
ARTICLE IN PRESS

Neurocomputing 71 (2008) 2521– 2528
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

� Corr

E-m

aitor.san

(D. Hern

URL
journal homepage: www.elsevier.com/locate/neucom
Class-switching neural network ensembles
Gonzalo Martı́nez-Muñoz �, Aitor Sánchez-Martı́nez, Daniel Hernández-Lobato, Alberto Suárez

Computer Science Department, Escuela Politécnica Superior, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente, 11, Madrid E-28049, Spain
a r t i c l e i n f o

Available online 8 May 2008

Keywords:

Ensembles of classifiers

Neural networks

Class-switching

Bagging

Boosting

Decision trees
12/$ - see front matter & 2008 Elsevier B.V. A

016/j.neucom.2007.11.041

esponding author. Tel.: +34 91497 3364; fax:

ail addresses: gonzalo.martinez@uam.es (G. M

chez@uam.es (A. Sánchez-Martı́nez), daniel.h

ández-Lobato), alberto.suarez@uam.es (A. Su

: http://www.eps.uam.es/�gonzalo (G. Martı́n
a b s t r a c t

This article investigates the properties of class-switching ensembles composed of neural networks and

compares them to class-switching ensembles of decision trees and to standard ensemble learning

methods, such as bagging and boosting. In a class-switching ensemble, each learner is constructed using

a modified version of the training data. This modification consists in switching the class labels of a

fraction of training examples that are selected at random from the original training set. Experiments on

20 benchmark classification problems, including real-world and synthetic data, show that class-

switching ensembles composed of neural networks can obtain significant improvements in the

generalization accuracy over single neural networks and bagging and boosting ensembles. Furthermore,

it is possible to build medium-sized ensembles (� 200 networks) whose classification performance is

comparable to larger class-switching ensembles (� 1000 learners) of unpruned decision trees.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Ensemble methods in machine learning attempt to induce a
collection of diverse predictors which are both accurate and
complementary, so that, when the decisions of the different
learners are combined, better prediction accuracy on previously
unseen data is obtained. The goal is to generate from a given
training data set a collection of diverse predictors whose errors
are uncorrelated. Ensembles built in this manner often exhibit
significant performance improvements over a single predictor in
many regression and classification problems. Ensembles can be
built using different base classifiers: decision stumps [27]
decision trees [11,25,2–4,27,22,9,26,6], neural networks [13,31,23,
28,22,26,8], support vector machines [16,29,30], etc.

To create diversity, ensemble methods introduce perturbations
at some stage in the generation of individual predictors. These
modifications, which often involve injecting some amount of
randomness, can be either in the algorithm that is used to build
the base learners or in the training data used as input for the
induction process. The motivation for introducing an aleatory
element in the base learning algorithm is that different executions
of the randomized training algorithm on the same instance of a
learning problem should generate diverse classifiers. For example,
in randomization [17], the base learners are decision trees
generated with a modified tree construction algorithm. This
algorithm computes the best 20 splits for every internal node and
ll rights reserved.

+34 91497 2235.

artı́nez-Muñoz),

ernandez@uam.es

árez).

ez-Muñoz).
then chooses one of them at random. Another algorithm of this type
consists in generating diverse neural networks using different
random initializations of the synaptic weights. This simple
technique is sufficient to generate fairly accurate ensembles [22].

Perturbations in the training data set can be introduced in
different ways: using bootstrap samples from the training data,
modifying the empirical distribution of the data (either by
resampling or reweighting examples), manipulating the input
features or altering the output targets, etc. Bagging [3], one of the
most widespread methods for ensemble learning, belongs to this
group of techniques. In bagging, each individual classifier is
generated using a surrogate training set of the same size as the
original one. This surrogate set is obtained by random resampling
with replacement from the original training data. In boosting [11],
the empirical distribution is modified by reweighting the training
examples depending on the performance of the generated
classifiers on those examples. Initially, the weights of the training
examples are equal. At each iteration of the boosting process, the
weights of the training data are updated according to whether the
classification produced by the classifier generated in the previous
iteration is correct or not. The weights of correctly classified
examples are decreased, and the weights of incorrectly classified
ones are increased. In this manner, the subsequent base learner
tends to focus on examples that are harder to classify. A weighted
voting scheme, where the contribution made by predictors
obtained later in the ensemble generally decreases, is finally used
to combine the decisions of the individual learners.

Another strategy consists in manipulating the input features.
For instance, one can randomly eliminate features of the input
data before constructing each individual classifier. In random

subspaces [14], each base learner is generated using a different
random subset of the input features. Another data randomization

www.sciencedirect.com/science/journal/neucom
www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2007.11.041
mailto:gonzalo.martinez@uam.es
mailto:aitor.sanchez@uam.es
mailto:daniel.hernandez@uam.es
mailto:daniel.hernandez@uam.es
mailto:alberto.suarez@uam.es
http://www.eps.uam.es/~gonzalo
http://www.eps.uam.es/~gonzalo


ARTICLE IN PRESS

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–25282522
strategy consists in modifying the class labels. In particular, in
classification problems with multiple classes, one can build each
classifier in the ensemble using a different coding of the class
labels [10,12].

