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The growing number of dimensionality reduction methods available for data visualization has recently
inspired the development of formal measures to evaluate the resulting low-dimensional representation
independently from the methods’ inherent criteria. Many evaluation measures can be summarized
based on the co-ranking matrix. In this work, we analyze the characteristics of the co-ranking
framework, focusing on interpretability and controllability in evaluation scenarios where a fine-
grained assessment of a given visualization is desired. We extend the framework in two ways: (i) we

propose how to link the evaluation to point-wise quality measures which can be used directly to
augment the evaluated visualization and highlight erroneous regions; (ii) we improve the parameter-
ization of the quality measure to offer more direct control over the evaluation’s focus, and thus help the
user to investigate more specific characteristics of the visualization.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, many dimensionality reduction (DR) techni-
ques have been developed primarily for data visualization, see e.g.
[1-4] for overviews. A DR method is used to map high-
dimensional data to two- or three-dimensional vectors, in order
to display them in a scatter plot or point cloud. This allows field
experts to investigate the structure and distribution of large
amounts of data in a user-friendly and easily accessible way.
It is crucial that the visualization adequately resembles the
original high-dimensional data structure and distribution. From
a theoretical point of view, DR constitutes an ill-posed problem:
not all the structure and relations that exist in intrinsically high-
dimensional data can be faithfully represented in the lower-
dimensional space, and it is not clear which relations should be
preserved. The application task dictates which concessions to
make. Here, and in the following, we assume that the intrinsic
dimensionality of the original data is higher than the one of the
embedding space. Therefore, the user faces the problem of
choosing an appropriate DR technique and an adequate config-
uration of its parameters, along with other methodic choices that
affect the DR procedure, e.g. preprocessing steps.

Dimensionality reduction methods: The variety of possible
strategies has resulted in the development of many different DR
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techniques. Often they optimize an objective function which
formalizes the preservation goal. For an overview of established
DR methods, see e.g. [1-4]. As a simple example, linear dimen-
sionality reduction such as principal component analysis (PCA)
minimizes the loss of information as measured by the sum
squared error. Due to its simplicity and well-understood behavior,
it is often used for data visualization, albeit its linearity severely
restricts its applicability. Modern DR methods usually use non-
linear projections of the data into low dimensions to appropri-
ately visualize, rather than preprocess, complex data sets. The
methods differ in their objectives which guide the projection.
Several approaches have been proposed which can be interpreted
as nonlinear extensions of PCA, such as kernel PCA [5], auto-
encoding neural networks [6], or projections based on principal
curves which pass through the ‘center’ of the high-dimensional
data [7]. Some visualization techniques aim to preserve distances,
such as multidimensional scaling (MDS) [8] and its variants like
Sammon’s map [9], or Isomap [10], the latter referring to geodesic
distances in the data. Others take into account local neighborhood
structures and project these accordingly, examples are the classi-
cal self-organizing map (SOM) [11], the generative topographic
mapping (GTM) [12] which use a fixed topological structure,
locally linear embedding (LLE) [13] which measures local struc-
ture in terms of local linear relationships, and maximum variance
unfolding (MVU) [14] which unfolds data while preserving direct
neighbors. Laplacian eigenmaps [15] are also based on the local
neighborhood graph, but they take a more principled approach by
referring to the spectral properties of the resulting dissimilarity
matrix. Another possibility is to glue local linear projections such
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as tangent spaces together using appropriate transforms as in
tangent space alignment or manifold charting [16]. Stochastic
neighbor embedding (SNE) [17], t-distributed SNE (t-SNE) [3], and
the neighbor retrieval visualizer (NeRV) [18] try to match the
probability distributions induced by the pairwise data dissimila-
rities in the original space and the projection space, respectively.
There exist many more techniques and variants of dimensionality
reducing visualization, partially related to the methods men-
tioned above, such as Isotop, XOM, local MDS, factor analysis,
curvilinear component analysis, etc., see [19-23].

The different approaches result in qualitatively very different
visualizations for a given data set. Therefore, it is not clear a
priori, which DR technique is best suited for the task at hand.
In addition, virtually all recent techniques have parameters to
control (in some way) the preservation strategy for the embed-
ding. Hence, depending on the chosen parameters, even a single
DR method can lead to vastly diverse results. Moreover, many
nonlinear DR techniques do not arrive at a unique solution due to
random aspects of the algorithm. Instead, they can produce
different outputs in every run, corresponding to different local
optima of the objective. Therefore, it is possible that qualitatively
different solutions can be obtained by a single method with a
single set of model parameters.

Quality measures: Usually it is not clear whether differences in
the dimensionality reduction (between different methods, para-
meters or runs) represent different relevant aspects in the data or
signify unsuitability of a method. Further, it can happen that
suboptimal results are obtained simply because of numerical
problems, such as (bad) local optima. At the same time, it is very
hard for humans to judge the quality of a given embedding by
visual inspection. The user cannot compare it against a ground
truth, as this data is inaccessible due to its high dimensionality.
Therefore, we need formal measures which judge the quality of a
given data embedding. Such formal measures should evaluate, in
an automated and objective way, in how far the structure of the
original data is preserved in the low-dimensional representation.
Apart from their importance for practical applications, quality
measures are generally relevant to automatically evaluate and
compare DR techniques for research. As reported in [18], a high
percentage of publications on data visualization evaluates results
in terms of visual impression only—in [18], about 40% of the 69
referenced papers did not use any quantitative evaluation criter-
ion. Even if formal evaluation criteria are used, these differ from
one application to the next, referring e.g. to a local misclassifica-
tion error for labeled data [4,18], the reconstruction error pro-
vided an inverse mapping is possible [24], or local preservation of
neighborhoods [18]. Further, many popular benchmark data sets
in the literature are artificially generated and thus are of limited
use for a realistic evaluation of DR methods [4]. Although a few
real life data sets are currently available (see e.g. [3]), there does
not exist a large variety of data encompassing different charac-
teristics together with suitable evaluation criteria.

In this paper, we will first give a short overview over existing
approaches of quality assessment for dimensionality reduction in
Section 2, and will discuss some fundamental features which
distinguish their strategies, concluding with the general motiva-
tion for our own approach. Thereafter, we will focus on the co-
ranking matrix from [24], which serves as a unifying framework
to represent several other measures. In Section 3, we will briefly
describe the co-ranking matrix itself, and, in Section 4, propose to
augment data visualizations by point-wise quality contributions
based on the co-ranking framework. Section 5 discusses how a
fairly simple parameterization in established quality measures
causes problems regarding the interpretability of the evaluation
results. We propose a new parameterization which allows for
more fine-grained control over the evaluation focus, and which

facilitates a more specific analysis of the given visualization. After
we demonstrate the benefits of our approach on several artificial
examples, we show, in Section 6, how it performs in real-world
visualization scenarios in comparison with the former model. In
Section 7, we summarize our findings, and close with an outlook
over future research.

