally stable. By adopting the product
of input and output as the energy provision, it embodies energy attenuation
character. That is, passive system (1) will not produce energy by itself. From
Figs. 5−6, it can be verified that DNNs (1) is stable.
Remark 6. As we can see in (7) and (8), the AFBI needs more matrix
variables. This means that more matrix variables are contained in LMIs.
In addition, Tables 4 − 5 show that Corollaries 3 − 4 can significantly re-
duce conservativeness but need more decision variables, which increases the
calculation complexity to some extent.

5. Conclusion

The problem of robust passivity for uncertain NNs with time-varying de-
lay has been investigated in this paper. An AFBI is employed to manipulate
the augmented single integral terms and its special form is used to deal with
the delay-product-type term. Delay-dependent passivity criteria have been
derived for normal DNNs. Meanwhile, with the same LKF, delay-dependent
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Table 4: The AMUBs τ2 with different µ and τ1 = 0 (Example 4)

µ 0.3 0.5 0.7 0.9 1

[18] (Th.3) 0.8171 0.7581 0.7029 0.6380 0.6059
[22] (Th.2, m=3) 1.1921 1.1590 1.1297 1.1081 1.1008
[20] (Th.2) 1.9091 1.9005 1.8956 1.8911 1.8873
Corollary 4 2.1415 2.1287 2.1270 2.1265 2.1265
Corollary 3 3.3884 2.9655 2.8307 2.7882 2.7851
Improvements over [20] 77.49% 56.04% 49.33% 47.44% 47.57%

m is delay-partitioning number.

Table 5: The total number of the scalar decision variables (NDVs) (Example 4)

Methods NDVs

[18] (Th.3) 12.5n2+10.5n+2
[22] (Th.2, m=3) 31.5n2+21.5n+2
[20] (Th.2) 17n2+9n+2
Corollary 4 73.5n2+18.5n+4
Corollary 3 79.5n2+18.5n+4

m is delay-partitioning numbers.
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Figure 3: The state trajectories with u = [1 + cos(2t) 1− sin(2t)]T (Example 4)
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Figure 4: The output trajectories with u = [1 + cos(2t) 1− sin(2t)]T (Example 4)
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Figure 5: The state trajectories with u(t) = [0 0]T (Example 4)
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Figure 6: The output trajectories with u(t) = [0 0]T (Example 4)

passivity criteria have been obtained without considering the delay-product-
type term. Moreover, the methods are extended to deal with the problem
of passivity analysis of uncertain DNNs. Finally, the effectiveness of the
proposed criteria has been illustrated by four numerical examples.
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