The ensemble method analyzed in this work belongs to this
last group of techniques. It is based on randomly modifying the
class label of a fraction of instances of the training set to generate
each classifier. This type of ensemble learning algorithms were
introduced in [5] (flipping) and further analyzed in [18,19] (class-
switching). In [19] it is shown that class-switching ensembles
composed of a sufficiently large number of unpruned decision
trees trained on data where a fairly large fraction of the class-
labels are switched exhibit good generalization performance in a
large number of benchmark classification problems. Typically,
these class-switching ensembles obtain accuracies equivalent or
better than boosting and much better than bagging [19]. In [18],
the performance of the class-switching algorithm using neural
networks as the base learners is analyzed. Because of the different
properties of neural networks and decision trees, several mod-
ifications of the procedure described in [19] need to be made to
generate efficient class-switching ensembles composed of neural
networks. In particular, it is found that, in contrast with class-
switching ensembles of decision trees, one should not attempt to
train the base learners to provide an exact fit of the perturbed
training data. Instead, the number of hidden units for the
individual networks should be determined using standard
architecture selection techniques. Another difference with class-
switching ensembles of decision trees is that, when neural
networks are used as base learners, the best overall results are
obtained with relatively low class-switching rates (p̂ ¼ 1

5 or 2
5).

In this work, we extend the analysis of class-switching
ensembles of neural networks presented in [18] and compare
their performance with class-switching ensembles of decision
trees, bagging and boosting in 20 benchmark classification tasks.
When the base learners are neural networks, class-switching
ensembles significantly outperform bagging and boosting en-
sembles in most of the classification tasks investigated. Compar-
ing class-switching ensembles of neural networks and of decision
trees, a smaller number of networks (around 200 networks) need
to be aggregated in the ensembles to achieve the lowest possible
(asymptotic) error level. This has the advantage that the memory
requirements to store the ensemble are lower than with
ensembles of decision trees, which typically need around 1000
trees to converge.

The article is organized as follows: Section 2 introduces the
class-switching algorithm and the modifications that are neces-
sary to build accurate ensembles composed of neural networks.
Section 3 presents the results of experiments that compare the
classification performance of a single neural network, bagging,
boosting and class-switching ensembles in 20 data sets. Finally,
the conclusions of this research are summarized in Section 4.
2. Class-switching ensembles

Switching the class labels to generate ensembles of classifiers
was first proposed by Breiman [5]. A modification of the initial
flipping algorithm, denominated class-switching, was proposed
and analyzed in [19] using decision trees as base learners. Class-
switching ensembles are built by generating each classifier in the
ensemble using different perturbed versions of the original
training set. To generate a perturbed version of the training
set, a fixed fraction p of the examples of the original training
set are selected at random and the class label of each of these
selected examples is randomly switched to a different one. The
class label randomization can be characterized by a transition
probability matrix

Pj i ¼ p=ðK � 1Þ for iaj,

Pi i ¼ 1� p, (1)

where Pj i is the probability that an example whose label is i

becomes labeled as belonging to class j and K is the number of
classes in the problem.

The class-flipping procedure proposed by Breiman [5] is
designed to ensure that, on average, the class proportions of the
original training set are maintained in the modified training sets.
In [19], it was shown that, for several benchmark problems in
which the training data exhibits an imbalanced distribution of
classes, the ensembles generated with class-flipping do not
perform well. By contrast, class-switching ensembles composed
of decision trees, where the class labels are switched at random,
without attempting to maintain the original distribution of
classes, are competitive with bagging and boosting ensembles
for a large range of balanced and unbalanced classification tasks
[19]. In order for class-switching to work, the fraction of examples
whose class label is changed, p, should be small enough to ensure
that, for any given class and for every region in the attribute space,
there is still a majority of correctly labeled examples (i.e.
examples whose class labels have not been switched). This
condition is fulfilled on the training set (on average) if
Pj ioPi i. Hence, using (1), the switching rate p should fulfill

poðK � 1Þ=K. (2)

From this equation, the ratio of the class-switching probability to
its maximum value is defined as

p̂ ¼ p=pmax ¼ pK=ðK � 1Þ. (3)

Using values of p over this limit would generate, for some regions
in feature space, a majority of examples incorrectly labeled and, in
consequence, those regions would be incorrectly classified by the
ensemble.

Ref. [19] describes the conditions under which class-switching
can generate accurate ensembles composed of C4:5 decision trees.
In that investigation it was found that large ensembles of
unpruned decision trees trained on data with fairly large class-
switching rates p̂ (but sufficiently small so that the perturbed
problem bears a statistical resemblance to the original problem)
exhibit a good generalization performance over a large range of
benchmark classification tasks. Empirically, a value of p̂ � 3

5

produced excellent results in all the classification tasks investi-
gated [19]. The use of unpruned decision trees instead of pruned
trees is motivated by their better performance when combined in
the ensemble. Note that, provided that there are no training
examples with identical attributes values belonging to different
classes, an unpruned decision tree achieves perfect classification
(0-error rate) on the perturbed training set: Each individual tree
exhibits a large amount of overfitting. A consequence of using
models that perfectly fit the perturbed training sets is that it is
necessary to combine a large number of trees in the ensemble
ð� 1000Þ to ensure that the injected noise is averaged out and that
the patterns of the original classification task are amplified by the
aggregation of the individual learners.

Preliminary experiments were performed to check whether the
prescription used for decision trees (i.e. 0 training error of the
trees on the perturbed sets, large ensembles and high values of p̂)
can be directly applied to neural networks [18]. Note that the
architecture and the weights of the neural network have to be
finely tuned for each problem in order to obtain neural models
with � 0-error rates in the modified training sets. This is a
drawback with respect to decision trees, where constructing
0-error models for the training data is straightforward and



ARTICLE IN PRESS

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–2528 2523
problem independent: it is sufficient to grow a decision tree until
perfect classification is achieved.

