
Neurocomputing 461 (2021) 244–253
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
HEMP: High-order entropy minimization for neural network
compression
https://doi.org/10.1016/j.neucom.2021.07.022
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author
E-mail address: enzo.tartaglione@unito.it (E. Tartaglione).
Enzo Tartaglione a,⇑, Stéphane Lathuilière b, Attilio Fiandrotti a,b, Marco Cagnazzo b, Marco Grangetto a

aUniversity of Torino, Torino, Italy
b Télécom Paris, Paris, France

a r t i c l e i n f o
Article history:
Received 8 March 2021
Revised 20 May 2021
Accepted 6 July 2021
Available online 10 July 2021
Communicated by Zidong Wang

Keywords:
Deep learning
Compression
Entropy
Neural networks
Regularization
a b s t r a c t

We formulate the entropy of a quantized artificial neural network as a differentiable function that can be
plugged as a regularization term into the cost function minimized by gradient descent. Our formulation
scales efficiently beyond the first order and is agnostic of the quantization scheme. The network can then
be trained to minimize the entropy of the quantized parameters, so that they can be optimally com-
pressed via entropy coding. We experiment with our entropy formulation at quantizing and compressing
well-known network architectures over multiple datasets. Our approach compares favorably over similar
methods, enjoying the benefits of higher order entropy estimate, showing flexibility towards non-uniform
quantization (we use Lloyd-max quantization), scalability towards any entropy order to be minimized and
efficiency in terms of compression. We show that HEMP is able to work in synergy with other approaches
aiming at pruning or quantizing the model itself, delivering significant benefits in terms of storage size
compressibility without harming the model’s performance.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Artificial Neural Networks (ANNs) achieve state-of-the-art per-
formance in several tasks via complex architectures with millions
of parameters. Deploying such architectures over resource-
constrained devices such as mobiles or autonomous vehicles
entails tackling a number of practical issues. Such issues include
tight bandwidth and storage caps for delivering and memorizing
the trained networks and limited memory for its deployment.

Let us assume a neural network has to be deployed to a device
such as a smartphone or an autonomous car over a wireless link.
Downloading the network may exhaust the subscriber’s traffic
plan, plus the downloaded network will take storage on the device
that will be unavailable to other applications. In an autonomous
driving context, safety-critical updates may be delayed due to
the limited bandwidth available over the wireless channel [1].
Such examples show the importance of efficiently compressing
neural networks for transmission and storage purposes.

Multiple approaches have been proposed to compress neural
networks. A first approach consists is designing the network topol-
ogy from the ground up to encompass fewer parameters [2,3].
Needless to say, this approach requires designing novel topologies
from scratch. A second approach consists in pruning some param-
eters from the network, i.e. removing some connections between
neurons [4–6], yielding a sparse topology. Pruning might reduce
the memory footprint [7–9], however it does not necessarily min-
imize storage or bandwidth requirements. A third approach con-
sists in quantizing the network parameters [10–12], possibly
followed by entropy-coding the quantized parameters. Similar
approaches achieve promising results, however most quantization
schemes just aim at learning a compressible representation of the
parameters [12,13,8] rather than properly minimizing the com-
pressed parameters entropy. Indeed, the entropy of the quantized
parameters is not differentiable and cannot be easily minimized
in standard gradient descent-based frameworks. In this work, we
tackle the problem of compressing a neural network by minimizing
the entropy of the compressed parameters at learning time.
Enhancing model’s compressibility we are able to reduce required
bandwidth for bit streaming as well as storage required. Deep
models are redundant [14,15]: hence, there is a overhead in the
deep model’s representation, which can be hereby compressed
(See Fig. 1).

This work introduces HEMP, a method that relies on high-order
entropy minimization to allow for efficiently compression of the
parameters of a neural network. The proposed method is illus-
trated in Fig. 2. The main contribution of HEMP is the differentiable
formulation of the quantized parameters’ entropy, which can be

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.07.022&domain=pdf
https://doi.org/10.1016/j.neucom.2021.07.022
mailto:enzo.tartaglione@unito.it
https://doi.org/10.1016/j.neucom.2021.07.022
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

Fig. 1. Effect on the distribution for the continuous parameters w for the conv 2
layer in LeNet5 trained on MNIST for ‘1 regularization (a) and HEMP (b).

Fig. 2. Proposed approach for neural network compression. At training time, we
employ two parametrizations of the same neural network: continuous parameters
are used for loss minimization, while quantized parameters are used for high-order
entropy estimation. A regularization term enforces consistency between the neuron
activations of the networks and a low entropy of the quantized network. The final
model is obtained using any entropy-based encoder.

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
extended beyond first-order with finite computational and mem-
ory complexity. Namely, HEMP relies on a twin parametrization
of the neural network: continuous parameters and the correspond-
ing quantized parameters, where the entropy of the latters is esti-
mated from the entropy of the former. We design a regularization
term around our entropy formulation that can be plugged into gra-
dient descent frameworks to train a network to minimize the
entropy of the quantized parameters No assumptions are made
on the quantization scheme (including non-uniform quantization),
nor entropy coding scheme, that are not part of the proposed
method and towards which our method is totally agnostic.

Other techniques like ‘1 norm or rank-based ones aim at remov-
ing parameters: this has a different effect on the distribution of the
parameters. Indeed, while these other approaches maximize the
frequency of the pruned parameters, which are still encoded with
zeros, HEMP is more general as it is able to enhance the compress-
ibility of any quantized representation for the values.

We experiment with different quantization and entropy coding
scheme showing that training a network to minimize the 2-nd
order entropy of the quantized parameters is already sufficient to
outperform state-of-the-art competing schemes.

The rest of the paper is organized as follows. Section 2 reviews
state-of-the-art approaches in network compression, Section 3
introduces the proposed high-order entropy regularizer, and the
overall training procedure is described in Section 4. Experimental
results are discussed in Section 5 and finally, in Section 6 conclu-
sions are drawn.
2. Related works

A lot of work has been done around neural network size reduc-
tion. In general, we can group them into three large categories,
according to their primary goal.
245
Minimizing the architecture. Focusing from the architectural
point of view, it is possible to design some memory-efficient deep
networks, typically relying on strategies like channel shuffling,
point-wise convolutional filters, weight sharing or a combination
of them. Some examples of customized deep networks towards
memory footprint reduction are SqueezeNet [2], ShuffleNet [16]
and MobileNet-v2 [3]. Recently, a huge interest in automatically
reducing the shape of the deep networks has gained interest, with
works on neural network sparsification [4–6,17] boosted by the
recent lottery ticket hypothesis by Frankle and Carbin [18]. These
approaches address the problem of improving inference efficiency
with limited memory footprint, but do not directly tackle the prob-
lem of reducing stored model size.

