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Abstract 

‘he problem of non-linear Single Input Single Output system identification in the presence of 
large errors in data is considered. Combining the capabilities of neural networks to solve 
non-linear problems by learning and a robust recursive prediction error learning rule based on the 
modelling of the errors, a new algorithm is drawn up. Its potentialities are illustrated through 
simulation studies. 
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1. introduction 

Artificial neural networks have been the focus of a great deal of attention during the 
last decade, due to their capabilities to solve non-linear problems by learning. Such 
networks provide a parallel structure with very simple processing elements. Although a 
broad range of neural networks (NN) architectures and learning rules are available 
[9,12,14,23], the backpropagation algorithm for multilayer feedforward networks [21] is 
the most popular approach for engineering applications. Backpropagation or derived 
algorithms have been successfnlly applied for classification and pattern recognition 
[20,24], fault detection [10,131, non-linear control [17] and process modelling and 
identification [2,3,18]. 

On the other hand, an extensive literature on system identification can be found. 
Among general textbooks on the subject, Box and Jenkins 141, Siiderstriim and Stoica 
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1221 and Ljung [151 can be mentioned. Particularly, much effort has been devoted to 
tackle the presence of outliers in experimental input and output data used for identifica- 
tion. Large errors or outliers in data can be for instance caused by offset of sensors, 
failure of transducers, analog to digital conversion errors or even by malfunctioning of 
transmission devices. The related works are mainly based on modelling such outliers to 
produce so called robust identification algorithms. But these works are limited to linear 
systems. 

In this paper, the main feature of neural networks, the ability to identify non-linear 
systems and a robust recursive prediction error algorithm, based on the modelling of 
errors due to Huber ill], are combined. This modelling has been used by Puthenpura 
and Sinha [19] for a robust linear recursive least squares type identification algorithm. 
The convergence of this kind of algorithms particularly for non-linear systems is very 
slow. So, a robust feature is introduced in a recursive Gauss-Newton type of algorithm, 
first employed by Chen et al. IS] for neural networks. The goal is to accommodate to 
outliers in order to eliminate their effects in the identification of non linear SISO 
systems by an appropriate choice of the criterion to be minimised. 

2. Multilayer feedforward neural networks for identification 

In this part, the structure of the multilayer feedforward neural network, used for 
identification of dynamic single input single output (SISO) systems, is presented. The 
network shown in Fig. 1 is composed of interconnected processing units in three 
successive layers. 

The first or input layer is composed of ‘transparent’ units which do not perform any 
computation but simply distribute theirs inputs to all neurons in the next layer called 
hidden layer (xi = x,(r), Vk). For identification purposes, several authors such as 
Cybenko [7] or Funahashi [8] have established that multilayer feedforward neural 
networks with a single hidden layer are able to approximate continuous functions. The 
last layer is the output layer, composed of a single neuron and its output gives the 
estimated output of the SISO system. 

Neurons in the hidden and output layers are identical and can be represented as 
illustrated in Fig. 2. 

Fig. 1. A three layers feedforward neural architecture. 
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Fig. 2. Neuron i in layer j. 

The ith neutron in the layer j receives nj_ I inputs {x{- ‘,a * . , x& :I from layer j - 1 
with associated weights (w,i, . * a, w/~~_, 1. This neuron first computes the weighted sum 
of the nj_ I inputs: 

“j- 1 

z!‘= &+J/k$’ +g 
1 l (1) 

k- I 

where b,! is a bias or threshold term. The output of the neuron is a non-linear function of 
the sum in (1): 

x{=g(zj) (2) 

where g denotes the activation function, chosen as often to be a sigmoidal function, 
here: 

g(x) = l/(1 +C) (3) 
with lim g(x) = 0 and Jymg( x) = 1. 