Fig. 1 displays the value of the generalization error (averaged
over 10 executions) as a function of the number of base classifiers
for class-switching ensembles composed of neural networks
(solid lines) and for decision trees (trait lines) in the Waveform

data set [7]. In these experiments, the architecture and the
connection weights of the network are chosen to achieve 0-error
in the perturbed versions of the training data. In particular,
networks with a single layer of 28 hidden units, trained over 1000
epochs are used. The bottom curves correspond to a p̂ value of 3

5

and the top curves correspond to p̂ ¼ 4
5. The learning curves

displayed in this figure show that the generalization errors of the
class-switching neural ensembles generated in this way are
similar to those produced by class-switching ensembles of
decision trees. However, since the baseline performance given
by a single decision tree is different from the performance of a
neural net, the conclusions for ensembles composed of decision
trees and for ensembles of neural networks are different. The
improvement obtained by decision tree class-switching ensem-
bles over a single tree is substantial (the generalization error of a
single decision tree is � 30%). Hence, for decision trees, the
strategy of generating 0-error base learners seems to perform
well. The simple decision boundaries produced by single trees,
which are based on making partitions parallel to coordinate axes
in attribute space, evolve to more complex and convoluted
boundaries when the decisions of the individual trees are
combined in the ensemble. In contrast, class-switching ensembles
composed of complex neural networks trained to classify the
training data without errors do not significantly improve the
generalization performance of a single network. In particular, for
the Waveform problem single neural networks built with standard
training algorithms (average of 5.2 hidden units and 570 training
epochs), achieve an average error rate of around 20:0%. Class-
switching ensembles composed of 1000 networks, each of
which is designed and trained to achieve 0-error rates on the
perturbed training sets, obtain an improvement of only about
1% point ð19:0%Þ when the class-switching rate is p̂ ¼ 4

5. The
results are slightly better (generalization errors of approximately
17:7%) when the class-switching rates are lower (p̂ ¼ 2

5 or 3
5). By

contrast, class-switching ensembles with class-switching rates
p̂ ¼ ½05 ;

1
5 ;

2
5 ;

3
5� composed of 200 neural nets trained in the same

conditions as the single network obtain average generalization
errors around � 16:5%, which represents a significant improve-
 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

0 100 200 300 400 500 600 700 800 900 1000

er
ro

r

number of classifiers

 Waveform

NNs
Decision trees

Fig. 1. Average test errors for class-switching ensembles composed of neural

networks (solid lines) and decision trees (trait lines) using p̂ ¼ 3
5 (bottom curves)

and p̂ ¼ 4
5 (top curves) for the Waveform data set.
ment over configurations that use more complex nets and larger
ensembles, at a lower computational cost. Note that a neural net
with this smaller number of hidden units does not necessarily
obtain a 0-error model on the modified training data.

In summary, a small ensemble of simple networks whose
architecture is determined by standard procedures is trained
much faster and exhibits better generalization performance than a
large ensemble of complex networks trained to exhibit 0-error on
the perturbed versions of the training set [18]. This is the
prescription that will be used in the remainder of this work to
build class-switching ensembles of neural networks.
3. Experiments

The performance of class-switching ensembles composed of
feedforward neural networks with one hidden layer is investi-
gated in a variety of classification tasks. Experiments are carried
out in 20 classification problems from various fields of application
and with different characteristics (number of classes, number of
attributes, distribution of classes): 16 classification tasks from the
UCI repository [1] and four synthetic data sets (Led24, Ringnorm,
Twonorm and Waveform [7,4]). Table 1 displays the properties of
the selected data sets, the protocol used for testing and the
characteristics of the neural networks used as base learners in the
ensemble.

Nominal features are binarized by assigning a different input
unit for each label of each nominal attribute. In addition, all input
features are normalized to have zero mean and unit standard
deviation. The weights are randomly initialized between �0:1 and
0:1. Sigmoidal transfer functions for both the hidden and the
output layers are used. The number of units in the output layer is
equal to the number of classes in the classification task and the
networks are trained to approximate the posterior probability of
each class. The parameters of the network are determined using
an improved RPROP batch algorithm [15]. The optimal architec-
ture and number of training epochs for the neural networks are
estimated for every partition of the data using cross-validation
within the training data set. The same architecture and number of
epochs is used in bagging, boosting and class-switching ensem-
bles. For the neural networks, the FANN library [21] implementa-
tion is used.

The results given are averages over 100 experiments for each
data set. In the real-world data sets these experiments consist in
the execution of 10� 10-fold cross-validation. For the synthetic
data sets (Led24, Ringnorm, Twonorm and Waveform) different
independent random samples for the training and testing sets are
generated in each experiment. The sizes of these sets are given in
Table 1. Each experiment involves the following steps:
(1)
 Obtain the training and testing sets from the corresponding
cross-validation fold in the real-world data sets and by
random sampling in the synthetic ones.
(2)
 Build a single neural network using the whole training
data set. The configuration of the network is estimated using
10-fold cross-validation in the training data. Different archi-
tectures (3, 5, and 7 hidden units) and different values for the
number of epochs (100, 300, 500 and 1000) are explored. The
configuration that obtains on average the best accuracy on the
separate folds of the training data is employed. For those data
sets in which the cross-validation procedure selected most of
the times the maximum number of epochs and hidden units,
the range of possible hidden units considered is incremented.
In the Led24 and Vehicle data sets it was necessary to test 7, 11,
15 and 20 hidden units; for E-coli, Ionosphere and New-thyroid