Minimizing the computation. Recently, this topic is collecting
ever-increasing interest. While deepening its roots in statistical
physics, some works exploited low-precision training in artificial
neural networks [7,19,20]. A large number of works attempts to
also use low-precision back-propagation signals and low-
precision activations, as it leads to lower power consumption at
inference time [21,9,8]. These techniques, however, do not explic-
itly address the problem of minimizing the storage size of the
entire model.

Minimizing the stored model’s memory. Here the main goal is
not to modify the architecture of a deep model, but to merely com-
press it, to reduce its stored size: while the other two approaches
focused on somehow changing the architecture of the deep model
to simplify it and/or to reduce its memory footprint, here the
objective is to compress a stored model with no architectural
change. Towards this end, many approaches have been proposed:
context-adaptive binary arithmetic coding [12], learning the quan-
tized parameters using the local reparametrization trick [22], clus-
ter similar parameters between different layers [11], using matrix
factorization followed by Tucker decomposition [10], training
adversarial neural networks towards compression [23] or employ-
ing a Huffman encoding scheme [24] are just some of them.
Recently, Oktay et al. proposed an entropy penalized
reparametrizations to the parameters of a deep model, which leads
to competitive compression values sacrificing a little bit the deep
model’s performance [13]. However, their approach has some
training overhead, like the fact they require to train a decoder, they
make their formulation differentiable through the use of straight-
through estimators (STE). The big advantage provided by their
approach relies more in the re-parametrization leading to the
quantization strategy, but the compressibility of their quantized
parameters is limited to arithmetic coding.

Deep learning based compression schemes proposing a direct
high entropy-based regularizer are difficult to design because of
the non-differentiability of the entropy and its computational
heaviness. All the discussed methods do not explicitly minimize
the final compressed file size but they are limited to rigid quanti-
zation and compression schemes [12] or they build dictionaries
on-purpose [24], losing generality. In the next section, we intro-
duce our efficient and differentiable n-th order entropy proxy, to
be used in the HEMP framework: it can be freely associated to
any quantization strategy and any entropic compression algo-
rithm. Differently to the work by Wiedemann et al. [12], HEMP is
not bound to a particular quantization scheme, and provides a
direct, scalable and differentiable entropy estimator on the contin-
uous parameters.
3. Entropy-based regularization

In this section, we describe our entropy-based framework for
quantization. We introduce a regularization formulation that uses
a differentiable entropy proxy, evaluated on the continuous

Table 1
Overview on the notation used in this work.

Symbol Meaning

wl;i i-th (continuous) parameter in the l-th layerbwl;i i-th (quantized) parameter in the l-th layer
ql;i quantization index corresponding

to the i-th parameter in the l-th layer
N quantization levels
n generic quantization index in range 1;N½ �
p bwl;i ! n
� �

probability that the quantized representation

of wl;i will have n as quantization indexbHn
n-th order entropy on the quantization indices

Hn differentiable proxy of bHn proposed
within HEMP

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
parameters of the model, to indirectly reduce the compressed size
of the quantized network. We will show that this term easily
scales-up to any entropy orders, thus improving the compression
efficiency of actual algorithms such as dictionary-based
compression.

3.1. Preliminaries

Here, we introduce preliminaries and notations. Let a feed-
forward, multi-layer artificial neural network be composed of L
layers. Let wl;i 2 R be the i-th parameter of the l-th layer. Let us
assume all ANN parameters are quantized onto N discrete levels,
with:

� quantization index ql;i 2 1;N½ � for every parameter wl;i;
� reconstruction (or representation) levels rl kð Þ; k ¼ 1 . . .N; as
shown in the following, every layer of the ANN model gets its
own optimized set of reconstruction levels.

From these, we get the quantized parameters bwl;i according tobwl;i ¼ rl ql;i

� �
: ð1Þ

Table 1 collects the most recurring symbols of this section.
Please notice that multi-dimensional versions of the symbols are
in bold.

Now, let us consider bwn as the n-uples of the quantized param-
eters, where bwn

j is the j-th n-uple of quantized parameters. In gen-
eral, the n-th order entropy on the quantized model isbHn ¼ �

X
n

p bwn ! n
� �

log2p bwn ! n
� �

; ð2Þ

where kWk0 (L0-norm) is the total number of parameters, n 2 1;N½ �n
and, using the chain rule, we can express p bwn ! n

� �
as

p bwn ! n
� � ¼ n

kWk0
X
j

Yn
m¼1

p bwn
j;m ! nm

\m�1

s¼1

����� bwn
j;s ! ns

� �" #
: ð3Þ

In (3), the ‘‘probability” of the event bwn
j;m ! nm is

p bwn
j;m ! nm

� �
¼ 1nm ql;i

� � ð4Þ

where 1n �ð Þ is the indicator function. Minimizing (2) results in max-
imizing the final compression for the quantized model when using
an entropic compression algorithm ([25,26]). Unfortunately, the
problem in minimizing (2) within a gradient descent based opti-
mization framework lies in the non-differentiability of (4). In the
next section we introduce a differentiable proxy for (4) which
directly optimizes the continuous parameters wl;i such that their
quantization is highly compressible.

3.2. Differentiable n-th order entropy regularization

In the previous section we have stated the impossibility of
directly optimizing (2) using gradient descent-based techniques
because of the non-differentiability of (3). We are going to over-
come this obstacle providing a formulation of (3) based on the dis-
tance between the continuous parameter wl;i and its quantized
reconstruction bwl;i. Here on, we will drop the subscript l, but in
general all the layers have different reconstruction levels.