2. Principles of quality assessment for DR

Several quality criteria to evaluate DR have been proposed in
recent years, see [24] for an overview of the more prominent
measures. However, the problem to define formal evaluation
criteria suffers from the ill-posedness of DR itself: it is not clear
a priori which structural aspects of the data should be preserved
in a given task. Generally, the existing quality measures evaluate
in how far the original data relations agree with the ones
produced by the embedding. A similar notion forms the basis
for most objective functions in DR methods, but the specifics and
priorities of the agreement calculation are a matter of ongoing
research and debate. By formalizing an objective, every DR
strategy gives rise to a perfect mapping in terms of the global
optimum of this objective, and thus it incorporates a quality
measure in itself. However, the goal of DR is to produce a
representative embedding of the data and, thus, algorithmic
aspects such as easy optimization are vital, while a quality
measure is used to gain insight into the properties of the
embedding. Therefore, the quality measure can and should be
general as well as understandable, so the user can easily interpret
its results, and thus judge the trustworthiness of the visualization.

Regarding application scenarios, we believe that a formal
quality evaluation can assist the user in two ways, to which we
will refer in the further discussion:

(a) Given a data set, formal measures help to compare different
DR methods along with their parameter settings, as demon-
strated in extensive experiments, e.g. in [18,24,25]. Therefore,
by iterative comparison, a DR method’s parameter configura-
tion could be optimized interactively. A relatively coarse-
grained, overall quality assessment seems sufficient for this
purpose.

Given a single visualization, formal measures can provide the
user with information about the qualitative characteristics of
the observed embedding. Since the user wants to gain knowl-
edge about the original data, it is beneficial to analyze in
detail the compromised representation that is displayed. For
this task, fine-grained evidence is necessary, see [26,27].

(b

N

In the following, we will briefly discuss existing strategies for
quality assessment in the literature and point out some basic
distinguishing features. We assume the following basic setting:
the DR method maps high dimensional data 5= {&;,...,Ey} c R
to low-dimensional points X = {xq,...,xy} C R', with L<H and
L=2 or L=3 for the purpose of visualization. Data is either
characterized directly as vectors or via dissimilarities (which
might be non-Euclidean), depending on the chosen DR technique.
DR evaluation compares characteristics derived from the data
{&q,...,EN} to corresponding characteristics derived from the
projections {xi, ...,xy}. Since a formal mathematical characteriza-
tion together with a unifying framework of many DR evaluation
techniques has already been developed [24], we do not aim at a
formal definition of the particular methods. Instead, we highlight
distinguishing characteristics of the evaluation methods.
Distances vs. ranks: Most DR evaluation techniques relate
to pairwise distances of data in some way. One fundamental
distinguishing aspect is whether the pairwise distances in the
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high-dimensional data are compared directly with the low-
dimensional setting, or if only their order, i.e. ranks, is considered.
All evaluation measures mentioned in [24,28] use ranks, whereas
in [18] the criteria precision and recall may be evaluated for any
form of proximity measure, including ranks of distances, or
distances itself. From the measures presented in [7], the quality
of point neighborhood preservation and quality of group compact-
ness are both based on K nearest neighbors, i.e. they consider
ranks; while the quality of distance mapping can be evaluated for
both, distances and ranks alike. While absolute distance informa-
tion is lost when only the order of distances is considered, it has
the benefit that any notion of pairwise proximity in the original
data (e.g., distances, dissimilarities, similarities, neighborhood
probabilities) is comparable with the Euclidean distances of the
embedded data points, since ordering the neighbors of a point is
possible in all these cases. Further, ranks are invariant to mono-
tonic transformations of the distances.

Neighborhood scales: Many quality measures aim to give an
overview of the visualization’s characteristics on different scales,
by considering the agreement rates over varying neighborhood
sizes (usually averaged over all data points). This facilitates to
some extent the fine-grained analysis mentioned in our intro-
ductory statement (b). The neighborhoods are either defined via
hyperspheres of a radius ¢ centered at each point, or, alterna-
tively, as the K nearest neighbors of each point. All measures
discussed in [24,29,28] use K-neighborhoods, while in [18]
e-hyperspheres are considered. Note, that the latter case is more
general, since an ¢-radius can serve as a boundary for any kind of
proximity, including ranks.!

Agreement evaluation: Based on these neighborhoods for some
fixed K or ¢, there are different possibilities to evaluate the
agreement between the characteristics in the high-dimensional
data and its counterpart in the embedding. Some quality mea-
sures simply calculate the ratio of agreed points within these
regions, see e.g. [24,29]. Others consider a weighted combination
of the agreement rate inside and outside of the neighborhoods,
like the mean relative rank errors from [1]. A recent criterion
known as local strict rank order preservation [28] counts strictly
preserved ranks. Instead of counting the number of agreed
neighbors, the quality of distance mapping [7] uses the correlation
of pairwise distances between the original and the embedded
data. For the precision and recall for DR, as defined in [18], one can
use ranks instead of pairwise distances between the data, which
leads to defining regions of ¢ nearest neighbors. Then, precision
and recall are both equal to calculating the average number of
agreeing neighbors, which coincides exactly with the quality Qnx
from [24], the quality of point neighborhood preservation in [7], as
well as the agreement rate from [29]; criteria which were all
proposed independently. Supplemental to the quality from [24],
the behavior indicator gives insight about the types of errors
which occur in the visualization: either points become closer in
the embedding, or points are farther apart than in the original,
called intrusive or extrusive behavior, indicated by values below or
above zero respectively. While most of these concepts aim at our
scenario described in (a), the behavior indicator reveals more
details about the embedding’s characteristics.

Aggregation of pointwise contributions: Point-wise agreement
rates (i.e. independently regarding every point’s neighborhood)
are usually aggregated to fewer nominal values, in order to
deliver a compact evaluation result, like a curve over growing ¢
or K. For the aggregation, a simple average is often used. While
this is beneficial when comparing several DR techniques for the

! When distances are replaced by their respective ranks, limiting to a radius
of size ¢ for a point means choosing its ¢ nearest neighbors.

same data set, as addressed in statement (a), the aggregation
hides the local quality characteristics of the embedding, which
would be beneficial regarding our statement (b).