the architectures tested are 11, 15, 20 and 25; for Glass and



ARTICLE IN PRESS

Table 1
Characteristics of the data sets, testing method, number of input units, average number (� standard deviation) of hidden units and average number of training epochs for

the neural networks used in the experiments

Data set Train Test Attrib. Classes Input units Hidden units Training epochs

Australian 690 10-fold-cv 14 3 42 4:76� 1:71 227

Breast W. 699 10-fold-cv 9 2 9 4:12� 1:49 328

Diabetes 768 10-fold-cv 8 2 8 5:36� 1:62 364

E-coli 332 10-fold-cv 7 8 7 21:11� 4:73 175

German 1000 10-fold-cv 20 2 61 4:98� 1:65 173

Glass 214 10-fold-cv 9 7 9 25:35� 5:09 448

Heart 270 10-fold-cv 13 2 23 4:84� 1:70 201

Ionosphere 351 10-fold-cv 34 2 34 20:26� 4:47 175

Labor 57 10-fold-cv 16 2 37 4:42� 1:54 405

Led24 200 5000 cases 24 10 48 13:8� 3:96 112

Liver 345 10-fold-cv 6 2 6 5:36� 1:64 282

New-thyroid 215 10-fold-cv 5 3 5 20:32� 4:17 522

Ringnorm 300 5000 cases 20 2 20 27:45� 3:98 570

Sonar 208 10-fold-cv 60 2 60 5:14� 1:46 331

Tic-tac-toe 958 10-fold-cv 9 2 27 4:38� 1:50 200

Twonorm 300 5000 cases 20 2 20 4:36� 1:61 330

Vehicle 846 10-fold-cv 18 4 18 11:7� 3:19 810

Votes 335 10-fold-cv 16 2 48 5:46� 1:50 220

Waveform 300 5000 cases 21 3 21 5:18� 1:48 570

Wine 178 10-fold-cv 13 3 13 5:76� 1:44 428

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–25282524
Ringnorm networks with 15, 20, 25 and 30 neurons in the
hidden layer are considered. The values of the average number
of hidden units and epochs used for training in the different
data sets are displayed in Table 1.
(3)
 Generate a collection of neural networks to be included in the
class-switching ensemble. Each network in the ensemble is
trained on a different perturbed training set. These sets are
obtained from the original training data using different class-
switching rates (p̂ ¼ 0

5 ;
1
5 ;

2
5 ;

3
5 and 4

5). Note that class-switching
with p̂ ¼ 0

5 cannot be considered a class-switching algorithm:
the variability in the ensemble is achieved solely by the fact
that the training process converges to different weight values
because of their different random initializations.
(4)
 Build bagging and boosting ensembles composed of 200
neural networks. Boosting is implemented with resampling.
The architecture of the networks and the number of learning
epochs used for the neural networks in the class-switching,
bagging and boosting ensembles is the same as the config-
uration selected using cross-validation for training a single
neural network.
(5)
 As a reference, class-switching ensembles composed of 1000
C4.5 decision trees [24] with a switching rate of p̂ ¼ 3

5 are
built. This configuration has the best overall results for class-
switching ensembles composed of decision trees in a wide
range of problems [19].
(6)
 The generalization errors of the different classifiers (a single
neural network, bagging, boosting and class-switching) are
estimated on the corresponding test sets.
Fig. 2 displays the evolution of the average generalization error for
bagging, boosting and class-switching ensembles as a function of
the number of neural networks aggregated in the ensemble for a
representative subset of the classification problems investigated.
As a reference, the average generalization error of a single net is
displayed with a horizontal line in the plots. These graphs show
that the convergence of the error of class-switching ensembles is
related to the fraction of switched examples (i.e. p̂): higher p̂

values result in slower convergence rates. For most of the
ensemble configurations, combining 200 networks seems to be
sufficient for the error curves to level off and attain the asymptotic
error rate of the ensemble. However, for some data sets (see for
example the German, Waveform and Wine data sets in Fig. 2) using
a high class-switching probability (class-switching with p̂ ¼ 4

5),
200 does not seem to be sufficient to reach the asymptotic
ensemble error rate. In contrast, randomly initialized neural
network ensembles ðp̂ ¼ 0

5Þ reach their asymptotic error level after
combining a fairly small number of networks ð� 20Þ. In most of
the classification problems investigated the error rate of a single
neural network is above the asymptotic error level of the different
ensembles.

Table 2 presents the test errors averaged over the 100
executions for single networks, bagging, boosting, class-switching
ensembles of neural networks for the different class-switching
rates, p̂, and for class-switching ensembles composed of decision
trees using p̂ ¼ 3

5. For each data set, the generalization errors that
are significantly better than bagging are highlighted in boldface.
The results that are significantly better than boosting are under-
lined. The test used to determine whether differences are
statistically significant is a paired t-test with an alpha-value
0:01. The cross-validation procedure used in the real-world
problems tends to produce estimates of the p-values which are
too large [20]. For this reason, a low alpha-value (1% instead of 5%)
is used in the test. For the synthetic data sets the p-values are not
biased because the experiments are carried out using independent
sampling. The standard deviations of the values reported are given
after the � signs.