Let us define first the distance between a parameter wi and the
reconstruction level r nð Þ:
d wi; r nð Þ½ � ¼ wi � r nð Þj j ð5Þ

From (5), we can estimate the probability of binning wi to n
using the softmax function:
246
p wi ! nð Þ ¼ e�d wi ;r nð Þ½ �P
je�d wi ;r jð Þ½ � ð6Þ

Such general formulation is computationally expensive, so we
propose an efficient approximation thereof exploiting a ‘‘bin local-
ity” principle, for which we say that a parameter wi can be binned
to the two closest bins only. Under the assumption of quasi-static
process, indeed, locally the probability of binning the continuous
parameter wi in other bins than the two closest between two iter-
ation steps can be neglected. We refer to these bins as qi;� and qi;þ.
In this case, we know wi 2 r qi;�

� �
; r qi;þ
� �� �

. Here we can design a
relative distance linearly-scaling probability:

p wi ! nð Þ ¼
1� wi�r qi;�ð Þ

Di
n ¼ qi;�

1� r qi;þð Þ�wi

Di
n ¼ qi;þ

0 otherwise

8>>><>>>: ð7Þ

where Di ¼ r qi;þ
� �� r qi;�

� �
. Fig. 3 displays the behavior of (7).

Hence, the binning probability in (7) scales as the relative distance
from the center of the bin. If we combine (7) with (4) and, finally,
with (2), we obtain

Hn ¼ n
kWk0

X
n

X
j

p wn
j ! n

� �" #
�

(

� log2 kWk0ð Þ � log2 nð Þ � log2

X
j

p wn
j ! n

� �" #) ð8Þ

where

p wn
j ! n

� �
¼

Yn
m¼1

p wn
j;m ! nm

\m�1

s¼1

����� wn
j;s ! ns

� �" #
3.3. Study of the entropy regularization term

In this section we are detailing the derivations of the proposed
entropy regularization. Obtaining an explicit formulation for the
update terms allows to efficiently implement the update rule
explicitly (when using gradient-based optimizers, without relying
on the automatic differentiation packages) and to study both the
stationary points of the regularization term and bounds of the gra-
dient respectively (See Fig. 4).

3.3.1. Explicit derivation of the entropy regularization term’s gradient
Let us consider here the first order entropy proxy: see Fig. 5.

H1 ¼ �
X
n

p w ! nð Þlog2 p w ! nð Þ½ � ð10Þ

Fig. 3. Visual representation of (7).

Fig. 4. Gradient vanishing condition for both p wi ! qi;�
� �

(in cyan) and p wi ! qi;þ
� �

(in violet).

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
with

p w ! nð Þ ¼ 1
kWk0

X
i

p wi ! nð Þ ð11Þ

Let us differentiate (10) with respect to wi:

@H1
@wi

¼ � @
@wi

X
n

p w ! nð Þlog2 p w ! nð Þ½ �
()

¼ �
X
n

@
@wi

p w ! nð Þ½ � � log2 p w ! nð Þ½ �
n

þp w ! nð Þ � @
@wi

log2 p w ! nð Þ½ �
o

¼ �
X
n

@
@wi

p w ! nð Þ½ � � log2 p w ! nð Þ½ �þ
(

þ
X
n

p w ! nð Þ � @
@wi

log2 p w ! nð Þ½ �
)
:

ð12Þ

According to (7), we can write

@H1
@wi

¼ �
X
n

@
@wi

p w ! nð Þ½ � � log2 p w ! nð Þ½ �þ
(

þ
X

n¼ qi;� ;qi;þf g
p w ! nð Þ � @

@wi
log2 p w ! nð Þ½ �

o
;

ð13Þ

and considering that

@

@wi
p w ! nð Þ ¼

� 1
kWk0Di

n ¼ qi;�
1

kWk0Di
n ¼ qi;þ

0 otherwise

8><>: ð14Þ

where

Di ¼ r qi;þ
� �� r qi;�

� �
; ð15Þ

we have

@H1
@wi

¼ �
X

n¼ qi;� ;qi;þf g
@

@wi
p w ! nð Þ½ � � log2 p w ! nð Þ½ �

n o
¼ 1

kWk0Di
log2

p w!qi;�ð Þ
p w!qi;þð Þ :

ð16Þ

Using a similar approach, we can explicitly write the gradient
for the n-th order entropy term in (8):

@Hn

@wn
j;m

¼ n
Dn

j;mkWk0
log2

Q
nf gj ;nm¼nnj;m;�

p wn
j ! n

� �
Q

nf gj ;nm¼nnj;m;þ
p wn

j ! n
� �

8<:
9=; ð17Þ
247
where nf gj indicates the set of n whose binning probability for wn
j is

non-zero.
Having (17) explicit enables efficient gradient computation:

indeed, given the designer choice in (7), every n-uple of parameters
has 2n possible quantization indices n-uples nf g only, which is
independent on the number of quantization levels N. On the con-
trary, using (6) would result in Nn possible quantization indices
n-uples 8 wn

j . Hence, out proposed approach allows us to save

N=2ð Þn� memory at computation time.
For sake of simplicity, the following analysis on stationary

points and boundaries will be performed on the first order entropy,
but similar conclusions can be equivalently drawn for any n-th
order.

3.3.2. Stationary points for H1

In this section we are looking for H1 stationary points (or in
other words, when gradient vanishes). From (16) we observe that

@H1

@wi
¼ 0 () p w ! qi;�

� � ¼ p w ! qi;þ
� �

; ð18Þ

assuming Di; kWk0 finite positive numbers. We can make wi explicit
in the condition (18):

p wi ! qi;þ
� �� p wi ! qi;�

� �� � ¼ Ki;þ � Ki;� ð19Þ
where

Ki;þ ¼
X
j–i

p wj ! qi;þ
� �

Ki;� ¼
X
j–i

p wj ! qi;�
� �

:

According to (7), we can rewrite (19) as

p wi ! qi;þ
� � ¼ 1

2 Ki;þ � Ki;� þ 1
� �

if Ki;þ � Ki;�
� � 2 �1;þ1½ �

9= otherwise

(
ð20Þ

because p wi ! qi;þ
� � 2 0;1½ � by definition. As we expect, if qi;þ and

qi;� are evenly populated, Ki;þ ¼ Ki;� and the stationary point of
@H1
@wi

is

p wi ! qi;þ
� � ¼ p wi ! qi;�

� � ¼ 1
2

which results in

Fig. 5. Plot of the absolute upper bound (22) for @H1
@wi

as a function of p w ! qi;�
� �

and p w ! qi;þ
� �

. In black we represent regions out of the co.nsidered domain.

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
wi ¼ 1
2

r qi;þ
� �þ r qi;�

� �� �
; ð21Þ

exactly between the centre of the two bins. From the entropy point
of view, this is essentially what we expect, since we have two equi-
populated bins; however, this is not what we like to have when we
quantize a deep network, considering that it leads to an high quan-
tization error. For this reason, favoring solutions in which
p wi ! nð Þ – 1

2 is a good strategy and this is also the reason we
included a reconstruction error in the overall regularization
function.