Scale-independent criteria: To obtain even fewer nominal values
which subsume the quality on all (or some important) neighborhood
scales, different possibilities can be found in the literature. In [25]
averaging the quality curve Qny(K) over certain ranges of K has been
proposed. A splitting point K.y is defined as the first maximum of
the curve with respect to its baseline. Then, the mean quality for all
k < Kmax represents the local quality, whereas the mean quality over
all K > Knax defines the global quality. Other measures to judge the
overall topology at once are, for example, the quality of distance
mapping proposed in [7] which calculates the Pearson or Spearman
correlation coefficients between all pairwise distances in the high-
dimensional versus the low-dimensional setting, yielding a single
value. For efficiency, the authors propose to calculate the correlation
only on a representative subset of pairwise distances, selected by the
natural PCA procedure, see [7]. For the topographic mapping with self-
organizing maps (SOMs) [11], the topographic product has been
proposed, which yields a single value to assess the topographic
disturbances in the map, see [30]. It basically considers the distances
between pairs of nearest neighbors, hence it is easily possible to
generalize the topographic product to any high- and low-dimensional
point configurations (without the fixed lattice of a SOM).

A single nominal quality rating greatly benefits overall com-
parison of DR methods as stated in (a), while a fine-grained
analysis of a given visualization is not supported.

Supervised evaluation: There are also measures which take a
class labeling of the data into account, like e.g. the quality of group
compactness in [7], the K nearest neighbor error of the projections
in [18], or which even introduce a local labeling in the original
data space to judge the preservation of local neighborhoods via
this labeling [4]. We will not discuss these further, since we focus
strictly on an unsupervised evaluation scenario.

Concluding remarks: From the existing literature, we see that
many quality measures are suitable for a situation where the user
wants an overall comparison of a number of different embeddings
of the same data, e.g. originating from different DR methods or
different parameter settings, as described in statement (a) in
Section 2. However, there are only few approaches which aim at a
more fine-grained analysis of a single visualization, mentioned in
(b). Some measures are useful for compromises between (a) and
(b), by evaluating the quality over all neighborhood scales, e.g. in
[18,24]. However, only the works [26,27] aim fully towards the
scenario (b), by integrating visual cues about local reliability
directly into the embedding. Their idea is to provide the user
with sufficient information to compensate for the distortions in
the observed visualization, when reasoning about the original
data. These approaches are, however, not directly linked to any of
the referenced formal quality measures. Therefore, our goal is
to extend the formal evaluation based on the well-established
co-ranking matrix [24] toward a more fine-grained analysis.

After introducing the co-ranking matrix in the next section, we
will utilize a decomposition into point-wise quality contributions
in Section 4. In Section 5 we will point out certain disadvantages
of the quality framework with regard to our purpose of fine-
grained analysis and control, and propose to circumvent these
disadvantages with a different parameterization.

3. Evaluating DR based on the co-ranking matrix

Referring to the high-dimensional data set 5 = {4, ...,éy} ¢ RY
and the low-dimensional dataset X = {1, ...,xn} C R, let d; be the
distance from ¢&; to & in R" and d;; the distance from x; to x; in R".
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Fig. 1. Large-scale structure of the co-ranking matrix. On the left, the matrix is split into blocks to show different types of intrusions and extrusions. In a perfect mapping,
the co-ranking matrix will be a diagonal matrix. The image on the right shows how rank differences will alter the matrix. If a neighbor moves further away in the
embedding (an extrusion) it will appear to the right of the diagonal. Similarly, intrusions appear to the left of the diagonal.

The rank of &; with respect to &; in R" is given by
Pij = ‘{k‘aik < 51] or (5ik:5ij and 1<k <]SN)}‘

Analogously, the rank of x; with respect to x; in the low-dimensional
space is

rij = |{k|dy <dj or(dg=d; and 1<k<j<N)}|.

The differences R = r—p;; are the rank errors. The co-ranking matrix
C [24] can be seen as a histogram of all rank errors, and is defined by

Cu=[{(p)|pj=k and r;=10]

Pairs of points which change their rank between the original data and
its projection are considered errors of the DR procedure. They result
in non-zero off-diagonal entries in the co-ranking matrix. A point x;
with p; >y is called an intrusion, with p; <ry it is an extrusion.
Usually, a DR method cannot embed all relationships of data faith-
fully. Often, the focus is on the preservation of local relationships. The
co-ranking matrix offers a framework, in which several existing
evaluation measures can be expressed, as pointed out in [24]: local
continuity meta-criterion (LCMC) [31], trustworthiness & continuity
(T&C) [32], and mean relative rank errors (MRRE) [1]. Essentially,
these quality measures correspond to weighted sums of entries C; of
the co-ranking matrix for regions k <K and/or [ <K, with a fixed
neighborhood range K.

In [24], a comprehensible (unweighted) sum has been pro-
posed, the quality Qnx

1 K 1 N
Qux(K) = mlgﬂ 1Ck1 = ml; |As, N By,

where A; ={&j|p; <K} and By, ={x;|rj <K} are the sets of K
nearest neighbors of point &; in the high-dimensional data, and,
respectively, x; in the embedding. Therefore, the meaning of this
sum is simply the average ratio of K nearest neighbors coinciding
in the original and the embedded data. Therefore, it summarizes
all ‘benevolent’ points which maintain a rank below K, which are
also called mild in- and extrusions. Fig. 1 shows a schematic
picture of how the co-ranking matrix is partitioned via K, and how
intrusions and extrusions appear in the matrix.

To display the quality, usually a curve of Qyx(K) is plotted for a
range of different settings of K. An example is given in Fig. 2 for
the classical swiss roll data set, which has often been used for
illustration purposes in the DR literature, see e.g. [1]. In our case,
the original three-dimensional data consists of 1000 points
sampled from the curled two-dimensional manifold, see Fig. 2a.

K

. 1)

It was reduced to two dimensions using the well-known DR
method t-SNE [3] with the perplexity parameter set to 50, see
Fig. 2c. The 2D embedding produced a piecewise ‘unrolled’ view
of the original spiral strip, where some continuous regions were
separated and the data is depicted as three distinct patches.?
In the embedding, most local neighbors stay in the proximity,
corresponding to a quality close to 1, while not all neighbors are
preserved in larger neighborhood sizes, see Fig. 2b. Here, the
nonlinear structure of the swiss roll comes into the play: while
points on different ends of the swiss roll are relatively close as
measured using the Euclidean distances in 3D, these are far away
in the 2D unfolding of the spiral strip. The expected quality of a
random mapping serves as a baseline for Qux(K), see [24,25,29]
for a formal derivation. It is displayed as the dotted line in Fig. 2b.
Therefore, with K approaching the total number of points, quality
values of 1 are reached slowly, a necessity corresponding to the
baseline.