The best generalization error for neural based algorithms for
each data set is marked with an asterisk. Considering only neural
network ensembles, class-switching ensembles exhibit the best
results in 14 of the 20 problems analyzed. Bagging has the best
performance in five classification problems, boosting in three and
ensembles with p̂ ¼ 0

5 in two. The performance of a single neural
network is suboptimal in all the classification tasks analyzed and
is generally poorer than most of the ensemble methods investi-
gated. Table 2 also shows that most configurations of class-
switching neural network ensembles reach similar generalization
errors in many data sets. In particular, nearly the same results
(within 0.2 points) are achieved in Diabetes, E-coli, German,
Tic-tac-toe, Twonorm, Votes, Waveform and Wine by class-switch-
ing with p̂ ¼ 1

5 ;
2
5 and 3

5. The p̂ ¼ 4
5 configuration exhibits signifi-

cantly worse results in several data sets (namely German, Glass,



ARTICLE IN PRESS

0.24

0.25

0.26

0.27

0.28

0.29

 0.3

0 20 40 60 80 100 120 140 160 180 200

 diabetes test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

 0.24

 0.25

 0.26

 0.27

 0.28

 0.29

 0.3

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

 german test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

0.26

0.28

 0.3

0.32

0.34

0.36

0.38

 0.4
 glass test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

 0.14
 0.15
 0.16
 0.17
 0.18
 0.19

 0.2
 0.21
 0.22
 0.23
 0.24

 heart test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

 0.3

0.35

 0.4

0.45

 0.5
 led24 test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

 0.16

 0.18

 0.2

 0.22

 0.24

 vehicle test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

0.16

0.17

0.18

0.19

 0.2

0.21

0.22

0.23

0.24
 waveform test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

 0

 0.01

 0.02

 0.03

 0.04

 0.05
 wine test 

nn

bagging
boosting

p̂=0/5
p̂=1/5
p̂=2/5
p̂=3/5
p̂=4/5

Fig. 2. Average test error as a function of the number of classifiers for bagging, boosting and class-switching ensembles for a representative subset of the classification

problems investigated.

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–2528 2525



ARTICLE IN PRESS

Table 2
Average generalization errors

Data sets NN Bag. Boost. Class-switching ðp̂ ¼Þ CS (trees)

0=5 1=5 2=5 3=5 4=5 3=5

Australian 15:8� 4:0 14:7�3:7 15:5� 4:0 14:7�4:0 14:7�3:8 14:5�3:7 14:0�3:7 �13:9�3:5 12:5�3:7
Breast W. 3:9� 2:5 3:9� 2:4 4:3� 2:5 3:8� 2:4 3:8�2:4 3:7�2:2 �3:3�2:3 �3:3�2:3 3:1�2:1
Diabetes 25:9�4:7 24:9�4:6 27:6� 4:5 24:8�4:7 24:9�4:5 24:8�4:2 24:8�4:4 �24:6�4:7 25:3�3:9

E-coli 15:7� 5:9 14:6� 5:3 14:7� 5:3 14:3� 5:4 13:7�5:3 13:8�5:3 13:8�5:2 �13:6�5:1 13:7� 5:0

German 26:2� 5:4 �24:7� 5:9 25:2� 5:3 25:0� 6:2 24:8� 5:9 24:9� 5:9 24:7� 6:0 25:7� 6:4 24:5� 2:5

Glass 31:7� 9:6 28:9� 8:4 27:0� 8:3 27:5� 8:8 26:7� 8:7 26:6� 9:0 �26:3� 8:3 29:4� 8:9 21:0�9:2
Heart 17:3� 7:0 �15:6�7:5 18:5� 7:1 16:0�7:2 16:1�7:3 �15:6�6:8 16:3�7:0 17:0�7:0 20:4� 7:2

Ionosphere 8:1� 5:1 7:9� 4:6 8:3� 4:7 7:1�4:6 �7:0�4:2 7:5�4:4 7:8� 4:0 9:3� 4:2 6:0�3:7
Labor 8:6� 11:9 8:4� 11:9 �6:3� 11:2 7:2� 10:7 6:6� 11:1 7:5� 12:0 10:8� 14:6 14:5� 16:5 11:0� 12:6

Led24 40:0� 3:4 �30:8�1:9 35:1� 2:1 �30:8�1:8 31:0�1:8 32:2�2:0 34:6� 2:0 39:6� 2:1 34:2�2:0

Liver 31:4� 8:3 29:8� 8:3 29:1� 6:9 30:0� 8:3 29:2� 7:7 �28:4� 8:3 28:7� 7:8 28:7� 7:5 29:5� 7:2

New-thyroid 5:3� 4:7 5:1� 4:8 �3:6� 3:5 4:7� 4:3 4:0� 3:8 3:9� 3:7 4:2� 3:9 4:8� 4:6 2:9� 3:6
Ringnorm 15:7� 1:5 10:7� 2:0 4:6� 0:8 10:6� 1:5 4:4� 1:3 �3:4�1:0 3:8�0:7 6:2� 0:9 5:3� 0:6
Sonar 23:5� 8:8 20:2� 8:7 �18:7� 8:4 21:3� 8:4 21:0� 8:5 21:1� 9:2 21:6� 9:3 23:2� 9:6 21:6� 8:3

Tic-tac-toe 2:2� 1:8 1:8�1:3 2:0� 1:3 1:9� 1:4 1:8�1:3 1:8�1:2 �1:7�1:2 7:7� 5:5 2:2� 1:7

Twonorm 3:8� 0:7 3:1�0:4 3:4� 0:5 3:5� 0:6 3:1�0:4 �2:9�0:4 �2:9�0:5 3:3� 1:1 3:9� 0:3