3.3.3. Bound for @H1
@wi

In this section we are looking for an upper bound of @H1
@wi

and we

study the cases in which such quantity explodes, in order to assess
conditions to avoid gradient explosion. We can set the bound for
the gradient magnitude as:

@H
@wi

6 1
DikWk0

log2
p w ! qi;�
� �

p w ! qi;þ
� ������

�����: ð22Þ

Considering that kWk0 2 N and that Di > 0 (so, both are finite,
real-valued quantities), we are interested to guarantee

@H
@wi

6 1
DikWk0

log2
p w ! qi;�
� �

p w ! qi;þ
� ������

����� < K ð23Þ

where K is a positive real-value finite number. Given
p w ! nð Þ 2 0;1½ �, let us study the cases in which such quantity
explodes.

� Case
p w!qi;�ð Þ
p w!qi;þð Þ ! 0þ. In this case we have p w ! qi;�

� � ! 0þ and

p w ! qi;þ
� �

– 0. According to (16) wi 2 r qi;�
� �

; r qi;þ
� �� �

; so at
least one parameter lies in the considered interval and the con-
dition is impossible by construction.

� Case
p w!qi;�ð Þ
p w!qi;þð Þ ! þ1. In this case we have p w ! qi;þ

� � ! 0þ and

p w ! qi;�
� �

– 0. Similarly to the previous case,
wi 2 r qi;�

� �
; r qi;þ
� �� �

; so at least one parameter lies in the con-
sidered interval and the condition is impossible by construction.

� Case
p w!qi;�ð Þ
p w!qi;þð Þ !

0þ
0þ. By construction, wi 2 r qi;�

� �
; r qi;þ
� �� �

so this

case is impossible.

In the next section we will describe the overall HEMP
framework.
248
4. Training scheme

The overall training scheme is summarized in Fig. 6 and
includes a quantizer and an entropy encoder. The quantizer gener-

ates the discrete-valued representation cW of the network parame-
ters at training time. The encoder produces the final compressed
file embedding the deep model once the training is over. Our
scheme does not make any assumption about the quantization or
entropy coding scheme, contrarily to other strategies tailored for,
e.g., specific quantization schemes ([24,12]). Therefore, in the fol-
lowing we will assume a very general, non-uniform Lloyd-max
quantizer, while we will not make any assumption about the
entropy encoder for the moment as it is external to the training
process. Our learning problem can be formulated as follow: given
a dataset and a network architecture, we want to compress the
network parametersW, while preserving the network performance
as measured by some loss function L. Towards this end, we intro-
duce the following regularization function:

R ¼ kHHn þ kEE ð24Þ
where kH and kE are two positive hyper-parameters and

E ¼
ffi
1

kWk0
X
l

X
i

wl;i � rl ql;i

� �� �2s
ð25Þ

is a reconstruction error estimator. Minimizing E makes wl;i ! bwl;i

and, for instance, loss evaluation on the continuous parameters net-
work approaches the loss estimated on the quantized network.
Overall, we minimize the objective function:

J ¼ Lþ R ð26Þ
Minimizing J requires finding the right balance between L and

R: towards this end, we propose to dynamically re-weight R
according insensitivity of each parameter ([5]). The key idea here
is to re-weight the regularization gradient @R

@wl;i
at every parameter

update depending on the sensitivity of the loss L with respect to
every parameter. We say that the larger the magnitude of the gra-
dient of the loss with respect to wi, the smaller the perturbation
from the minimization induced by R we desire. Hence, in the
update of the parameter wl;i, we re-weight the gradient of R by
the insensitivity:

Sl;i ¼ 1�
@L

@wl;i

��� ���
maxj

@L
@wl;j

��� ���n o ð27Þ

Fig. 6. Schematic representation of HEMP.

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
The HEMP framework allows to solve the learning problem
using standard optimization strategies, where the gradient of
(26) is descended.

5. Experiments

In this section we evaluate the effectiveness of HEMP. Towards
this end, we propose experiments on several widely used datasets
with different architectures.

Datasets and architectures. We experiment with LeNet-5 on
MNIST, ResNet-32 and MobileNet-v2 on CIFAR-10, ResNet-18 and
ResNet-50 on ImageNet. We always train from scratch except for
ImageNet experiments where we rely on pre-trained models.1

Setup. We experiment on a Nvidia RTX 2080 Ti GPU. Our algo-
rithm is implemented using PyTorch 1.5.2 For all our simulations
we use SGD optimization with momentum 0:9; kH ¼ 1 and kE ¼ 0:1.
Learning rate and batch-size depend on the dataset and the architec-
ture: for all the datasets except for ImageNet the learning rate used
is 10�2 and batch-size 100, for ResNet-18 trained on ImageNet the
learning rate is 10�3 with batch-size 128 while for ResNet-50 learn-
ing rate is 10�4 with batch-size 32. The file containing the quantized
parameters is entropy-coded using LZMA [27], a popular dictionary-
based compression algorithm well-suited to exploit high-order
entropy.

Metrics. The goal of the present work is to compress a neural
network without jeopardizing its accuracy, so we rely on two dis-
tinct, largely used, performance metrics:

� the compressed model size as the size of the file containing the
entropy-encoded network,

� the classification accuracy of the compressed network (indi-
cated as Top-1 in the following).

5.1. Preliminary experiments

As preliminary experiments, we evaluate if the regularizer func-
tion (8) is a good estimator of (2). Towards this end, we train the
LeNet-5 architecture on MNIST minimizing Hn while logging the

entropy on the quantized parameters bHn. Fig. 7a shows the nor-

malized bHn and its approximation Hn: three findings are
1 https://pytorch.org/docs/stable/torchvision/models.html.
2 The source code is available at https://github.com/enzotarta/HEMP.
249
noteworthy.

First, Hn accurately estimates bHn, i.e. minimizing Hn yields to

minimizing bHn. Under the assumption the quantized parameters

are entropy-coded, minimizing bHn shall minimize the size of a file
where the encoded parameters are stored.

Second, when n ¼ 1, the training converges to a higher entropy,
while minimizing higher entropy orders enables access to lower
entropy embeddings. Higher entropy reflects on the final size of
the model: while for n ¼ 1 we could get a final network size of
61kB, for n ¼ 2;4f g the final size drops to approximately 27.5kB,
having a top-1 accuracy of 99.27%. This better performance can
be explained by the fact that higher order entropy can catch
repeated sequences of parameters’ binnings which can lead to a
significant compression boost.