4. Point-wise quality measure

We argue that it is important to provide the user with
information about the reliability of the displayed embedding, as
mentioned in (b). Integrated visual cues indicating the reliability
of every single mapped point can help the user reason about the
original data based on the embedding. Ideally, the user is not only
able to identify erroneous regions in the visualized data, but can
also get an intuition about the structure of the original data. In a
real visualization task, the expert user would have semantical
knowledge about the data that might imply certain structural
assumptions or expectations. Often, additional information is
available, like the membership to semantically meaningful classes
in the data. When the expert combines such semantic knowledge
with the given visualization, the augmented display might help to
distinguish whether the observed local errors are artifacts of the
DR procedure, or structures which are in fact contradictory in

2 Note that we did not use pairwise geodesic distances to represent the
original data, despite our knowledge of the underlying manifold. Instead, we
calculated Euclidean distances in the original three-dimensional space to reveal
more clearly the effects of the quality evaluation. Moreover, the t-SNE method is
generally more suited to embed data which is arranged in clusters, as opposed to
data lying continuously on a manifold. We deliberately chose the method for this
example to demonstrate the quality evaluation with the typical effects of
separating or condensing neighboring points due to the method’s inherent
assumption of an underlying cluster structure.
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Fig. 2. An example of the qualitative evaluation for an embedding of the well-known artificial swiss roll data. On the upper left, the original 3D data is shown, and on the
lower left is the 2D embedding obtained by the t-SNE method (with a perplexity of 50). The different symbols serve as a reference to the original positions on the spiral-
shaped manifold. The upper right shows the classical evaluation via the quality graph over Qux(K). The lower right shows the embedding, colored by the proposed point-
wise qualities Qfiy (14). While the DR method mostly ‘unrolled’ the original manifold rather truthfully, the strip is torn into several pieces, and the locations of the tears are
clearly indicated by the coloring. (a) Original 3D data, (b) QnxK, (c) 2D t-SNE embedding and (d) Point-wise quality of t-SNE embedding. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this article.)

low-dimensions. While the approaches presented in [26,27]
provide very effective heuristics to do so, surprisingly, none of
the formal evaluation measures mentioned so far have been
directly integrated into the visualization display. As mentioned,
many of the measures explained in Section 2 are aggregated
values consisting of point-wise quality contributions (or error
rates analogously), and thus yield the possibility to be extended in
such a way.

Pointwise co-ranking matrices: In the following we will derive
the point-wise quality contributions which are aggregated in the
measure Qnx(K). A co-ranking matrix can be seen as the joint
histogram of ranks in the high- and low-dimensional data, as
stated in [24]. For every single point, it contains the ranks of all its
N-1 neighbors. Every co-ranking matrix C can therefore be
decomposed into per-point permutation matrices C* for every
point x; e X with C= >-¥_, €% where
Ci=|lpyt=k and r;=10]

Hence, the point-wise contributions of the quality Qnx directly
follow as

Qix(K) =D > _C/K=|As, N By |/K

k<Kl<K

which, averaged over all points, again yields the quality measure:
Qux(K) = 321 1 Qux (K)/N.

Thus, every mapped point can be colored based on its quality
Qi (K) for relevant K. The parameter K is either chosen according

to relevant structural criteria such as a local extremum of the
curve Qnyx, or determined interactively according to the user’s
needs.

Fig. 2d shows an example for the swiss roll data set, where the
points are colored by Qi (14) with K=14 chosen according to the
first local optimum of the quality curve. While it indicates small
errors for almost all the points in the inner parts of the patches, it
also reveals the positions of stronger topological mismatches on
the borders of the visualized patches. These errors are caused by
the unrolling and tearing of the original manifold, and are clearly
revealed by the coloring via point-wise quality. Hence this
augmentation of the DR according to local quality highlights
those regions where the user cannot rely on the visualization.

5. Parameterization of the quality measure

Even in very simple settings, however, it is difficult to interpret
the shape of the curve Qunx(K) and the related local quality
measure Qi (K), in particular the parameter K is a fairly simple,
but sometimes unintuitive control mechanism. To demonstrate
this problem, we will consider a few simple examples of two-
dimensional toy data, where we performed no reduction of the
data dimensionality, but used deliberately defined artificial ‘map-
pings’ to map the original data to a different configuration of
points in the plane. Although we have direct access to the original
data structure as well as the specific characteristics of the
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Fig. 3. The upper left shows the artificial mapping, which is a simple switching scheme of a row of one-dimensional points. Obviously, rank errors are at most four (in case
of tie breaks) in this setting. This is mirrored by the shape of a co-ranking matrix for the same setting with 20 points (upper right) for which four off-diagonals are non-
vanishing. However, the established measure Qux(K) is below 1 for almost all K (on the bottom left), which is hard to link back to the mapping’s characteristics. For our
proposed measure (on the bottom right), Qnp(Ks,Kr) =1 for all K > 4. (a) Switching of points, (b) C, (c) Qnx(K) and (d) Qnp(Ks,K¢).

mapping in these cases, we found that from the results of the
quality measure Qux the types of the deliberately implanted
errors are hard to recognize.

First, we consider a very simple scenario: a row of equidistant
points is mapped to a row where the points are swapped in pairs,
as depicted in Fig. 3a. Any even number of points could be chosen
arbitrarily. When examining this scenario, we find that the
maximum absolute rank error between the original and the
switched points is 4 for the entire data set, and independent
from the total number of points (for example, when point d
moves left, and its right neighbor e moves right).? Intuitively, if
we consider rank error sizes up to 4 as acceptable, this mapping is
perfect. This is, however, not indicated by Qux(4) in the graph in
Fig. 3c (which displays the quality for a row of 20 points which
are swapped in this manner): the quality is below one for most
K > 4. 1t is hardly possible to gain insight about the characteristics
of the errors based on the observation of Qux(K) and the mapped
points alone, although the errors in this scenario can be fully
characterized by local pairwise swapping.

The problem arises, because small rank errors can have an effect
over larger ranges of K: regarding some reference point x;, let us
consider a faraway neighbor x; with the original rank p; = K For the
quality Qnx(K), this point is considered benign (i.e. it adds to the
quality) as long as its rank stays at K or intrudes to some lower rank
1 <rj <K, whereas this neighbor would be regarded as erroneous
immediately with just a slightly higher rank of K+ 1 for instance. On
the other hand, a close neighbor, e.g. with rank 1, is allowed to
extrude up to a rank of K and still adds to the quality rating, although
the rank difference can be rather large. This seems to be an
unbalanced characteristic of the quality measure in general.

A look at the co-ranking matrix in Fig. 3b reveals the distribu-
tion of rank changes for this simple example. Since the rank error
is always smaller than 5, only 4 off-diagonals of the co-ranking
matrix are not equal to 0, since the ith off-diagonal corresponds to
rank errors of size i. However, the quality Qnx iS a sum over a

3 Note that for these equidistant points, ties in the pairwise distances need to
be broken to arrive at proper ranks. In case of a tie, we define that the point with
the lower alphabetical letter gets assigned the lower rank.

square block of the co-ranking matrix, like many other DR
evaluation measures described in [24]. This observation also
suggests how the quality measure can be altered to achieve a
more appropriate parameterization: rather than considering a
rectangular sub-matrix, it should focus on a limited number of
off-diagonals corresponding to the size of the rank deviation
which is considered to be acceptable.