Vehicle 19:2� 3:6 17:0� 3:9 17:5� 4:0 16:1�3:9 �15:9�3:6 17:1� 3:5 18:4� 3:5 20:9� 3:9 23:2� 3:6

Votes 5:2� 3:3 �4:2�3:3 4:9� 3:0 4:5� 3:0 4:8� 3:3 5:0� 3:4 5:0� 3:4 5:5� 3:5 4:2� 2:7

Waveform 20:0� 4:1 �16:4�1:0 16:7� 0:9 �16:4�1:0 16:5� 1:0 16:5�0:9 16:7� 1:0 18:4� 1:2 16:9� 0:8

Wine 4:1� 4:1 2:1� 3:7 2:6� 3:8 2:0� 3:4 1:5�2:8 �1:4�2:6 1:6�3:0 2:1� 3:5 1:4� 2:8

Average 16:2� 5:0 14:2� 4:7 14:3� 4:4 14:1� 4:6 13:6� 4:4 13:6� 4:5 14:1� 4:6 15:6� 5:1 14:1� 4:2

Table 3
Win/draw/loss records for ensembles composed of pruned trees

NN Bag. Boost. Class-switching ðp̂ ¼Þ CS-DT Total

0=5 1=5 2=5 3=5 4=5

NN X 0/5/15 1/8/11 0/2/18 0/3/17 0/4/16 0/6/14 4/7/9 2/8/10 7/43/110

Bag. 15/5/0 X 8/9/3 2/15/3 1/13/6 2/12/6 4/10/6 10/6/4 6/8/6 48/78/34

Boost. 11/8/1 3/9/8 X 4/9/7 1/8/11 1/7/12 3/8/9 9/6/5 6/8/6 38/63/59

0/5 18/2/0 3/15/2 7/9/4 X 1/14/5 2/11/7 5/9/6 8/8/4 5/10/5 49/78/33

1/5 17/3/0 6/13/1 11/8/1 5/14/1 X 2/15/3 5/11/4 11/7/2 8/9/3 65/80/15

2/5 16/4/0 6/12/2 12/7/1 7/11/2 3/15/2 X 5/14/1 14/5/1 7/10/3 70/78/12
3/5 14/6/0 6/10/4 9/8/3 6/9/5 4/11/5 1/14/5 X 11/9/0 5/11/4 56/78/26

4/5 9/7/4 4/6/10 5/6/9 4/8/8 2/7/11 1/5/14 0/9/11 X 3/8/9 28/56/76

CS-DT 10/8/2 6/8/6 6/8/6 5/10/5 3/9/8 3/10/7 4/11/5 9/8/3 X 46/72/42

The significance of the differences in performance is measured using a paired t-test with an alpha-value of 0:01.

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–25282526
Ionosphere, Labor, Ringnorm, Vehicle). In some cases this is due to
the fact that larger ensembles ought to have been used.

The relative performance of neural network and decision tree
ensembles is problem dependent. The differences between the
generalization errors of the two types of class-switching ensem-
bles are significant in many classification tasks. In Australian,
Glass, Ionosphere and New-thyroid, class-switching ensembles of
decision trees outperform all the configurations of neural network
ensembles. By contrast, in Heart and Vehicle, and to a lesser extent
in Labor and Twonorm, the decision tree ensembles are inferior to
ensembles of neural networks.

Table 3 shows win/draw/loss records. The numbers displayed in
each cell correspond to the number of data sets in which the
algorithm displayed in the leftmost column wins/draws/losses
when compared to the algorithm displayed in the top row. A
difference is considered to be significant when a paired t-test has
a p-value smaller than 0:01. For each column, the record with the
largest value of wins–losses is highlighted in boldface. These
results show that, for most of the data sets investigated, the
ensembles considered have significantly better classification
accuracies than single neural networks. The best performance
with respect to a single neural network is the randomly initialized
neural network ensemble: 18 significant wins and no significant
losses. Single neural networks significantly outperform boosting
in one data set, class-switching with p̂ ¼ 4

5 four times and class-
switching ensembles of decision trees in two problems.

Neural network ensembles generated with class-switching
rates of p̂ ¼ 1

5 and 2
5 obtain the best overall results. These

configurations rarely perform significantly worse than bagging
and they perform better than bagging six times. Class-switching
with p̂ ¼ 3

5 and 4
5 improve the results of bagging in several data sets

but also perform significantly worse than bagging in other data
sets. The performance of randomly initialized neural network
ensembles ðp̂ ¼ 0

5Þ is very similar to the performance of bagging:
both methods draw in 15 out of the 20 data sets. This observation
confirms the results obtained by Optiz and Maclin [22]. The
comparison of class-switching ensembles of neural networks with
respect to boosting is more favorable. Class-switching with p̂ ¼ 1

5

and 2
5 is significantly worse than boosting only in one data set and

they outperform boosting 11 and 12 times, respectively. In
addition, it can be observed that boosting combined with neural
nets is not as effective as boosting of decision trees: for the
investigated data sets bagging significantly outperforms boosting
eight times and looses three times. This observation confirms



ARTICLE IN PRESS

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–2528 2527
previously observed results [22] and indicates that using standard
boosting algorithms to combine strong learners is less effective
than boosting weak learners. For class-switching ensembles
composed of decision trees the results are problem dependent:
Decision tree ensembles perform better than bagging and
boosting in six problems and worse also in six problems. The
comparison with class-switching ensembles of neural networks is
less favorable for decision tree ensembles (eight significant losses
and three wins with respect to the p̂ ¼ 1

5 neural network
ensemble). According to the experiments performed, the best
overall method (see last column of Table 3) is class-switching with
p̂ ¼ 2

5: It wins in 70 out of 160 comparisons, draws 78 times and
loses only on 12 occasions.