Third, the higher n, the fewer the epochs required to converge
to low entropy values. However, in terms of actual training time,
the available GPU memory limits the parallelism degree for com-
puting the derivative term in (17). In the following, we will stick
to n ¼ 2 as it enables both reasonably low entropy embeddings
and training times.

As a further verification, we have run the same experiments on
the ResNet-32 architecture trained on the CIFAR-10 dataset: also
here, we minimize Hn while logging the entropy on the quantized

parameters bHn at different values of n. Fig. 7b shows the normal-

ized bHn. Similarly to what observed in the main paper, second-
order entropy minimization results to be a good trade-off between
complexity and final performance, considering that the reached
entropic rate of n ¼ 2 is comparable to n ¼ 3. Please notice also
that the entropy estimated on the quantized model, and reported
Fig. 7b, is proportional to the final file sizes.

As a further analysis of HEMP’s effect of the parameter, in Fig. 8
we show the distribution of the optimized parameters on the sec-
ond convolutional layer in LeNet-5 trained on MNIST (the other
layers follow a similar distribution). In this case we optimize the
model having 3 quantized values. As we observe the continuous
w values are distributed tightly around their quantized representa-
tions ŵ: as w ! ŵ; L wð Þ ! L ŵð Þ; in the end the accuracy of the
quantized representation of the model approaches the accuracy
of the continuous model. Additionally, as observed in Fig. 7a, also
the entropy of the quantized model is minimized, achieving both
a quantized trained model with high accuracy and high compress-
ibility of its representation.

https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/enzotarta/HEMP

Fig. 7. Different entropy order minimization for LeNet-5 trained on MNIST (a) and
on ResNet-32 trained on CIFAR-10 (b): in red first order is minimized, in blue the
second one and in black the fourth (a)/ third (b). Continuous lines represent the
differentiable quantity introduced in (8) while dashed lines are the actual entropies
directly computed on the quantized architecture (2).

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
5.2. Comparison with the state-of-the-art

HEMP. We now compare our method with state-of-the-art
methods for network compression. Our main goal is to minimize
the size of the final compressed file while keeping the top-1 perfor-
mance as close as possible to the baseline network’s one. Therefore,
our approach can be compared only with works that report the real
final file size. To the best of our knowledge, only the methods
reported in Tables 2–4 can be included in this compression bench-
mark. Indeed, most of the pruning-based methods ([4,5]) typically
report pruning-rates only, which can not be directly mapped to file
size: encoding sparse structures requires additional memory to
store the coordinates for the un-pruned parameters. We imple-
mented one state-of-the-art pruning method (LOBSTER [28]) to
report pruning baseline storage memory achieved. Concerning
Fig. 8. Typical distribution of w values during HEMP optimization for L

250
quantization methods, existing approaches either focus on quanti-
zation to boost inference computation minimization ([7,19,21,9,8])
or do not report the final file size ([17,10,23,11]). We also tried to
directly compress the baseline file and we did not observe any
compression gain. Therefore, to make reading easier, we did not
report these numbers.

As a first experiment, we train LeNet-5 on MNIST (Table 2):
despite the simplicity of the task, the reference LeNet-5 is notori-
ously over-parametrized for the learning task. Indeed, as expected,
most of the state-of-the-art techniques are able to compress the
model to approximately 40kB. In such a context, HEMP performs
best, lowering the size of the compressed model to 27.5kB.

Then, we experiment with ResNet-32 and MobileNet-v2 on
CIFAR-10 (as reported in Table 3), achieving also in this case signif-
icant compression: ResNet-32 size drops from 1.9 MB to 168kB and
MobileNet-v2 from 9.4 MB to 822kB. Note that, other literature
methods do not report experiments on CIFAR-10 on the proposed
architectures. Nevertheless, HEMP approximately reduces the net-
work size by a factor 11 for both architectures.

We also compress pretrained ResNet-18, ResNet-50 and
Mobilenet-v2 trained on ImageNet (Table 4). Also in this case,
HEMP reaches competitive final file size, being able to compress
ResNet-18 from 46.8 MB to 3.6 MB with minimal performance loss
and ResNet-50 from 102.5 MB to 5.5 MB. For the ResNet-50 exper-
iment, we also report partial result for high accuracy band, indi-
cated as ‘‘high acc”, to compare to Wiedemann et al. [12]: for the
same accuracy, HEMP proves to drive the model to a higher com-
pression. In the case of ResNet-18, [22] achieves a 0.5 MB smaller
compressed model, which is however set off by a 4.3% worse
Top-1 error. Also in the case of very efficient architectures like
Mobilenet-v2, HEMP is able to reduce significantly the storage
memory occupation, moving from 13.5 MB to 1.7 MB only. Further-
more, the error drop is in this case very limited (0.8%) when com-
pared to other techniques, like Tung et al. which, in the case of less
optimized architectures like ResNet-50, do not have a large drop.
While concurrent techniques rely on typical pruning + quantiza
tion strategies, aiming at indirectly eliminating the redundancy in
the models, HEMP is directly optimizing over the existing
redundancy.
eNet-5 trained on MNIST (second convolutional layer), with N ¼ 3.

Table 2
Results on the MNIST dataset using LeNet-5 architecture.

Model Method Top-1 [%] Size

LeNet-5 Baseline 99.30 1.7 MB
LOBSTER [28] 99.10 19kB
Han et al. [24] 99.26 44kB

Wiedemann et al. [12] 99.12 43.4kB
HEMP 99.27 27.5kB

Wiedemann et al.(+pruning) [12] 99.02 11.9kB
HEMP + LOBSTER [28] 99.05 2.00kB

Table 3
Results on CIFAR-10 using different architectures.

Model Method Top-1 [%] Size

ResNet-32 Baseline 93.10 1.9 MB
LOBSTER [28] 92.97 439.4kB

HEMP 91.57 168.3kB
HEMP + LOBSTER [28] 92.55 86.2kB

MobileNet-v2 Baseline 93.67 9.4 MB
HEMP 92.80 872kB

Table 4
Results on ImageNet using different architectures.

