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a b s t r a c t

This paper investigates the learning dynamics of intrinsic plasticity (IP), which is a learning rule to tune

a neuron’s activation function such that its output distribution becomes approximately exponentially

distributed. The information-geometric properties of intrinsic plasticity are analyzed and the improved

natural gradient intrinsic plasticity (NIP) dynamics are evaluated for a variety of input distributions.

Together with a further new modification of the IP rule, the high capability of NIP to cope with drift is

demonstrated to have superior performance as compared to the standard gradient in experiments with

synthetic and real world data.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

In 2004, Triesch introduced a biologically inspired model of
intrinsic plasticity (IP) [1] for optimization of an artificial neuron’s
activation function based on stochastic gradient descent. The
target of IP-learning is to approximate an exponential output
distribution irrespective of the given input distribution. This
maximizes the neuron’s information transmission, related to the
high entropy of the target distribution. Since its introduction, the
IP-rule has been used to learn sensory representations [2] and
enhance the encoding in reservoir networks [3,4], which are of
main interest in this paper. A batch-version has been shown to
improve extreme learning machines [5] and static reservoirs [6].
It was further shown that in synergies with synaptic plasticity IP
can detect heavy tail input distributions [7]. Despite its success in
these different domains, the IP learning dynamics have not yet
been analyzed in detail and potentially suffer all known draw-
backs of standard stochastic gradient. The parameter estimates
can lead to small gradient norms in some regions of the para-
meter space, so-called plateaus, where convergence is slow.

One reason for this is that the parameterization and the
corresponding output of a model are defined in different metric
spaces. Most gradients defined on an error measure only utilize
Euclidean metrics in parameter space. But, generally, there is no
reason to assume that the Euclidean metric is the preferential
distance measure between solutions. It is well known that the
ll rights reserved.
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parameter space has a Riemannian metric structure in many cases,
for instance in the weight space in neural networks [8]. The
parameter space can be analyzed by means of information
geometry–a theory which employs differential-geometric methods
in statistics [9,10].

While the steepest direction in a parameter space with an
Euclidean metric structure is given by the conventional gradient,
the steepest direction in a parameter space with Riemannian
metric structure is given by the so-called natural gradient. It is
obtained by transforming the Euclidean metric in the output
space by means of an often only locally defined metric tensor into
the parameter space. The tensor needs to be well-suited to the
Riemannian metric of the parameter space.

It has been shown that the natural gradient can be advanta-
geous for different stochastic learning setups like blind-source
separation or statistical estimation of probability density func-
tions (see e.g. [8,11,12]). It has also been applied to improve the
learning dynamics of multilayer networks [8,13]. For instance in
[14] the authors distinguish between a transient and an asymp-
totic phase in the learning dynamics which both show significant
gains in performance over standard gradient descent. The concept
of natural gradient has further been extended to more general
classes of multidimensional regression and classification pro-
blems in [15]. An alternative derivation of the natural gradient
is given in [16], together with the natural equivalent of batch
learning, linked to Levenberg–Marquardt optimization. Recently,
the special case of learning for non-linear discriminant networks
was improved by use of natural gradient in [17].

As opposed to standard neural learning, where the input
weights are adapted, IP learning adapts parameters of the activa-
tion function. This paper defines and analyzes the corresponding
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Riemannian metric tensor for IP in detail which was first intro-
duced in [18] and thereby introduces the natural gradient for IP.
Like in other domains, where natural gradients were previously
explored, experiments reveal that the Riemannian metric and the
associated natural gradient are more suited to describe distance
relations between output distributions for IP and provide superior
learning dynamics.