X-D -ca 

So, for the structure and the notations of Fig. 1, a network with a single hidden layer 
can be defined by the following model: 

W) = g( 4 (4a) 
“I 

z= cw,2x;+P (4b) 
k- I 

xf =g(z,‘) (W 

“0 

zi’= CW;kXk(t) +bj 
(4) 

XW=&~I.. xJt)P is the n,.l input vector. 
In the following, ndr A, and nY refer respectively the input time delay, the numbers 

of lagged system inputs and outputs to be applied to input layer of the network. In the 
training phase of the neural network, i.e. the identification step, input u(t - n,), U(t - 
nd- l)... and output y(t- 11, y(t--2)... values of the process are successively 
applied on the input layer of the network in order to produce estimated value of the 
system output: 

F(r, 0) =NN(y(t- 1) ,*.., y(r-n,),u(t-nJ ,..., u(t-nn,-nn,+l)) 

(3 
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where 8=[8, . . . 6,JT comprises all the unknown weights and biases of the network. 
The dimension n, of the parameter vector 0 is defined as: 

n,= (no+ l).n, +(n, + 1) 

where no = ny + n, is the number of the input layer neurons and n, is the number of the 
hidden layer neurons. So the predictor can be noted NN(n,, n,, nd. n, ). 

To avoid the saturation of the activation function (3), particularly for the output 
neuron, contained between 0 and 1, observed input and output data of the system must 
undergo a transformation reducing them between 0 and 1. However, the same notation 
for original and normalised data is used in the following. 

3. Recursive prediction error method 

The general framework of the learning rule used in the following is now presented. 
The backpropagation algorithm [21] is the first training method to estimate parameters of 
multilayer neural network and is a gradient algorithm designed to minimise the mean 
square error between the output of the network and the desired output. 

The recursive prediction error or RPE algorithm, first introduced by Chen et al. [5,6] 
for training neural networks, is a general recursive parameter estimation method which 
minimises the prediction error using an approximation of the Gauss-Newton search 
direction. Only the version of the RPE algorithm introduced in [5] has been considered 
here. Billings and Jamaluddin [3] have shown that the RPE algorithm provides an 
effective method of learning neural networks. Backpropagation can be viewed as a 
simplified version of the RPE algorithm. Compared with backpropagation, RF’E algo- 
rithm involves increased computational load at each iteration, but presents faster 
convergence, yielding to shorter global computational time. Furthermore, RPE removes 
the dependence of the estimation algorithm on the user selectable parameters such as 
learning rate and momentum. Indeed, with an inappropriate combination of these 
parameters, backpropagation performs badly. In any case, neither backpropagation nor 
BEE algorithm ensure to reach a final estimation corresponding to a global minimum of 
the criterion. 

The RPE algorithm starts from the general criterion: 

J(r,B)=v(f)~P(r,k)l(E(k,8),k) 
k- 1 

(6) 

where y(t) is the adaptation gain a time t with C:, ,y(r)p(t, k) = 1, l (k, 0) is the 
scalar prediction error and l(~(k, @), k) can be chosen as a quadratic function 
weighted by the innovation variance A(k): 

l(e(k, O), k) =+n-‘(k)P(k, 0) 

The minimisation of the criterion (6) can be performed according to: 

(7) 

8(t) = 6(t- 1) +j@(r- 1)) (8) 
where 8(t) is the estimate of 0 at time t and f,(&t - 1)) is a search direction bed 
on information about J(r, 0). 
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The parameter vector 8 is estimated for each t = 1,. . . , N, where N is the number of 
available observations. For off-line estimation, the data set is presented several times 
and each presentation is called iteration. The Gauss-Newton search direction is used here 
and is defined by: 

f,(O) = -[R(t)]_‘VJ(t, 0) (9) 

where R(t) and VJ(t, 0) are respectively the n,.n, approximate hessian matrix and the 
n,. 1 gradient of J(t, 0). The derivation is given by Ljung [15] and yields the general 
recursive prediction error algorithm: 

e(r) =Yw -F(VW- 1)) ( 104 

8(t) = 8(t- 1) +~(t)R-l(t)~(t)n-‘(t)r(r) ( lob) 

R(f) =R(r- 1) + ~(t)[~(t)n-‘(t)~r(t) -R(r- l)] (109 

where 1+9(t) is the n,.l gradient of j, with respect to 0: 

W)= WV@) 
I 1 .& * 

The elements of $(t) must be written depending on the location of the parameters in the 
network, in spirit of backpropagation. It can be first shown from Eq. (3) that: 

ad xl 
- =g(x)(l -g(x)) ax (11) 

For the parameters of the output layer, Eqs. (111, (4a) and (4b) then yield: 

89 aj, 82 

q = Z aw; 
- =jq1--9>x; ( 12a) 