Looking at the rather comprehensible and straightforward defini-
tion of Qunx, we find that the parameter K serves two different
purposes: on the one hand, K identifies a region of interest by
determining the size of the neighborhood of every point in the
original data, namely p; <K. On the other hand, it determines the
size and shape of errors which are tolerated for points in the region of
interest: every r; <K is acceptable and adds to the overall quality.
This parameterization has the effect that small rank errors can
contribute to the shape of the curve Qnx(K) on every scale of K.
While there is no immediate drawback when merely comparing
several DR methods, i.e. the usage scenario described in (a) in
Section 2, the effect can be problematic when a fine-grained analysis
of a visualization is desired, like in case (b) in Section 2. As stated in
Section 2, the quality measure Qyx is similar (or equal) to several
other evaluation criteria which rely on the same part Cy,k,I <K of
the co-ranking matrix. Hence, this problem is present in all these
evaluation measures.

To circumvent the described problem, we propose a different,
more fine-grained assessment of quality based on the co-ranking
matrix, which (i) identifies benign points by their amount of deviation
from the original rank, rather than their absolute rank in the
embedding, and (ii) allows for separate control over the region of
interest and the size of the tolerated errors. We therefore replace the
single parameter K by the pair (Ks,K;), where K; determines the
region of interest (alias the significant ranks) and K; is the size of
tolerated rank errors. Further, rather than tolerating errors within a
certain region of the projection, we explicitly consider a limit on the
absolute rank errors. The new measure is defined as

1
Qokeko=gx >, > G

i<Ks j:li-j] <K
Since the second sum is limited to entriesj : |i—j| < K¢, i.e. rank errors
|i—j| smaller than K; we now sum over a part of the co-ranking



B. Mokbel et al. /| Neurocomputing 112 (2013) 109-123 115

a b c
K K K
N N N
\ Kl N \
\ \ \
\ \ \
\ K Ks N
K N\ N \
N \ \
\ \ \
\ \ \
N N N

Fig. 4. Change of the summation area of the co-ranking matrix for precise control over the region of interest and the tolerated rank errors. (a) Original Qux(K),

(b) Qnp(Ks,K¢), K¢ limits w.r.t. diagonal and (c) Qnp(Ks,K¢) for Ks=K,.

matrix which is oriented according to the diagonal, see the schematic
in Fig. 4b. By controlling the two parameters of the quality measure,
the user can assess the compliance with specific requirements for the
embedding. For example, common tasks would be to assess:

(I) the preservation of local relationships (chosen by small K;
and small K;);
(I1) the amount of errors originating in fairly local neighbor-
hoods, but are deviating largely from the original rank (small
K, large K);
(1) the preservation of global relationships in the data (large K,
smaller K;).

To get a rich impression of a visualization’s qualitative char-
acteristics, the quality Qnp(Ks,K¢) is now parameterized by two
values. Hence, rather than in a single curve, the results are now
represented by a surface. The full quality surface can easily be
displayed as a colored matrix, where the position (K;K;) is
assigned a color value according to Qnp(K;,K¢), see Fig. 3d for an
example. The matrix in Fig. 3d shows the results for our example
of 20 swapped points. It clearly reveals that all entries for K; > 4
yield the maximum quality, which is the expected behavior.

In the following artificial example, we will further demon-
strate the more directly controllable characteristics of our
approach. We consider three simple scenarios, mapped from
two-dimensional points to a new point distribution in 2D. The
original data consist of three well-separated Gaussian clusters,
containing 100 points each, see Fig. 5a. As a ‘mapping’, we
consider the points obtained by (i) a random permutation of the
points within every cluster, see Fig. 5b, (ii) a switch of the two
leftmost clusters, see Fig. 5c¢, and (iii) the middle and leftmost
cluster stacked on top of each other, see Fig. 5d. These artificial
mappings represent typical behavior of DR embeddings since they
capture (i) local distortions, (ii) a tearing of regions, and (iii) an
overlay of regions, which are common effects due to the low
dimensionality of the projection space.

The resulting curves for Qnx are depicted in Fig. 6a. Although
we know the exact behavior of the mapping in this case, it is not
easy to link the entire shape of the curves to the characteristics of
the respective mapping. In setting (i), the random permutation of
points within the clusters causes a vast number of local errors,
which is clearly indicated by the low quality for K < 100. Farther
neighbors change their rank as well, because of the permutation
within the neighboring clusters. However, the absolute size of all
rank errors in the mapping is strictly below 100, when consider-
ing only a single cluster, which cannot be inferred on the basis of
the quality curve. The quality matrix for the new measure Qyp in
Fig. 6b clearly shows the errors which are present rather steadily
over all scales of K;, whereas the quality is perfect for all pairs
(K¢ > 100,K;s < 100), which implies that the absolute size of rank
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Fig. 5. These scatter plots show a simple example of deliberately designed
artificial mappings, which resemble typical effects of DR procedures and serve
as a demonstration benchmark for our quality evaluation. The upper plot depicts
the original data consisting of 3 Gaussian clusters in 2D. The plot below shows
how the data was randomly shuffled within each cluster, where black lines are
drawn from every point to its original position, to demonstrate the permutation.
The last two plots show, respectively, how two clusters are switched, and stacked
on top of each other. (a) Original clusters, (b) Mapping (i): shuffled within clusters,
(c) Mapping (ii): left two clusters switched and (d) Mapping (iii): left two clusters
merged.

errors caused by the mapping for a single cluster is below this
range. When considering large neighborhoods of interest with
Ks > 100, the quality is very good for 100 < K; < 150, and perfect
for all K; > 150. The type of errors that appear here are more rare,
the extreme case would be, that a point on the very right of a
cluster moves to the very left of its cluster, and a neighbor
originally on the left, moves to the very right of its cluster. The
absolute rank error for this type cannot exceed half of the total
number of points, as indicated by Qnp(Ks,K¢) =1 for all K; > 150.
This mapping refers to the evaluation tasks (I) and (III) as
described in Section 5, i.e. the upper left part of the quality
surface for (I), and the lower left/middle part for (III).