The relative classification speeds of class-switching ensembles
composed of decision trees or of neural networks also vary for
different problems: even though ensembles of neural networks
are smaller, this advantage can be offset by the complexity of the
classification process in the networks, which can be larger than in
decision trees. The learning process in individual networks can
also be slow. This implies that, regarding training speed, there is
no clear overall advantage for any of the two types of class-
switching ensembles.
4. Conclusions

Class-switching ensembles generate a diversity of classifiers
using different perturbed versions of the training set [5,19].
To generate each perturbed set, a fraction of examples is randomly
selected and their class labels are switched also at random to a
different value. The prescription used for decision trees (generate
individual classifiers that achieve 0-error in the perturbed training
data sets) is found not to be the appropriate configuration
for neural network ensembles constructed with class-switching
[18]. Combining neural networks whose architecture is designed
by standard architecture selection techniques (and that therefore
do not necessarily achieve 0-error in the perturbed training data
sets) produces significantly better results than ensembles com-
posed of more complex nets that do achieve 0-error in the
perturbed data sets. Since the networks in the ensemble are not
constructed to have 0-error on the perturbed training sets, they
seem to avoid overfitting to the noise injected, at least to a certain
extent, and perform well in the original unperturbed problem. As
a consequence, the number of base learners needed for the
convergence of the ensemble errors to their asymptotic values is
smaller than in class-switching ensembles composed of unpruned
decision trees.

The classification accuracy of class-switching neural network
ensembles is better or equivalent to bagging and better than
boosting and single nets in the problems investigated. Ensembles
generated with a class-switching rate of p̂ ¼ 1

5 or 2
5 obtain the best

overall results. These configurations (i.e. p ¼ 1
5 ;

2
5) rarely obtain

generalization errors significantly worse than bagging or boosting.
This is not the case for other values of p̂ (that is, p̂ ¼ 0

5 ;
3
5 and 4

5),
where results both better and worse than boosting and bagging
have been observed.

The question of whether to use neural networks or decision
trees as base learners in a class-switching ensemble has an
answer that is problem dependent both in terms of accuracy
and of classification speed. Nevertheless, both types of ensembles
have demonstrated an excellent overall performance in the
classification tasks investigated. This establishes that class-
switching can be a useful randomization mechanism for the
creation of ensembles of classifiers with very different character-
istics, such as decision trees and neural networks.
Acknowledgments

The authors acknowledge financial support from the Spanish
Dirección General de Investigación, project TIN2004-07676-C02-02.
Daniel Hernández-Lobato acknowledges support from the Con-
sejerı́a de Educación de la Comunidad Autónoma de Madrid and
from the European Social Fund under an F.P.I. grant.

References

[1] A. Asuncion, D.J. Newman, UCI machine learning repository, 2007 hhttp://
www.ics.uci.edu/�mlearn/MLRepository.htmli.

[2] E. Bauer, R. Kohavi, An empirical comparison of voting classification
algorithms: bagging, boosting, and variants, Mach. Learn. 36 (1–2) (1999)
105–139.

[3] L. Breiman, Bagging predictors, Mach. Learn. 24 (2) (1996) 123–140.
[4] L. Breiman, Arcing classifiers, Ann. Statist. 26 (3) (1998) 801–849.
[5] L. Breiman, Randomizing outputs to increase prediction accuracy, Mach.

Learn. 40 (3) (2000) 229–242.
[6] L. Breiman, Random forests, Mach. Learn. 45 (1) (2001) 5–32.
[7] L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression

Trees, Chapman & Hall, New York, 1984.
[8] I. Cantador, J.R. Dorronsoro, Balanced boosting with parallel perceptrons, in: J.

Cabestany, A. Prieto, F.S. Hernández (Eds.), IWANN, Lecture Notes in Computer
Science, Vol. 3572, Springer, 2005.

[9] T.G. Dietterich, An experimental comparison of three methods for construct-
ing ensembles of decision trees: bagging, boosting, and randomization, Mach.
Learn. 40 (2) (2000) 139–157.

[10] T.G. Dietterich, G. Bakiri, Solving multiclass learning problems via error-
correcting output codes, J. Artif. Intell. Res. 2 (1995) 263–286.

[11] Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line
learning and an application to boosting, in: Proceedings of the 2nd European
Conference on Computational Learning Theory, 1995.

[12] J. Fürnkranz, Round robin classification, J. Mach. Learn. Res. 2 (2002)
721–747.

[13] L.K. Hansen, P. Salamon, Neural network ensembles, IEEE Trans. Pattern Anal.
Mach. Intell. 12 (10) (1990) 993–1001.

[14] T.K. Ho, C4.5 decision forests, in: Proceedings of the 14th International
Conference on Pattern Recognition, vol. 1, 1998.

[15] C. Igel, M. Hüsken, Improving the RPROP learning algorithm, in: Proceedings
of the 2nd International Symposium on Neural Computation, ICSC Academic
Press, 2000.

[16] H.-C. Kim, S. Pang, H.-M. Je, D. Kim, S.Y. Bang, Constructing support vector
machine ensemble, Pattern Recognition 36 (12) (2003) 2757–2767.

[17] E.B. Kong, T.G. Dietterich, Error-correcting output coding corrects bias and
variance, in: Proceedings of the 12th International Conference on Machine
Learning, 1995.