For the parameters of the hidden layer, Eqs. (11) and (4) yield: 

6 aj; az ax; az; 
- = ---- -jql -jl)w;.;(l-+, 
awi:, a.7. ax; al; aw,:, 

a? ag az ax; az; 
q= -gaxfg~=w -Nw.x(l-4) 

I I 

(13a) 

( 13b) 

So, the differentiation of 9 with respect to Oj<i = 1,. . . , no) can be summa&d as 
follows: 

1 W-9) 
*= jql -$)w#?xf(l -x:)xk 

if ej= b2 

if f3j=w:k, 1 I;kSn, (14) 

(9(1 -jqw;x;(l -xi’) if t?, = bf 
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As developed in the appendix, the practical implementation of the algorithm (10) avoids 
to invert R(r) at each step: 

a(f) = &(r- 1) +L(t)+) ( 15a) 

P(t- Wt) w = h(r)A(t) +JIT(f)P(t- 1)$(t) 

P(r) = &[P(‘- 1) -w+T(ww- 01 

( 15b) 

( 154 

where 

P(t) = y(t)P(t) 

and 

(16) 

A(f) = y(&1J (1 - r(t)) (17) 

The so called forgetting factor is calculated practically by: 

A(t)=A,(l-h(t-1))+(1+,) 

4. Robustification of the algorithm 

Large errors or outliers are quite difficult to be detected and picked out before 
identification and can cause the parameters to be highly biased. In order to tackle this 
problem, Puthenpura and Sinha [19] have developed a robust recursive identification 
method for linear dynamic systems. This scheme is weighted least squares algorithm 
with particular weights and is very similar to the robust Kalman filter obtained by 
Masreliez and Martin [ 161. Based on the modelling of outliers due to Huber [l 11, it 
considers that the measurement noise e(t) which contamines the noise free output is 
from the family Dp, defined by: 

D,=(DID=(l-p)G+pH,O<pSl} (18) 

where G is the usual normal distribution, H an arbitrary symmetric long-tailed 
distribution and p the probability of occurring large errors. In fact H is assumed to be 
also normal, but with a larger variance compared to G: 

e(t) _ (1 -p)N(O, ~~)+PN(O, u22) (19) 

where N represents a normal distribution, with uz > a:. 
The probability p of occurring large errors being unknown, the preceding model is 

replaced by: 

e(t)-[l -s(t)]N(O, a:)+6(r)N(O, ~2’) (20) 
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where s(t) = 0 for 1 e(t) I s M and 6(t) = 1 for 1 c(t) 1 > M, e(t) is the prediction 
error and M a preassigned bound which can be taken as 3~7, [ll. So the weighting 
factor appearing in Eq. (15) will be chosen as: 

n(r)=[l-qt)](T:+qt)Cr; (21) 
to reduce the influence of large innovations. Moreover, variances o: and uz can be 
updated as: 

f+(t) = (T:(t- 1) + &(ez(r)--(T:(f-1)) forIc(t)ls301(f-1) 

o:(t) = C$(t- 1) otherwise 

(22a) 

and 

o;(r)=O:(f-l)+~(e2(t)-oz(t-1)) forIc(t)I>3a,(r-1) 

o,“(t) = C$(t- 1) otherwise 

(22b) 

with T= 0, for t = 1 and r= T f 1 whenever I e(t) I > 3a,(t - 1). As pointed out by 
Puthenpura and Sinha, T is the estimated number of outliers. 

a:(O) can be chosen as o:(O) = 3o:(O). a;(O) should be chosen much greater than 
the real value of the noise variance so that in the beginning of the identification no 
residual c(t) appears like outliers. With this choice, of converges to the true value of 
the noise variance. When CT: is close to the noise variance, outliers are detected and 
their influence on identification becomes insignificant. If of(O) is chosen very small (or 
null), all residuals have an absolute value I e(t) I greater than 3a,(r - l), only ~2” 
converges to the noise variance (but with the influence of outliers) and the parameter 
estimation is biased when outliers are present. If a:(O) is chosen very large, the 
accommodation to outliers is just delayed. 
In the next part, the three following algorithms are applied from Eq. (15) to a simulated 
example: 
- NN (Neural Network) with A( I) = 1 and A(t) = 1, 
- FNN (Neural Network with Forgetting factor) where A(t) = 1 and A(t) is calculated 
by the recursive relation A(t) = A,(1 - A(t - 1)) + (1 - A,,), with A,, = 0.99 and A(0) = 
0.95, 
- RNN (Robust Neural Network) where A(k) = 1 and A(k) is computed by Eqs. (21) 
and (22). 