For mapping (ii), the curve of Qux in Fig. 6a reveals that there
are no errors on a small neighborhood scale (below the cluster
size of 100), whereas the quality drops severely beyond this scale.
The corresponding matrix of Qyp in Fig. 6¢ gives us the same
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Fig. 6. The figures show the evaluation for the artificial mappings from Fig. 5, first with curves obtained by the classical quality measure Qyy (the top figure), and with the
quality surfaces resulting from the newly proposed Qyp measure (in the three remaining figures), each being a counterpart to one of the curves above. (a) Qnx(K),
(b) Qnp(Ks,K¢), shuffled within clusters, (¢) Qnp(Ks,K¢), left two clusters switched and (d) Qnp(Ks,K¢), left two clusters merged.

information, but also reveals that the absolute size of rank errors
is below 200 by showing a perfect quality for all K > 200. This is
expected, since there are only two clusters involved in errors. We
also see a sharp rise in quality at K;=100, because for the points
of the rightmost cluster, two-thirds of all neighbors (the points of
the other clusters) change their ranks by exactly 100 due to the
switching. From the perspective of the leftmost cluster, there are
also some rank errors of size 100-200, which is indicated by the
slight coloring in the region 100 < K; < 200. Mapping (ii) refers to
the evaluation task (IIl) in Section 5, i.e. the lower left to middle
part of the surface.

In the evaluation for mapping (iii), the curve of Qnyx shows a
steadily diminished quality until K ~ 125, a scale which cannot be
linked to the structural knowledge about the data. Thereafter, the
curve steadily rises to the maximum. From this, we can gather
that there are relatively little global errors, however, the matrix
for Qnp in Fig. 6d gives more insight: we can see that the errors
originating in small regions (small K;) are rather small, i.e. there

are errors only for K; <K approximately. On larger scales, the
number of errors increases along with the tolerance K;, which
implies that the absolute size of rank errors increases. This is
expected, since the stacking of the clusters causes small devia-
tions from the original ranks when considering small neighbor-
hoods, as well as large errors when considering large
neighborhoods. However, the quality is perfect for K;> 200
which, again, suggests that there are only two clusters involved
in the occurring errors. This mapping is linked to the evaluation
tasks (I) and (II).

If the computational cost to calculate Qynp(K;,K¢) for all pairs of
(Ks,K¢) e {1...N—1}? should be reduced in a practical visualization
scenario, it is reasonable to calculate only the quality values for
the following three curves instead of the full surface:

o For Qnp(Ks,Kp) with Ks =K e {1...N—1}, which resembles the
original curve from Qux(K) over growing neighborhood sizes,
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Fig. 7. This figure shows a different representation of the qualitative evaluation presented in Fig. 6 for the artificial mappings of three clusters shown in Fig. 5. In the upper
left are the curves for Qnx(K) (the same as in Fig. 6a). The other three plots show an alternative, lean representation of the Qnp measure, which needs less computational
effort. The upper right shows Qnp(Ks) for all Ky == Ks =K; € {1...N—1}, meaning that the measure tolerates all absolute rank errors which are smaller than the current
neighborhood of interest. (Here, the y-axis is scaled differently to highlight the details.) The graphs in the bottom left capture the mapping’s characteristics under a fixed
assumption about the failure tolerance, as only the region of interest grows, in this case for an error tolerance of 30. The bottom right shows the graphs for Qnp(30,K;) for
all K¢ e {1...N-1}, i.e. the average quality of the 30 nearest neighbors, as the failure tolerance increases. These graphs capture the essential content of the surfaces shown
in Fig. 6, requiring far less computational effort. (a) Qnx(K), (b) Qnp(Kst), (¢) Qnp(Ks,30) and (d) Qnp(30,K¢).

but with a different area of summation, taking the error size
into account; the corresponding part of the co-ranking matrix
is depicted in the schematic in Fig. 4c. This means that the size
of tolerated errors is growing as the considered region of
interest gets larger. We then denote the measure by Qnp(Kst)
with Kg .= K; =K,.

e For the mapping’s characteristics under a fixed assumption
about the failure tolerance, as only the region of interest
grows, i.e. Qnp(Ks,Ky) for all Ks e {1...N—1} and fixed K.

e For a fixed neighborhood size of interest, as the failure
tolerance increases, i.e. Qnp(Ks,K¢) for all K¢ e {1...N—1} with
a constant Ki.

In the latter two cases, the respective fixed parameters can be
selected according to the user’s prospect, e.g. on which scale the
visualization is required to be trustworthy. Fig. 7 shows how the
combination of these curves for Qyp offers an adequate approx-
imation of the full surfaces from Fig. 6.

The evaluation in these artificial cases is simplified by the
assumption of equal cluster sizes, which yield a natural threshold
for the parameters. While this was helpful to clarify the proposed
parameterization, the benefits of the two parameters become
apparent when the aggregated overview of the mapping quality is
combined with a point-wise evaluation, which is introduced in
the following section.

Controllable point-wise quality: For the new measure Qyp, the
definition of the point-wise quality is analogous to the one from
Section 4:

QpKsk=>" > Cy/K;

k < Ksl:|k—1| <K;

where Qnp(Ks,K¢) = SN | Qi (Ks,K¢)/N. Here, the benefits of the
new parameterization are particularly noticeable, since the user is
able to tune the parameters to make specific types of embedding
errors directly visible. We consider the example from Fig. 2, and
show how the previous point-wise quality compares to the new
definition in Fig. 8. The problem of Qyx described above becomes
apparent when looking at Q{iy: at a scale K, the measure considers
very different types of errors at once. In this case, we see small

rank errors caused by fairly local permutations of points within
the unfolded pieces of the strip, which exhibit a lighter color. Also,
we observe a small number of strongly colored points on the
edges where tearing occurred and lead to larger rank errors. In
contrast, the new measure Qi exclusively singles out the tearing,
since in this case the small rank errors within the unfolded
patches are below the tolerance threshold of K;=14, while larger
errors which originate in small regions of 14 nearest neighbors
(Ks) are caused by the tearing only, and diminish the quality in
this parameter configuration.

6. Experiments with real-world data

In this section, we demonstrate the quality evaluation frame-
work on two real-world data sets, and showcase the augmented
visualization along with the classical evaluation by the quality
curve Qnx. For the dimensionality reduction of the data, we
applied the standard linear technique PCA projecting the data
on the first two principal components, as well as the well-known
modern nonlinear method t-SNE (Figs. 9 and 10).

Runner data: The first data set is a motion capture sequence,
freely available from the Open Motion Data Project at the Ohio
State University.* It contains the three-dimensional positions of
34 tracking markers over 217 time steps. The sequence shows a
person, who begins to run from a forward-leaning position, and
takes about five strides during which the inclination of the body
becomes upright. Fig. 11 shows 2D-embeddings of the original
102-dimensional points. To clarify the sequential relation of the
visualized data, we connected points from consecutive frames by
a line. We deliberately chose this data set, because here the user
has additional knowledge about the original underlying manifold,
and can directly inspect where a DR technique did not represent
the manifold truthfully. Therefore, the visual augmentation to
detect tearing and overlapping of the manifold is superfluous.