[18] G. Martı́nez-Mu noz, A. Sánchez-Martı́nez, A. Suárez, Building ensembles of
neural networks with class-switching, in: S.D. Kollias, A. Stafylopatis, W.
Duch, E. Oja (Eds.), ICANN (1), Lecture Notes in Computer Science, Vol. 4131,
Springer, 2006.

[19] G. Martı́nez-Muñoz, A. Suárez, Switching class labels to generate classifica-
tion ensembles, Pattern Recognition 38 (10) (2005) 1483–1494.

[20] C. Nadeau, Y. Bengio, Inference for the generalization error, Mach. Learn. 52
(3) (2003) 239–281.

[21] S. Nissen, Implementation of a fast artificial neural network library (FANN),
Technical Report, Department of Computer Science, University of Copenha-
gen, 2003. URL: hhttp://fann.sourceforge.net/report/report.htmli.

[22] D. Opitz, R. Maclin, Popular ensemble methods: an empirical study, J. Artif.
Intell. Res. 11 (1999) 169–198.

[23] M.P. Perrone, L.N. Cooper, When networks disagree: ensemble methods
for hybrid neural networks, in: R.J. Mammone (Ed.), Neural Networks
for Speech and Image Processing, Chapman & Hall, London, 1993,
pp. 126–142.

[24] J.R. Quinlan, C4.5 Programs for Machine Learning, Morgan Kaufmann, Los
Altos, CA, 1993.

[25] J.R. Quinlan, Bagging boosting and C4.5, in: Proceedings of the 13th National
Conference on Artificial Intelligence, Cambridge, MA, 1996.

[26] G. Rätsch, T. Onoda, K.-R. Müller, Soft margins for AdaBoost, Mach. Learn. 42
(3) (2001) 287–320.

[27] R.E. Schapire, Y. Freund, P.L. Bartlett, W.S. Lee, Boosting the margin: a new
explanation for the effectiveness of voting methods, Ann. Statist. 12 (5) (1998)
1651–1686.

[28] A.J.C. Sharkey, Combining Artificial Neural Nets: Ensemble and Modular
Multi-Net Systems, Springer, London, 1999.

[29] G. Valentini, T.G. Dietterich, Low bias bagged support vector machines, in: T.
Fawcett, N. Mishra (Eds.), ICML, AAAI press, 2003.

[30] G. Valentini, T.G. Dietterich, Bias–variance analysis of support vector
machines for the development of SVM-based ensemble methods, J. Mach.
Learn. Res. 5 (2004) 725–775.

[31] D.H. Wolpert, Stacked generalization, Neural Networks 5 (2) (1992)
241–259.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://fann.sourceforge.net/report/report.html


ARTICLE IN PRESS

G. Martı́nez-Muñoz et al. / Neurocomputing 71 (2008) 2521–25282528
Gonzalo Martı́nez-Muñoz received the degree of
Licenciado in Physics and the M.Sc. and Ph.D. degrees
in Computer Science from the Universidad Autónoma
de Madrid (UAM), Madrid, Spain in 1995, 2001 and
2006, respectively. Currently, he is Assistant Professor
in the Computer Science Department of the Universi-
dad Autónoma de Madrid, Spain. From 1996 to 2002,
he was with Geosys SL, a Spanish company specialized
in Geographic Information Systems and remote sen-
sing, as a Software Engineer developing Research and
Development projects. His research interests include
machine learning, pattern recognition, neural net-

works, decision trees, ensemble learning and genetic
algorithms.

Aitor Sánchez-Martı́nez received the University Degree
in Computer Science and Engineering from the Universi-
dad Autónoma de Madrid (UAM) in 2006. He worked with
a seven month internship (September 2005–March 2006)
given by the Fundación General de la Universidad
Autónoma de Madrid (FGUAM) in Risklab-Madrid com-
pany. He obtained the ‘‘Aprovechamiento académico
excelente 2005/2006’’ fellowship by Comunidad Autóno-
ma de Madrid to participate in a research project of
pattern recognition and neural networks. From March
2006, he is working for Risklab-Madrid/QRR, a company
specialized in Financial Risk consulting and software

development, as a software designer and developer.
Daniel Hernández-Lobato received the Degree of
Engineer in Computer Science from the Universidad
Autónoma de Madrid (UAM) in 2004. He is currently a
graduate student in the doctoral program of the
Computer Science Department in the same university.
He is the recipient of an FPI grant from the Consejerı́a
de Educación de la Comunidad de Madrid. His research
interests include pattern recognition, machine learning
and Bayesian inference.
Alberto Suárez received the degree of Licenciado in
Chemistry from the Universidad Autónoma de Madrid
(Spain) in 1988, and the Ph.D. degree in Physical
Chemistry from the Massachusetts Institute of Tech-
nology (Cambridge, USA) in 1993. After holding
postdoctoral positions at Stanford University (USA),
the Université Libre de Bruxelles (Belgium), and the
Katholieke Universiteit Leuven (Belgium), he is cur-
rently a professor in the Computer Science Department
of the Universidad Autónoma de Madrid (Spain). He
has worked on relaxation theory in condensed media,
stochastic and thermodynamic theories of non-equili-

brium systems, lattice-gas automata, and decision tree

induction. His current research interests include machine learning, computational
finance and information processing in the presence of noise.


	Class-switching neural network ensembles
	Introduction
	Class-switching ensembles
	Experiments
	Conclusions
	Acknowledgments
	References