Model Method Top-1 [%] Size

ResNet-18 Baseline 69.76 46.8 MB
LOBSTER [28] 70.12 17.2 MB
Lin et al. [21] 68.30 5.6 MB

Shayer et al. [22] 63.50 2.9 MB
HEMP 68.80 3.6 MB

HEMP + LOBSTER [28] 69.70 2.5 MB

ResNet-50 Baseline 76.13 102.5 MB
Wang et al. [29] 70.63 6.3 MB
Han et al.[24] 68.95 6.3 MB

Wiedemann et al. [12] 74.51 10.4 MB
Tung et al. [30] 73.7 6.7 MB
HEMP (high acc.) 74.52 9.1 MB

HEMP 71.33 5.5 MB

MobileNet-v2 Baseline 72.1 13.5 MB
Tu et al.[31] 67.25 10.1 MB
He et al.[32] 69.8 4.95 MB

Tung et al.[30] 70.3 2.2 MB
HEMP 71.3 1.7 MB

Custom, latency 6.11 ms, APQ [33] 72.8 20.8 MB
energy 9.14 mJ APQ [33] + HEMP 72.5 3.04 MB

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
Finally, we also tried to make HEMP cope with a different quan-
tize and prune scheme. In particular, APQ [33] proves to be a per-
fect framework for our purpose, since it is a strategy performing
both network architecture search, pruning and quantization. We
have used HEMP in the most challenging scenario proposed by
Wang et al., with the lowest latency constraint (6.11 ms) and the
lowest energy consumption (9.14 mJ) at inference time. In this
case, we have fine-tuned the APQ’s provided model for 5 epochs.
Even in this case, HEMP is able to reduce the model’s size, from
the 20.8 MB of the model to 3.04 MB only, proving on-the-field
its deployability as a companion besides other quantization/prun-
ing scheme, and non-exploiting any prior on the network’s
architecture.

Overall, these experiments show that HEMP strikes a competi-
tive trade-off between compression ratio and performance on sev-
eral architectures and datasets.

HEMP + LOBSTER. It has been observed that combining pruning
and compression techniques enhances reduces the model final file
size with little performance loss [12]. In our context, this translates
into including two constraints to the learning:
251
� force the quantizer to have, for some n, the representation
r nð Þ ¼ 0 (or in simpler words, a quantization level correspond-
ing to ‘‘0”);

� include a pruning mechanism (permanent parameter set to
‘‘0”).

Both of the constraints work independently from HEMP:
indeed, HEMP is not a quantization technique, but it is thought
to side any other learning strategy whose aim is to quantize the
model’s parameters (in such context, pruning ‘‘quantizes to zero”
as many parameters as possible). Hence, we tried to side HEMP
to LOBSTER [28], which is a state-of-the-art differentiable pruning
strategy (hence, compatible within HEMP’s framework).

The results are as well reported in Tables 2–4: it is evident that,
including a prior on the optimal distribution of the parameters (re-
moving all the un-necessary ones for the learning problem) helps
HEMP to compress more. We have tested the setup HEMP + LOB-
STER on one architecture per dataset: LeNet-5 (MNIST), ResNet32
(CIFAR-10) and ResNet-18 (ImageNet). While LOBSTER alone is
able to achieve highly compressed models for toy datasets (like
MNIST), it can not achieve high compression alone on more com-
plex datasets. Still, siding a technique like LOBSTER to HEMP,
boosts the compression of 10x for MNIST and ImageNet dataset
and 4x for CIFAR-10.

HEMP minimizes the n-th entropy order (in these experiments,
n ¼ 2) - or in other words, maximizes the occurrence of certain
sequences of quantization indices. The mapping of these quantiza-
tion indices to quantization levels has to be determined outside
HEMP: when we run experiments with ‘‘HEMP” alone, the loss
minimization (in our case, the cross-entropy) automatically deter-
mines these levels - with the general-purpose Lloyd-max quan-
tizer. However, pruning strategies include a prior on one of the
quantization levels (the one corresponding to ‘‘0”), and this helps
towards having a higher entropy minimization.
5.3. Ablation study

Here, we evaluate the impact of the reconstruction error term
(25) and the overall insensitivity re-weighting (27) for the regular-
ization function. Towards this end, we perform an ablation study
on the ResNet-32 architecture trained on CIFAR-10.

Reconstruction error regularization. Fig. 9a (left), shows the
ResNet-32 loss for the continuous and the quantized models

(L Wð Þ and L cW� �
when the reconstruction error E is included or

excluded (kE ¼ 0) from the regularization function (24). We
observe that both continuous models (solid lines) obtain similar
performance on the test set. However, the quantized models
(dashed lines) perform very differently. When the reconstruction
error is not included in the training procedure (red lines), the quan-
tized model reach a plateau with a high loss value showing that the
network performs poorly on the test set. Conversely, when the
reconstruction error is included (blue lines), the quantized model
reaches a final loss closer to the continuous models. Indeed, regu-

Fig. 9. Test set losses for different trainings on ResNet-32 trained on CIFAR-10 (a), and effect of the insensitivity as re-weighting factor for R (b). Please notice that the blue line
in both (a) and (b) refers to the same simulation, which refers to the standard HEMP training.

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
larizing also on (25) makes wl;i ! ŵl;i8l; i, hence L Wð Þ ! L cW� �
.

This experiment verifies the contribution of the error reconstruc-
tion regularization term towards the good performance of the
quantized model.

Insensitivity-based re-weighting. Fig. 9b (right) shows the
performance of the ResNet-32 model including or excluding the
insensitivity re-weighting Sl;i for the regularization function (27).
Here, we report the test set losses obtained by the continuous
models (continuous lines) and the value for the overall R function
(dashed lines). We observe a very unstable test loss without insen-
sitivity re-scaling for R (magenta line). Hence, minimization with
an overall 0:1 re-scaling for R is also shown (in cyan): in such case,
the test loss on the continuous model remains low, but R is extre-
mely slowly minimized. Using the insensitivity re-weighting (in
blue) proves to be a good trade-off between keeping the test set
loss low and both minimizing R. This behavior is what we
expected: the insensitivity re-weighting, acting parameter-wise
(ie. there is a different value per each parameter), dynamically
tunes the re-weighting of the overall regularization function R,
allowing faster minimization with minimal or no performance loss.
This is why we could use the same kH and kR values for all the sim-
ulations, despite optimizing different architectures on different
datasets. Such robustness of the hyper-parameters over different
dataset is a major practical strength of our approach.
6. Conclusion