4 sequence Figure Run 1 from http://accad.osu.edu/research/mocap/mocap_
data.htm.
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Fig. 8. This figure compares the two proposed point-wise quality measures for the same embedding of the swiss roll data by t-SNE, as introduced in Fig. 2. On the left, we
show the points colored according to Qi (14) (the same as in Fig. 2d). On the right, the points’ color coding is obtained by Qji;,(14,14). Both measures highlight the tearing
of the original manifold, but Q}, shows only the torn regions and almost no local errors within the unrolled patches, since absolute rank errors below 14 are explicitly
tolerated. (The sequence of class labels from the inside to the outside of the original spiral-shaped manifold is: 0V ¢ A, see Fig. 2a.). (a) Qux(14) and (b) Qyp(14,14).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 9. The figure shows a small survey about the computing time to calculate the
co-ranking matrix from given ranks py,r;. The ranks were calculated from
uniformly random points in 10 dimensions which were randomly mapped to
points in two dimensions. We used various data set sizes N € {500, . ..,8000} and
tracked the run time of a standard Matlab implementation. One curve shows the
computation times on a standard laptop machine with a 2.0 GHz dual core
processor and 2 Gigabytes of RAM, where the memory limitation allowed a
maximum set size of 3500 points. The other curve represents the same experi-
ment on a modern desktop computer using 4 CPU cores with 2.5 GHz each, and
6 Gigabytes of memory.

However, since data lying on an (unknown) underlying manifold
structure are common in general practical applications, this
showcases the insights we can gain from the point-wise quality
evaluation.

The embeddings of both, PCA and t-SNE, show a similar shape
of a ‘tail’ which leads into a spiral structure. This can be explained
by the sequence starting from a leaning posture (the tail) and
progressing to several strides of upright running (the spiral). In
case of PCA, the sequence of points is overlapping at several
positions, while the t-SNE method splits some of the consecutive
points apart but shows less overlap in general. The t-SNE
embedding also produced some crowds and zig-zag shapes along
the point sequence. We report the corresponding quality curves in
Fig. 12.

In case of the PCA, both measures Q}y and Q} show that
some of the overlapping regions have a reduced quality. However,
the measure Qyp identifies less regions to be severely erroneous,
due to the tolerance of K;=20, compare, for example, the overlap
on the left of the scatter plots in Fig. 11a and b. This indicates that
the rank error for these points must be below 20, while the
highlighted regions contain larger errors. Depending on the
practical purpose, the user may want to be aware of the severe
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Fig. 10. The figure shows the quality Qnx for random subsamples of the t-SNE
embedding from Fig. 15. As a reference, the line marked by pentagrams is the
original quality from the full data set, as given in 14a. We sampled 20 times a
random subset of 30% of the total points, and calculated the Qnx based on this
subset only. From the 20 iterations, the gray line shows the minimal outcoming
value for the respective neighborhood size, while the black line shows the
maximum. The neighborhood sizes of the original curve were aligned in relation
to the respective value in the sampled case. The upper figure displays the graphs
for all possible neighborhood sizes, and the lower figure shows a zoomed view,
focusing on the neighborhoods up to 100 points only. The deviation from the
original curve is fairly small, although the co-ranking matrix is based only on the
subsample. (a) Subsampling of Qnx and (b) Subsampling of Q.

mismatches, neglecting tolerable errors. Similar characteristics
can be observed in the Fig. 11c and d for t-SNE. The tearing of the
sequence is distinctly highlighted as erroneous in the coloring by
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Fig. 11. The figure shows a PCA and a t-SNE embedding (with perplexity 30) of the runner data, each colored by the pointwise quality Q}y(20) and Qf(20,20),
respectively. Points from consecutive motion capture frames are connected by a line. For Qy(20), various types of errors arising in neighborhoods of 20 points are
highlighted all at once, while Q},(20,20) is able to identify where the neighbors deviate from their original rank by more than 20. This gives a clearer indication of where
the underlying manifold is not truthfully represented, e.g. torn apart in case of t-SNE. (a) PCA, Q}x(20), (b) PCA, Q},(20,20), (c) t-SNE, Q}x(20) and (d) t-SNE, Q},(20,20).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Xi

Np- Here, the advantage of the parameterization becomes
particularly apparent: the user may choose via K; not to highlight
the tolerable local errors which are caused by the crowding and
zig-zag patterns.

COIL-20 data: The second data set, the Columbia University
Image Library from [33], consists of 1440 gray-value images in a
resolution of 128 x 128, which show 20 small objects, photo-
graphed from 72 consecutive rotation angles. Each class in the
data corresponds to photos of one particular object. Because of
the consecutive angles, we can assume that the original data is
clustered by their class membership, and that within a class, the
data are situated on a ring-shaped manifold.

In Figs. 13 and 15, we show an embedding by PCA and t-SNE,
respectively, with points colored by their quality Q},(10,10).
Since we chose K;=K;=10, the measure highlights absolute
rank errors larger than 10, originally situated among the 10
nearest neighbors of a point. Fig. 14 shows the corresponding
quality curves. The PCA embedding is generally of a low quality,
as indicated by the coloring in Fig. 13b, and the curves in Fig. 14.
For the t-SNE embedding, the coloring in Fig. 15b reveals distinct
defects in the clusters, seemingly either caused by the tearing or

contracting of the original manifold within a cluster, or by over-
laying separated clusters.

MNIST data: The third data set MNIST from [34] consists of
60,000 gray-value images of handwritten digits® from 0 to 9. Each
image comes at a resolution of 28 x 28 and is therefore repre-
sented as a vector of 784 dimensions. Applying t-SNE on the full
data set of 60,000 images is not feasible in terms of memory
demand and computational effort. We therefore used a random
sample of 10,000 points for our experiments. For this data set, we
have no prior assumption about an underlying manifold struc-
ture, but we can assume that there are clusters according to the
ten digits.

Fig. 16 shows a visualization with t-SNE. We now omitted the
corresponding PCA embedding since it shows a considerably
inferior quality, similar to the case of the COIL-20 data. In
Fig. 18, the embedding is colored by the point-wise quality
Q}p(300,300), and Fig. 17 shows the quality curves. The embed-
ding shows the expected cluster structure according to the digits;