First, IP learning is enhanced with the natural gradient and a
further novel mechanism to adaptively transfer persistent
changes of the activation function caused by IP to the weights.
Furthermore, the paper shows that IP learning simultaneously
provides unsupervised input drift compensation. Note that we do
not consider the so-called concept drift, which means online
changes in the desired output function [19], as opposed to
compensation of online changes of the input signal. The latter is
highly useful in real world applications where measurements are
made long periods of time [20] or if inputs are systematically
shifted and scaled through other processes like for instance a
sudden change of illumination or a sudden displacement of a
camera. The literature shows that a detection of the drift before
the compensation is a promising approach [21,22]. In these cases
a suitable compensation strategy needs to be chosen in order to
cope with the drift successfully. One such strategy is to adjust the
data accordingly, e.g. to recenter to compensate respective mean
shifts or to rescale to compensate changes in variance. This
requires external data analysis and appropriate measures but
does not adapt the learned model to internalize the drift. Thereby
the learned model does not actually encode for the current real
world input, but rather for the input at learning time before the
drift occurs.

This is opposed to an implicit approach to drift compensation
that internalizes the drift into the model by continuous re-
adaptation. In principle, continuous online learning of the weights
through backpropagation can provide respective re-learning and
that actually is a strong argument in favor of applying online-
learning while already exploiting the learned model. But it
requires that error feedback is continuously available to change
the neural code that solved the learning task for the original data.
In real applications, this may not be feasible. Consider for instance
the application of a learned virtual sensor for which training data
can be generated in the laboratory using a costly direct sensor.
The goal is to replace this sensing in the real product, where
supervised re-adaptation of the weights is consequently not
possible by definition.

Drift compensation through IP learning in the presence of
mean and variance changes offers a different and novel approach,
which internalizes the drift in the network model so that the
input data does not need to be analyzed. It simultaneously
sustains the neural encoding, which was learned using the error
feedback for the original data, so that there is also no need for
continuous error feedback and retraining. To the best of our
knowledge, there is currently no other approach with these two
features. IP achieves this by exploiting that the considered net-
works restrict error driven weight adaptation to the outputs of
the network, whereas optimization of the input encoding in the
hidden layer is decoupled from the output weight adaptation and
provided by the IP learning. The drift compensation is therefore in
some sense a desired side effect of the local and unsupervised
optimization of the encoding of each single neuron in the net-
work. It turns out that only the combination of the proposed
modification of the IP rule and the usage of the natural gradient
provides an IP learning dynamics that it is well suited for
compensating such drifts.

The paper is organized as follows: Sections 2 and 3 review the
IP learning rule and describe how the natural gradient is defined
for IP. Section 4 describes a technique to tackle numerical issues
of the IP learning rule. Experiments that analyze the differential-
geometric properties of IP are provided in Section 5 in order to
complement the theory of natural gradient. It is also shown how
the learning dynamics change when following the natural gradi-
ent. Section 6 demonstrates the effects of natural gradient IP
learning for compensating drifts in the input, including a real
world learning task from robotics. Finally, Section 7 concludes
the paper.
2. Intrinsic plasticity

Intrinsic Plasticity (IP) was developed by Triesch in 2004 [1] as
a model of homeostatic plasticity for analog neurons with para-
meterized Fermi functions yyðxÞ ¼ ð1þexpð�ax�bÞÞ�1 as activa-
tion and parameters y¼ ða,bÞT . The goal is to optimize the
information transmission of a single neuron strictly locally by
adaptation of slope a and bias b such that the neuron’s output y

becomes approximately exponentially distributed with a fixed
mean m. This is done with respect to the input sample distribution
fx(x), where x is the synaptic sum arriving at the neuron. Typically
m is chosen to be in the interval ½0:1,0:3�: IP-learning can be
derived by using the insight from statistics f yðyÞ ¼ f xðxÞ � ð@y=@xÞ�1

and the equation @y=@x¼ ayð1�yÞ obtained by analyzing the
Fermi function. Minimization of the difference Lðf y,f expÞ ¼ LðyÞ
between the output fy and an exponential distribution f exp,
quantized by the Kullback–Leibler-divergence [23] (KLD), delivers
the following:

LðyÞ ¼ E½lðy,yÞ� ¼
Z
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where C remains as a constant of the potential and can be
neglected without loss of information. Since IP was introduced
in the form of a stochastic gradient decent rule, the respective
online loss function can be identified with the integrand lðy,yÞ
(see Eq. (4)). Here the KLD is interpreted as expected loss E½lðy,yÞ�
for the input samples x distributed according to fx(x). A separation
of Eq. (4) into the entropy Hx½y� and the expectation value of the
output distribution Ex½y� is possible [24], which directly shows
that a minimization of LðyÞ for a fixed mean Ex½y� is equivalent to
entropy maximization of the output distribution. Additional
information about the KLD and its distance to exponential
distributions can be found in [25]. The typical approach is to
use the stochastic gradient of this potential in order to find a
minimum of the expected loss function. The following online
update equations for slope and bias – scaled by the step width ZIP

– are obtained:
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Fig. 1. Four input distributions fx(x) (1st row) and the learned exponential-like output distributions fy(y) for m¼ 0:2 (2nd row).
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Fig. 1 shows how four different input distributions (first row in
the figure) are transformed into exponential-like distributions
(second row in the figure) after training with IP. The figure clearly
reveals that the best possible fit after IP learning is highly
dependent on the input distribution. This is due to the fact that
only two parameters in the Fermi function are adapted. These
distributions will be used as input for the experiments in the
following sections.
Fig. 2. Differentiable relation (Neuron) and metrics F and D between parameter

space Y¼R2 and manifold of possible output distributions U.
3. The natural gradient for intrinsic plasticity

Given an input distribution fx(x), an analog neuron establishes
a differentiable mapping between the parameter space Y¼R2

and the manifold of possible output distributions U. The KLD
comparing a given distribution to the exponential distribution
with fixed mean m in Eq. (4) can be used to derive a canonical
distance measure on the output distribution space resulting in a
Riemannian metric F on the parameter space Y. The metric
determining the distance between two output distributions
y1ðxÞ ¼ yðx,y1Þ and y2ðxÞ ¼ yðx,y2Þ in U defined by the parameter
settings y1 and y2 ¼ y1þdy in Y for an infinitesimal change of
parameters dy is given by Dðy1,y2Þ. This distance measure is
transformed such that it induces the Riemannian metric tensor
FðyÞ – a 2�2 positive definite matrix given by the Fisher
information [26] – as a pull-back onto the parameter space:

Dðy1,y2Þ ¼ Ex½ðlðy1,y1Þ�lðy2,y2ÞÞ
2
� ð6Þ

Dðy1,y2Þ ¼ Ex½ðlðy1,y1Þ�lðy1,y1Þ�rlðy1,y1Þ dyÞ2� ð7Þ

Dðy1,y2Þ ¼ Ex½ðrlðy1,y1Þ dyÞ2� ð8Þ

Dðy1,y2Þ ¼ dy � Ex½rlðy1,y1Þ � ðrlðy1,y1ÞÞ
T
� � dy¼ dy � FðyÞ � dy: ð9Þ

This idea guarantees that the distance between two parameter
vectors y1 and y2 – as measured by the length of the geodesic
with respect to the metric tensor FðyÞ in Eq. (9) – is equal to the
previously defined distance measure Dðy1,y2Þ in Eq. (6) on the
corresponding output distributions y1 and y2 in U. The relation
between parameters and output distributions established by a
nonlinear transfer function of a neuron and its corresponding
distance measures is schematically illustrated in Fig. 2.

As already mentioned before the parameter spaces spanned by
neural networks have a Riemannian character [9,26]. The steepest
descent direction of a potential with Riemannian structure is
given by the natural gradient defined by the metric tensor. The
following update equation is obtained when using the natural
gradient for IP:

ytþ1 ¼ yt�ZðFðyÞþeIÞ�1rlðy,yÞ ¼ yt�ZrNIPlðy,yÞ, ð10Þ

where I is the 2�2-identity matrix and eZ0 is a positive scalar.
We call rNIP :¼ ðFðyÞþeIÞ�1r the natural gradient operator for IP.
Typically e can be set to zero to obtain a plain natural gradient
formulation. But in the more general definition equation (10),
e introduces a blending between standard and natural gradient.
Note that this blending influences the step width of the numeri-
cally applied gradient descent and stabilizes the inversion of the
metric tensor F.