5. Simulation results 

A non-linear Hammerstein system example, introduced by Billings 131, is considered: 

y(k) =0.8y(k- 1) +0.4NL(u(k- 1)) +e(k) 

NL(k- l)=u(k- 1) +u(k- 1)2+u(k- 1)3 (23) 
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-100 L I 
0 loo 200 300 400 500 

Fig. 3. Output signal contamiaed by outliers. 

where u(k) is the system input at time k, chosen as a sequence uniformly distributed 
between - 4 and 4, in order to study the system on the whole non-linearity, y(k) is the 
system output, e(k) is a gaussian noise such as e - ZV(0, a:> when no outliers are 
present. In or&r to show the influence of the outliers on the output, Fig. 3 presents the 
500 output values, where the noise variance a: is equal to 2.56 (a, = 1.61, contamined 
by 25 randomly located outliers. These large errors are simply simulated by multiplying 
the original values of the noise by a factor f equal to 20. 

Fig. 4 shows the difference between the preceding series and the corresponding 
outliers free and noise free simulation. The impact of the outliers filtered by the process 
dynamics can be noticed. Fig. 5 presents the difference between the noisy and outliers 
free series and the noise free series, which represents the noise filtered by the process, in 
order to show its variation range, significantly smaller than for the preceding figure. 

For the different following trials, the neural predictor has the same structure 
NN(n, = 2, n, = 2, nd = 1, n, = 3) and the initial weights, randomly chosen between 0 
and 1, are kept. The initial value of the covariance matrices P is chosen equal to 100 I 
and of(O) equal to 5 times the variance of the noise. 

For the off-line identification considered in this part, the data set is presented 20 
times (iterations). Moreover, a second data set is used for the (cross-halidation of the 
neural models. This fresh data set is called validation set and has characteristics similar 
to the original identification set, concerning the input shape, the distribution of the noise 

-801 
0 100 200 300 400 500 

Fig. 4. Impact of outliers on the output data. 
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.” 

0 100 ZOO 300 400 

Fig. 5. Noise filtered by the process. 

500 

and its variance, but is outlier free. The following examples give the values of the 
residual criterion: 

v=; &W) -YW2 
k- I 

where y(k) is the system output at time k, F(k) is the output estimated by the neural 
model obtained after 20 identification iterations and where N = 500. 

Fig. 6 presents, for of = 0.64, the variation of the residual criterion when the number 
of outliers (with multiplicative factor f equal to 25) is varied from 0 (no outliers) to 50. 

Figure 6(a) concerns the data set used for identification, Fig. 6(b) the validation set. 
NN and RNN algorithms yield very stable results for the validation set contrary to those 
for FNN. But the residual criterion is reduced by 5 from NN to RNN. 

so - 

0’ I 

0 10 20 30 40 so 

Fig. 6. Residual criterion w.r.t. the outliers number. (a) identification set, (b) validation set. 
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20 
t \L 

25 

\ 0 

0 
0 S 10 IS 20 

Fig. 7. Residual critexion with respect to iterations. (a) NN. (b) RNN. 

Figs. 7(a) and 7(b) show the evolution during learning of the residual criterion for 
algorithms NN and RNN, respectively, for 0,25 and 50 outliers. The convergence of the 
RNN algorithm appears clearly faster. However, as shown in Fig. 8, the variation of the 
criterion computed from the validation set is slower. 

The second trail deals with a variation of the multiplicative factor f from 1 (no 
outliers) to 50, for 50 outliers and for a: = 0.64. The results are similar as those of the 
preceding trial, as shown in Fig. 9. 