5 For further information, see http://yann.lecun.com/exdb/mnist/.
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Fig. 12. The quality curves of Qyyx (upper left figure) and Qup (the remaining figures) for the PCA and the t-SNE embedding of the runner data, see Fig. 11. The curves show
that the t-SNE embedding is more truthful in displaying the local relationships, whereas PCA preserves more of the ranks in the larger neighborhoods. The curves for
Qnp(Ks,20) in the lower left (for a fixed error tolerance of 20) reveal that there are many errors in the t-SNE embedding when considering larger neighborhoods. On the
other hand, the curves over Qnp(20,K;) in the lower right show that the errors in the t-SNE embedding are only of very small magnitude when considering 20 nearest
neighbors. (a) Qnx(K), (b) Qnp(Kst), (€) Qnp(Ks,20) and (d) Qnp(20,Ky).
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Fig. 13. On the left, we show a PCA embedding of the COIL-20 data where each point’s class membership is represented by a distinct combination of a marker symbol and
color. On the right, points are colored by their quality Q};(10,10). The embedding exhibits a low quality at almost every position, since there are many rank errors > 10
occurring in the 10 nearest neighbors. (a) PCA embedding and (b) Qy,(10,10) for PCA embedding. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this article.)
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Fig. 14. This figure shows qualitative evaluations for the PCA and t-SNE embeddings of the COIL-20 data (see Figs. 13a and 15a). The curves in the upper left figure are the quality
Qnx, While the other three figures show the quality curves resulting from the Qnp measure. Both, Qnx and Qup clearly identify that the PCA embedding fails to reliably represent the
local relationships, while the t-SNE embedding sacrifices some of the global relationships but is generally depicting the smaller neighborhoods rather truthfully. (a) Qunx(K),
(b) Qnp(Ksr), (€) Qnp(Ks,10) and (d) Qnp(10,K;). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 15. The figure shows a t-SNE embedding of the COIL-20 data, the perplexity
parameter was set to 15. In the upper visualization, points are marked according
to their classes by combinations of marker shape and color. The points in the
lower picture are colored by their quality Q}i;(10,10). Since the region of interest
K as well as the failure tolerance K, were both set to 10, we can see where some of
the clusters, which are assumed to be on a ring-shaped manifold originally, have
been torn or contracted severely. (a) t-SNE embedding and (b) Qy(10,10) for
t-SNE embedding. (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this article.)

however, the classes are only weakly separated and they are
partially overlapping. Although the overall quality is diminished
by these effects, we can see in the point-wise evaluation that the
errors are less pronounced for the digits 0, 1, 6, and 7. The other
digits show a lower quality, especially in the border regions,
presumably caused by the stronger overlaps.

Computational effort and speedup: In real world data sets, such
as MNIST, sizes in the order of several thousand data points
become more and more common. Since the computational
demand for the discussed quality evaluation is rather high, we
address this topic shortly. If ranks have been calculated, assem-
bling the pointwise co-ranking matrices requires a lookup opera-
tion for every pair of points, therefore the time complexity is
O(N?). To give an impression of the practical computational effort,
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Fig. 16. This figure shows a t-SNE embedding of the MNIST data consisting of
10,000 data points, where the perplexity parameter was set to 30. Each point’s
class membership is represented by a distinct combination of a marker symbol
and color. Additionally we highlighted the corresponding digit in each cluster
center. We see that the data are arranged in clusters according to the classes, but
are generally close together with some significant overlaps between classes. (For
interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

we tracked the run time to calculate the classical co-ranking
matrix for random mappings of sizes between 500 and 8000
points on a standard laptop, as well as a modern desktop
computer, see Fig. 9.

To tackle this practical issue, we investigated in how far a
random subsampling of the points affects the outcome of the
quality. In a small experiment, we performed a subsampling of
the t-SNE embedding of the COIL-20 data from Fig. 15, where we
randomly sampled 30% of the points, i.e. 432 out of 1440 (using
the same subset of the original as well as the embedded points).
We repeated this procedure 20 times, evaluating the quality Qnx
every time. In Fig. 10 we show the respective maximum and
minimum of the resulting curves together with the original
quality curve as given in 14a. The figure shows that the deviation
from the original curve is relatively small, from which we can
conclude that subsampling seems to be a valid possibility to
approximate the quality evaluation using less computational
effort. While this shows only Qnx exemplarily, we observed a
similar effect for the Qyp measure.

Subsampling could open the way towards an interactive
graphical user interface, where the user can observe a given
visualization augmented by the point-wise quality, and directly
try different parameter settings for K, K;. Since the computa-
tional effort and memory demands can be limited by sampling a
fixed number of points, the interface can be updated instantly and
the user can quickly browse various combinations. Together with
techniques to accelerate the DR process itself, see e.g. [35],
mapping and evaluation would become feasible even for very
large data sets.

7. Discussion and future work

We have discussed existing quality measures for dimension-
ality reduction with regard to their suitability for practical usage
scenarios. While there are several evaluation methods which are
suited for an overall assessment and comparison of different
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Fig. 17. This figure shows the qualitative evaluations for the t-SNE embedding of the MNIST data (see Fig. 16). The curves in the upper left figure are the quality Qnx, while
the other three figures show the quality curves resulting from the Qyp measure. The curves indicate that the distortions in the mapping are generally quite large. Even in a
range of 70 neighbors, there are many errors, and the rank errors have a size of up to 3000, see the curve for Qnp(70,K¢). Only the very small neighborhood ranges are
depicted rather truthfully, as seen on the very left of the curves for Qnx(K) and Qnp(Kst). (@) Qux(K), (b) Qnp(Kst), (€) Qnp(Ks,70) and (d) Qnp(70,K;). (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this article.)
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Fig. 18. The figure shows the point-wise quality Q’;;DGOO,BOO) for the t-SNE
embedding of the MNIST data from Fig. 16. As expected from the curves of Fig. 17,
we generally see many errors in the visualization. Furthermore, we can observe
that the overlaps of the classes cause stronger errors. This is less pronounced for
the digits 0, 1, 6, and 7. The classes 2, 3, 5, and 8 show many disturbances in the
defined range of 300 neighbors, deviating from the original rank by more than
300. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)

visualizations, we observed a lack of formally established techni-
ques that facilitate a more detailed evaluation of a single
visualization. Therefore, we proposed to extend general formal
quality criteria to yield a richer impression of the embedding’s
local characteristics. We based our approach on the established
co-ranking framework which unifies several quality criteria, and
presented a point-wise quality measure following directly from
individual co-ranking matrices. These local quality ratings can be
used to augment the given data embedding by meaningful color
values which highlight distortions in the visualization for user-
specified neighborhood scales. We further suggested to improve

the parameterization of the established quality measure to enable
more control over the evaluation’s focus. In several artificial and
real-world experiments we demonstrated the benefits of our
evaluation framework, and discussed possibilities for speed-up
with an interactive user interface in mind.

In future research, we will investigate which parameterization
of the quality measure leads to better interpretable results in user
studies. Since DR is usually applied to represent very high-
dimensional data and our evaluation is based on the agreement
of ranks, further ongoing research will focus on certain phenom-
ena of high-dimensional data distributions and their influence on
our evaluation scheme. In [1] the meaninglessness of distances is
discussed as part of the so-called curse of dimensionality, and a
related issue known as hubness is pointed out in [36], which leads
to some points appearing very often among the K nearest
neighbors of other points in the data. It seems important to
investigate the influence of such effects on the evaluation of rank
agreement. Additionally, we plan to investigate further how
truthfully we can approximate the quality evaluation by using a
small subsample from the original and the embedded data points.
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