The main problem with this formulation is that the expected
gradient with respect to the input is needed, but not available in
an online framework. However, it was shown in [13] that is
possible to estimate the metric tensor online by defining a
proportional control law:

_̂
F ðyÞ ¼ lðFðx,yÞ�F̂ ðyÞÞ, ð11Þ

where F̂ is the estimate of the Fisher matrix and Fðx,yÞ the Fisher
information for one input element x. The problem then reduces to
finding a good l, which must be small since the loss function is
continuous and a good initial value F̂ 0ðyÞ. The NIP learning then
becomes online capable and computationally feasible.
4. Working-point transformation for intrinsic plasticity

A closer inspection of Eq. (5) (left) reveals that the standard IP
rule can suffer from numerical instabilities in particular for large
input amplitudes which lead to small slopes a. In this regime of
small slopes the discretization becomes problematic due to the
singularity induced by the 1=a-term, illustrated in Fig. 5(A). In
combination with the results of experiments in Section 6.1 this
reveals that IP has a ‘‘working point’’ at a¼1. It is therefore
favorable to keep the parameter a close to this ‘‘working point’’,
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which can be achieved by a novel modification of IP learning. It
proposes to scale the neuron’s input weights with the slope in
order to transform the working point appropriately:

Dw
!
¼ Z

ws
� ð�w
!
þa � w
!
Þ ð12Þ

with Z
ws

oZ
ip

(Z
ws

is set to 10�5 in the experiments). With this
additional adaptation rule, the slope tends to converge back to
unity, as the weights converge to the former slope values. Hence
the semantics of the IP learning rule remain the same while
transferring the learned pertinent slope information from the
slope parameter a to the synaptic weights.

The collection of learning rules given by Eqs. (10)–(12) will be
used in the following experiments and called natural IP (NIP).
5. The impact of the natural gradient on IP

This section presents experimental results for a single-neuron
model with parameterized Fermi function where the proposed
learning rules are used. The experiments are performed with
different inputs: the first row in Fig. 1 shows the four different
input distributions that are used for investigation. A Gaussian
(1-G), a bipartite (2-G), a tripartite (3-G) Gaussian and a uniform
(U) distribution. Ntr ¼ 100 samples are independently drawn from
each distribution and used for training. A step width of Z¼ 10�3

and a numerical stabilization of e¼ 10�1 is used. For online
estimation of the metric tensor a decay rate of l¼ 0:01 is used.

5.1. Information geometry

The following experiment visualizes how the geometry of
the potential L changes by use of the metric tensor F at the
attractor yn. The 1-G distribution is used as input to a single Fermi
neuron model for illustration.

Fig. 3 (left) shows schematically the Euclidean and the Fisher
metric at a given parameter configuration y¼ ð2,�0:5ÞT . Note that
the gradient induced by the Fisher metric is not orthogonal to the
equipotential lines anymore. The direction of the steepest descent
therefore changes and points in a more direct way to the attractor
than the standard gradient for IP which is using the plain
Euclidean metric visualized as black circle in the figure. Fig. 3
(center) shows the potential LðyÞ with a clearly visible plateau in
b-direction, where the change in the KLD is small. The dashed line
is the unit circle with a radius of Z in the geometry defined by the
metric tensor Fðyn

Þ, which is well suited to the potential: the
unit circle is stretched in b-direction. Fig. 3 (right) visualizes
the distortion of the potential after transformation with Fðyn

Þ. The
induced landscape becomes ‘‘Euclidean-like’’ after transformation
and loses the plateau—the transformed potential is isotropic.
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Fig. 3. Fisher metric at point y for the 1-G distribution (left). The geometry change of t

metric at the attractor (center). NIP potential and plain Euclidean metric (right).
5.2. Information geodesy

The following experiments focus on a more global analysis of
the natural gradient descent. A gradient descent from a given
starting point y to the attractor yn is performed while the relative
geodesic length (RGL) of the path is recorded. The RGL gives the
length of the geodesic g from starting point y to the attractor yn

with respect to the shortest way in the parameter space:

RGLðyÞ ¼
Z
g

ds=Jy�yn
J, ð13Þ

where ds¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da2þdb2

p
is the infinitesimal arc length in

parameter space.
Fig. 4 (left) shows the potential field LðyÞ of the Gaussian input

distribution (1-G) while the right hand side of the figure shows
the potential field LðyÞ of the Uniform input distribution (U).
It also shows four starting points y124 for the learning of each
input distribution. The black lines show gradient descents per-
formed by IP, while the yellow lines are the geodesics from the
NIP learning. Both approaches have the same fixed-point, but
the geodesics of the NIP learning imply a more direct path to the
attractor in parameter space. Thus the natural gradient method is
better suited to the Potential than the conventional IP gradient.
Table 1 displays the results of an experiment where the RGL is
measured for N¼100 different starting points drawn from a
Gaussian distribution centered around the attractor with covar-
iance matrix S¼ I. It shows the average RGL and its standard
deviation.

Since the minimum value for the RGL is one (which corre-
sponds to a straight line from the initial point to the attractor in
parameter space), the values for the RGL in Table 1 show that the
geodesic lines of NIP are almost straight for all tested input
distributions (visualized in Fig. 4). In addition, the low standard
deviation demonstrates that the curvature of the geodesic is more
independent from the initial point in the potential, compared
with using the Euclidean metric.
6. Drift compensation with IP

Drift compensation is a practically highly relevant issue for the
application of machine learning algorithms, because in real plants
sensors and actuators are typically subject to wear and other non-
stationary effects e.g. induced by temperature changes. As dis-
cussed in the Introduction, drift can be externally compensated
by re-adjusting the data which requires an additional mechanism,
or internalized into the learned model for continuous adaptation.
IP provides a novel approach to the latter, because it internalizes
the drift in an unsupervised and local way, while not relying
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he attractor basin using the natural gradient (center, right). IP potential and Fisher
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Table 1
Relative average length of the geodesics E½RGL� and their standard derivationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðRGL�E½RGL�Þ2�

q
for IP and NIP learning.

Task E½RGL� (IP) E½RGL� (NIP)

1-G 1.349370.5730 1.074870.0526

2-G 1.047370.0300 1.023470.0342

3-G 1.120970.0753 1.050570.0506

U 1.021970.0206 1.005670.0099
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on continuous error feedback learning. It optimizes the neural
encoding by shifting the mean through the bias and scaling the
variance through the slope parameter in the activation function.
Drift compensation can thus be considered an inherent side effect
of the IP learning approach, which has not been analyzed in the IP
literature yet. Obviously, the learning dynamics of IP changes the
effectiveness of drift compensation and the following sections
will show that the interplay of input drift and the standard IP
learning dynamics leads to typical plateaus, which can be avoided
when using NIP.

6.1. Analysis of IP learning in the presence of input drifts

The following experiment with a synthetic input signal pro-
vides an initial analysis of IP learning with and without the
natural gradient in the presence of drifts. It demonstrates that
standard IP always implies some drift compensation, but is not
perfect on the other hand and can be improved through the
proposed modifications. Experiments are performed using an
input signal comprising a product of oscillations xðtÞ ¼ sinð0:2tÞ�

sinð0:053tÞ � sinð0:092tÞ. In the beginning, IP learning is applied for
5�104 steps in order to let the parameters converge with a
learning rate of Z

ip
¼ 10�3. After learning, two manipulations of

the input signal are carried out to analyze the impact of the
natural gradient and weight scaling on the IP learning dynamics
in the presence of drifts: (i) gradual scaling of the signal changing
the variance and (ii) a gradual shift of the signal changing the
mean. In the first experiment, a gradual linear scaling of the input
signal up to a factor of 100 or 1

100 respectively starting from 1 in
106 steps is applied. In the second experiment, a gradual linear
shifting to 50 or �50 respectively starting from 0 in 5�105 steps
is applied. Whereas these scaling and shifts are taken to the
extremes, they are meant to show the full behavior of the learning
algorithm and to allow to clearly display and discuss the effects of
the NIP and weight scaling modifications to the original IP rule.
The plots in Fig. 5 show the IP (black) and NIP (yellow)
learning dynamics for the described scalings and shifts. The blue-
dashed lines show the computed ground truth target slope and
bias, which are necessary to perfectly compensate the input signal
manipulation. The left column summarizes the results for the
scaling while the right column outlines the effects for the shifting
of the input signal. The first row in Fig. 5(A, B) displays the
logarithm of the slope ratio for IP (black) and NIP (yellow), which
is defined as follows:

‘‘Slope Ratio’’ ðIPÞ :
aðtÞ

atrain
, ‘‘Slope Ratio’’ ðNIPÞ :

aðtÞ � sðtÞ

atrain � strain

where a(t) is the recorded slope at time t and atrain is the learned
slope for the non-scaled and non-shifted input. The term s(t)
simply denotes the scaling factor of the weights at time step t

with respect to the weight with unity norm, in order to make the
results comparable. The second row (C, D) shows the shifting of
the bias b(t) with respect to the bias btrain for the non-
manipulated input signal divided by the actual slope a(t). Hence,
the plots show the effective mean shift by IP (black) and the
adapted NIP (yellow) learning rule.

‘‘Bias Shift’’ ðIPÞ :
bðtÞ�btrain

aðtÞ
, ‘‘Bias Shift’’ ðNIPÞ :

bðtÞ�btrain

aðtÞ � sðtÞ

The KLD is computed to measure the success of the respective
adaptation by IP or NIP (see E and F).

Variance shift reveals working point: Fig. 5(A) shows that the IP
learning rule is not able to counteract the signal manipulation for
an increasingly small scaling within the given time constraints.
While compensation is good for small variations, IP learning
degenerates when the scaling decreases further. In the case of a
linearly increasing scaling, the slopes get very small until numer-
ical instabilities occur due to discretization. The plot also shows
that the adapted learning rule from Eq. (12) suffices to achieve the
target slope ratio and resolve the numerical instabilities.

Basically, the shift of the working point by the Dw learning
rule is responsible for the good matching of the target—see the
NIP line (yellow) in Fig. 5(A). Fig. 5(C) shows that IP as well as NIP
react suitably and hardly adapt the bias when scaling the input
signal. The oscillations of the ‘‘Bias Shift’’ in the plot are mainly
induced by the division with the slope—small variations in the
bias get magnified for very small slopes. This oscillation is an
effect of discretization, although not really a problem because the
actual bias changes itself are very small. The KLD for the IP and
NIP cases are shown in Fig. 5(E) and confirm the increased
performance—the KLD is small for the new learning rule.
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Mean shift leads to plateaus: Fig. 5(B) illustrates the occurrence
of a systematic overestimation of the input variance by IP when
the signal is shifted. The reason for the overestimation is that
decreasing the slope leads to an increased effect of the bias shift.
In fact, IP drives the neuron into a parameter regime where the
gradient nearly vanishes which leads to very slow convergence,
e.g. a typical plateau that prevents efficient learning. This sub-
optimal behavior is rectified by using NIP which gives a much
better estimation of the gradient direction in parameter space.
Therefore the slope ratio with NIP hardly changes during a pure
shift of the input signal, although a small underestimation can
still be seen. Fig. 5(D) shows that IP as well as NIP achieve a good
compensation for the shift by use of the bias. However, the KLD
for NIP stays close to the optimal value for shifting of the input
signal—in contrast to the results for IP adaptation (see Fig. 5(F)).
Fig. 6. Kinesthetic teaching of the humanoid robot iCub. One tutor guides iCub’s

left arm and another holds a red cup to point at in his left hand. (For interpretation

of the references to color in this figure caption, the reader is referred to the web

version of this article.)
6.2. A real world example: learning to point with the humanoid