We presented HEMP, an entropy coding-based framework for
compressing neural networks parameters. Our formulation effi-
ciently estimates entropy beyond the first order and can be
employed as regularizer to minimize the quantized parameters’
entropy in gradient based learning, directly on the continuous
parameters. The experiments show that HEMP is not only an accu-
rate proxy towards minimizing the entropy of the quantized
parameters, but are also pivotal to model the quantized parame-
ters statistics and improve the efficiency of entropy coding
schemes. We also sided HEMP to LOBSTER, a state-of-the-art prun-
ing strategy which introduces a prior on the weight’s distribution
which gives a further boost to the final model’s compression.
252
Future works include the integration of a quantization technique
designed specifically for deep models to HEMP.
CRediT authorship contribution statement

Enzo Tartaglione: Conceptualization, Methodology, Software,
Investigation, Writing - original draft, Writing - review & editing,
Visualization. Stéphane Lathuilière: Investigation, Resources,
Writing - original draft, Writing - review & editing, Visualization.
Attilio Fiandrotti: Resources, Writing - original draft, Writing -
review & editing. Marco Cagnazzo: Conceptualization, Supervi-
sion. Marco Grangetto: Conceptualization, Supervision.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
References

[1] S. Samarakoon, M. Bennis, W. Saad, M. Debbah, Distributed federated learning
for ultra-reliable low-latency vehicular communications, IEEE Trans.
Commun..

[2] F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer,
Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size, arXiv preprint arXiv:1602.07360..

[3] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.-C. Chen, Mobilenetv 2:
inverted residuals and linear bottlenecks, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 4510–4520.

[4] D. Molchanov, A. Ashukha, D. Vetrov, Variational dropout sparsifies deep
neural networks, in: Proceedings of the 34th International Conference on
Machine Learning-Volume 70, JMLR. org, 2017, pp. 2498–2507..

[5] E. Tartaglione, S. Lepsøy, A. Fiandrotti, G. Francini, Learning sparse neural
networks via sensitivity-driven regularization, in: Advances in neural
information processing systems, 2018, pp. 3878–3888..

[6] C. Louizos, M. Welling, D.P. Kingma, Learning sparse neural networks through
l 0 regularization, in: International Conference on Learning Representation
(ICLR)..

[7] M. Courbariaux, Y. Bengio, J.-P. David, Binaryconnect: Training deep neural
networks with binary weights during propagations, in: Advances in neural
information processing systems, 2015, pp. 3123–3131..

[8] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, Y. Zou, Dorefa-net: Training low bitwidth
convolutional neural networks with low bitwidth gradients, arXiv preprint
arXiv:1606.06160..

http://refhub.elsevier.com/S0925-2312(21)01066-3/h0015
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0015
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0015
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0015

E. Tartaglione, Stéphane Lathuilière, A. Fiandrotti et al. Neurocomputing 461 (2021) 244–253
[9] A. Mishra, E. Nurvitadhi, J.J. Cook, D. Marr, Wrpn: wide reduced-precision
networks, in: International Conference on Learning Representation (ICLR)..

[10] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, D. Shin, Compression of deep
convolutional neural networks for fast and low power mobile applications, in:
International Conference on Learning Representation (ICLR)..

[11] Y. Xu, Y. Wang, A. Zhou, W. Lin, H. Xiong, Deep neural network compression
with single and multiple level quantization, in: Thirty-Second AAAI
Conference on Artificial Intelligence, 2018..

[12] S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban, T. Marinc, D.
Neumann, T. Nguyen, H. Schwarz, T. Wiegand, D. Marpe, W. Samek,
Deepcabac: a universal compression algorithm for deep neural networks,
IEEE J. Sel. Top. Signal Process..

[13] D. Oktay, J. Ballé, S. Singh, A. Shrivastava, Scalable model compression by
entropy penalized reparameterization, arXiv preprint arXiv:1906.06624..

[14] Y. Cheng, F.X. Yu, R.S. Feris, S. Kumar, A. Choudhary, S.-F. Chang, An exploration
of parameter redundancy in deep networks with circulant projections, in:
Proceedings of the IEEE international conference on computer vision, 2015, pp.
2857–2865.

[15] C. Lee, Y.-B. Kim, H. Ji, Y. Lee, Y. Hur, H. Lim, On the redundancy in the rank of
neural network parameters and its controllability, Appl. Sci. 11 (2) (2021) 725.

[16] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: an extremely efficient
convolutional neural network for mobile devices, in: Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 6848–6856.

[17] K. Ullrich, E. Meeds, M. Welling, Soft weight-sharing for neural network
compression, in: International Conference on Learning Representation (ICLR)..

[18] J. Frankle, M. Carbin, The lottery ticket hypothesis: Finding sparse, trainable
neural networks, in: International Conference on Learning Representation
(ICLR)..

[19] M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, Xnor-net: Imagenet
classification using binary convolutional neural networks, in: European
conference on computer vision, Springer, 2016, pp. 525–542.

[20] C. Baldassi, F. Gerace, H.J. Kappen, C. Lucibello, L. Saglietti, E. Tartaglione, R.
Zecchina, Role of synaptic stochasticity in training low-precision neural
networks, Phys. Rev. Lett. 120 (26) (2018) 268103.

[21] X. Lin, C. Zhao, W. Pan, Towards accurate binary convolutional neural network,
Advances in Neural Information Processing Systems (2017) 345–353.

[22] O. Shayer, D. Levi, E. Fetaya, Learning discrete weights using the local
reparameterization trick, in: International Conference on Learning
Representation (ICLR)..

[23] V. Belagiannis, A. Farshad, F. Galasso, Adversarial network compression, in:
Proceedings of the European Conference on Computer Vision (ECCV), 2018.

[24] S. Han, H. Mao, W.J. Dally, Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding, in:
International Conference on Learning Representation (ICLR)..

[25] I.H. Witten, R.M. Neal, J.G. Cleary, Arithmetic coding for data compression,
Commun. ACM 30 (6) (1987) 520–540.

[26] G. Seroussi, A. Lempel, Lempel-ziv compression scheme with enhanced
adapation, uS Patent 5,243,341 (Sep. 7 1993)..

[27] I. Pavlov, Lzma sdk (software development kit) (2007)..
[28] E. Tartaglione, A. Bragagnolo, A. Fiandrotti, M. Grangetto, Loss-based

sensitivity regularization: towards deep sparse neural networks, arXiv
preprint arXiv:2011.09905..

[29] K. Wang, Z. Liu, Y. Lin, J. Lin, S. Han, Haq: Hardware-aware automated
quantization with mixed precision, in: Proceedings of the IEEE conference on
computer vision and pattern recognition, 2019, pp. 8612–8620.