In the third trial, for 50 outliers with multiplicative factor equal to 25, the noise 
’ variance o, is varied from 0 (no noise) to 16. Results are given in Fig. 10. As for the 

preceding trial, the behaviour of the FNN algorithm appears disconcerting, such an 
algorithm being misadapted for contamined data. Note also on Fig. 10(b) that the RNN 
algorithm, superior to the simple NN, produces a good estimation of the noise variance 
from 2.5. 

z ~~ 
0 S 10 15 20 

Fig. 8. Residual criterion for validation set (RNN). 
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FNN 

0’ 
I 

0 10 20 30 40 50 

Fig. 9. Residual criterion with respect to the factor J (a) identification set, (b) validation set. 

In the last trail, V: is fixed to 0.64 and a bias varying from 0 (no bias) to 20 is added 
to the last 50 values of the original outliers free noise. The results given in Fig. 11 are 
very significant. While increasing with RNN for the identification set as the bias 

-0 0.64 256 5.16 1024 16 

” 

0 064 256 5.76 10.24 16 

Fig. 10. Residual criterion with respect to 0:. (a) identification set, (b) validation set. 
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0 4 a 12 16 m 

” 

0 4 8 12 16 m 

Fig. 11. Residual criterion w.r.t. bias magnitude. (a) identification set, (b) validation set 

increases, the residual criterion is remarkably stable for the validation set, contrary to the 
other algorithms. 

These last results confirm the interest of the presented robust non linear predictor for 
detection of process changes. 

6. Conclusion 

The neural nets have a structure which allows, with the adaptation of the backpropa- 
gation, the use of the various and sometimes classical parameter estimation algorithms. 
The problem of non-linear Single Input Single Output system identification in the 
presence of outliers in data has been considered. Combining the capabilities of neural 
networks to solve non-linear problems by learning and a robust recursive prediction 
error learning rule based on the modelling of the errors, a new algorithm has been drawn 
up. The results obtained suggest that this algorithm can be employed for identification 
from contamined data, but also for failure detection and for robust control. The proposed 
method can be easily extended to MIMO systems. 
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Appendix 

Let us consider the general prediction error algorithm introduced in (10): 

E(f) =y(t) -9$/&r- 1)) (Ala) 

R(t) = [l- Y(ww- 1) + Y(t)wOwT(t) ( Alb) 

8(t) = 6(t- 1) +y(t)zryt)$(t)n-‘(f)E(f) (Al4 

To avoid inverting R(t) at each step, it is convenient to introduce: 

P(r) = Y(t)R-l(t) W) 

and apply to (Alb) the matrix inversion lemma: 

(A +BCD)-’ =A-’ -A-lB(C-’ +&@-‘DA-l W) 

Taking A = [ 1 - y(t)]R(t - 11, B = DT = I,!&), and C = y(t>A-‘(t) gives: 

P(t) = 
r(t) 1 

I?--‘(t- 1) 

I?-‘( t- 1) - 
R-w- l)W~‘(t) 1 _ Y(t) 

1 -r(t) fw 

I 

(A4) 

- +qT(O 
Y(f) 

Rl-l’:,;) 4+(t) 

Let us recall that the forgetting factor A(t) is linked to Y(t) by (17): 

A(t) = yy(;)l) [l - YWI 

Eq. (A2) can be rewritten as: 

P(t- 1) = y(t- l)P(t- 1) 

Combining (A5) and (A6) gives: 

(A6) 

P(t- 1) r(t) 

h(t) = l-y(t) 
P(t - 1) 

and introducing (A7) in (A41 gives quite directly: 

1 
P(t) = - 

P(t-- l)w~T(t)P(r- 1) 

A( t) ‘(‘- ‘)- h(t)A(t) +GT(t)P(t- l)+(t) 1 

(A71 

W) 

Taking: 

L(t) = y(t)J?-‘(t)+(t)A-‘(t) 

in (Ale) gives: 

8(t) = &t- 1) +L(t)E(t) 

( w 

(A101 
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Introducing (A2) and (A8) in (A91 yields after some calculations: 

L(r) = 
w- W(t) 

w)40 + 4JT(ev- l>@(t) (All) 

and substituting (All) in (A8) gives with (Ala), (All) and (AlO) the final algorithm: 

42) =y(r) -9(V&- 1)) (A12a) 

L(t) = 
W- W(r) 

wm) + fhT(t)P(t- l)W) 
(A12b) 

P(f) = &[P(r- 1) -L(W’WP(~- I)1 (A12c) 

8(t) = &(t- 1) +L(t)&(t) (A12d) 
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