[30] F. Tung, G. Mori, Deep neural network compression by in-parallel pruning-
quantization, IEEE Trans. Pattern Anal. Mach. Intell. 42 (3) (2020) 568–579.

[31] C.-H. Tu, J.-H. Lee, Y.-M. Chan, C.-S. Chen, Pruning depthwise separable
convolutions for mobilenet compression, in: 2020 International Joint
Conference on Neural Networks (IJCNN), IEEE, 2020, pp. 1–8.

[32] Y. He, Z. Pan, L. Li, Y. Shan, D. Cao, L. Chen, Real-time vehicle detection from
short-range aerial image with compressed mobilenet, in: 2019 International
Conference on Robotics and Automation (ICRA), IEEE, 2019, pp. 8339–8345.

[33] T. Wang, K. Wang, H. Cai, J. Lin, Z. Liu, S. Han, Apq: Joint search for nerwork
architecture, pruning and quantization policy, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020.

Bio Enzo Tartaglione received the joint MS degree in
electronic engineering at Polytechnic of Torino,
University of Illinois at Chicago and Polytechnic of Milan
in 2015, with 110/110 cum laude. In 2016 he was also
awarded the ‘‘Alta Scuola Politecnica” diploma. In 2019
he received the PhD in physics at Polytechnic of Torino,
cum laude, with the thesis ‘‘From Statistical Physics to
Algorithms in Deep Neural Systems”. He is currently a
postdoc in the EIDOS group at Universita’ degli Studi di
Torino. His main research interests are neural network
applied to medical image processing, unbiased learning,
compression/pruning of deep models, explainable-AI
and privacy-aware deep learning.
253
Bio Stéphane Lathuilière is an associate professor
(maı̂tre de conférence) at Telecom Paris, France, in the
multimedia team. Until October 2019, he was a post-
doctoral fellow at the University of Trento in the Mul-
timedia and Human Understanding Group, led by Prof.
Nicu Sebe and Prof. Elisa Ricci. He received the M.Sc.
degree in applied mathematics and computer science
from ENSIMAG, Grenoble Institute of Technology
(Grenoble INP), France, in 2014. He completed his
master thesis in the International Research Institute
MICA (Hanoi, Vietnam). He worked towards his Ph.D. in
mathematics and computer science in the Perception
Team at Inria under the supervision of Dr. Radu Horaud, and obtained it from
Université Grenoble Alpes (France) in 2018.His research interests cover machine
learning for computer vision problems (eg. domain adaptation, continual learning)
and deep models for image and video generation. He published papers in the most
prestigious computer vision conferences (CVPR, ICCV, ECCV, NeurIPS) and top
journals (T-PAMI).

Bio Attilio Fiandrotti received his Ph.D. in computer
science from Politecnico di Torino in 2010. He is cur-
rently assistant professor at Universit? di Torino,
Dipartimento di Informatica, and holds a position as
maitre de conférénces with the Multimedia Group at
LTCI, Télécom Paris, Institut Polytechnique de Paris. His
current research interests focus mainly on deep learning
techniques for image and video analysis, compression,
and synthesis and the distribution of multimedia con-
tents over packet networks.
Bio Marco Cagnazzo obtained the Ph.D. degree from the
Federico II university (Napoli) and the university of
Nice-Sophia Antipolis (France) in 2005, and has
achieved the ”Habilitation ? Diriger des Recherches”
form Université Pierre et Marie Curie (Paris) in
September 2013. He is currently full professor at Tele-
com Paris within the Multimedia team, where he
arrived as associate professor in 2008. He is the
responsible of the Multimedia team since December
2015. His research mainly focuses on visual data com-
munication, including immersive video processing and
compression, hologram compression and transmission,
semantic video compression, compression helped by learning-based methods.
Marco Cagnazzo is an Associate Editor for IEEE Open Journal on Circuits ans Systems
and for Elsevier Signal Processing: Image Communication an was an Associate
Editor for IEEE Transactions on Circuits and Systems for Video Technology, IEEE
Signal Processing Letters and Elsevier Signal Processing. Since 2017, he is a member
of the IEEE SPS Technical committee on Image, Video and Multidimensional Signal
Processing (IVMSP).

Bio Marco Grangetto received the M.S. degree in elec-
trical engineering and the Ph.D. degree from the
Politecnico di Torino, Turin, Italy, in 1999 and 2003,
respectively. He is currently a Full Professor with the
Department of Computer Science, Università di Torino,
Turin, where he coordinates research in the area of
image processing and computer vision. His research
interests are in the fields of multimedia signal pro-
cessing and networking. His expertise includes wave-
lets, image and video coding, data compression, video
error concealment, error resilient video coding, com-
puter vision, and biomedical image processing. Dr.

Grangetto is a member of Moving Picture, Audio and Data Coding by Artificial
Intelligence (MPAI). He was the recipient of the Premio Optime by the Unione

Industriale di Turin in September 2000 and a Fulbright Grant in 2001 for a research
period with the Department of Electrical and Computer Engineering, University of
California, San Diego, CA, USA. He participated in the ISO standardization activities
on Part 11 of the JPEG2000 standard. He is an Associate Editor of the IEEE
TRANSACTIONS ON MULTIMEDIA and he was an Associate Editor of the IEEE
TRANSACTIONS ON COMMUNICATIONS.

http://refhub.elsevier.com/S0925-2312(21)01066-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0070
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0075
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0075
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0080
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0095
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0100
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0105
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0105
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0115
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0115
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0115
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0125
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0125
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0145
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0150
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0150
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0155
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0155
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0155
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0155
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0160
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0165
http://refhub.elsevier.com/S0925-2312(21)01066-3/h0165

	HEMP: High-order entropy minimization for neural network compression
	1 Introduction
	2 Related works
	3 Entropy-based regularization
	3.1 Preliminaries
	3.2 Differentiable n-th order entropy regularization
	3.3 Study of the entropy regularization term
	3.3.1 Explicit derivation of the entropy regularization term’s gradient
	3.3.2 Stationary points for [$]{H}_{1}[$]
	3.3.3 Bound for [$] {{\partial {H}_{1}}\over{\partial {w}_{i}}} [$]

	4 Training scheme
	5 Experiments
	5.1 Preliminary experiments
	5.2 Comparison with the state-of-the-art
	5.3 Ablation study

	6 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	References