robot iCub

In this section, a real world task involving the humanoid robot
iCub demonstrates that drift compensation is possible by sustain-
ing the neural encoding with the proposed learning scheme. Such
robots are typically designed to solve service tasks in environ-
ments where a high flexibility is required. To cope with various
kinds of drifts in the input, e.g. with changing illumination or a
displacement of a sensor is a prerequisite for such systems. We
use a hand-eye coordination task that is inspired by [27] and is
discussed in depth in a further contribution in this volume [28].
The humanoid robot iCub learns to point towards an object based
on the raw visual input from his head cameras. We investigate, if
NIP learning can cope with the input shift that is associated with a
small displacement of the head, a typical problem if there is wear
in the mechanical mechanism. As before, we explore quite
extreme and even exaggerated displacements to challenge the
NIP algorithm.
The experimental setting is illustrated in Fig. 6. A human tutor
physically guides the iCub’s arm by means of kinesthetic teaching
using a recently established force control on the robot. The
tutor can thereby actively move all joints of the arm to place
the end-effector at the desired position. To create training data, a
second person in an approximate distance of 2 m to the robot
moves an object in the visual field of iCub while the human tutor
is guiding its arm to point at the object by means of a laser pointer
attached to the robot’s hand. The 2D-pixel coordinates of the
object in both eye-cameras are extracted by a tracking system and
recorded together with the joint angles of the arm, for further
details see [28].
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The task is to learn the mapping from the 2�2D pixel coordi-
nates received by both cameras (with a resolution of 640�480
pixels) onto the end effector configuration of the robot’s left arm,
i.e. the respective joint angle configuration. N¼5 data sets are
recorded where the tutor in front of iCub painted eight-like figures.
The data sets comprise 458–506 samples where Ntr ¼ 300 where
used for training and the remaining samples were used for testing.
For each data set, a different head configuration for the pan and
the tilt-angle of the neck was chosen from ypanA ½�20,20� and
ytiltA ½�20,20� divided equally into 5 steps. This represents a
relatively strong displacement of the head, which leads to a shift
in the input data as visualized in Fig. 7 (left). The pointing task
remains invariant. Note that in this case it is infeasible to cope with
the input shift by continuous online supervised error learning,
because no error feedback is available when exploiting the learned
model to realize the actual pointing on the robot.

To test the proposed form of intrinsic plasticity an extreme
learning machine (ELM) [29], which is basically a feed-forward
neural network with one hidden layer, is applied in the experiments.

Such networks comprise three different layers: xARI denotes
the input, hARR the hidden, and yARO the output neurons. The
input is connected to the hidden layer through the input matrix
W inpARR�I which remain fixed after random initialization. The
read-out is given by the matrix WoutARO�R subject to supervised
learning, which will be done by ridge regression (RR). The
calculation for the ith output neuron for input xk is thus given by

yiðx
kÞ ¼

X
j

Wout
ij f aj

X
n

W inp
jn xk

nþbj

 !
ð14Þ

where aj, bj are slope and bias parameterizing the component-
wise applied Fermi function f ðxÞ ¼ 1=ð1þe�xÞ, and j¼ 1 . . .R is the
index of the hidden layer neuron. IP adapts the slopes aj and
biases bj of the hidden layer neurons in an unsupervised fashion.
The hidden layer of the networks used in the experiments
consists of R¼100 neurons. The network’s weights and biases
are initialized randomly from a uniform distribution in the
interval ½�1,1�, while the slopes are initially set to one. The
regression parameter is a¼ 10�3 in the following experiments.
The interplay between IP and ELMs has been analyzed in rigorous
detail in [6]. An highly efficient batch version of IP suited for ELMs
was proposed in [5].

Fig. 7 (right) compares the ELM network’s performance with
and without NIP on the shifted data without re-adapting the
output weights. The network is pre-trained on the first data set by
means of NIP for 1000 epochs and then trained by RR as e.g. in [5].
Then the network is tested on the shifted data sets 2–5, either
directly or after additional 1000 NIP epochs on each new data set
to compensate the shift. All results are averaged over 10 network
initializations. The test error significantly increases for data sets
2–5, if no NIP training is applied. This is expected, since the data
varies with changing head configuration and the network cannot
arbitrarily generalize. However, the NIP training can compensate
the shift and keep the error low, despite relatively large displace-
ments and without re-training the output weights.
7. Conclusion

This paper makes two interconnected contributions to intrin-
sic plasticity learning. IP has previously been introduced as a
biologically plausible and computationally very effective means
to optimize the encoding of inputs in neural networks of various
types.

First, the well known natural gradient is introduced and analyzed
for intrinsic plasticity. The significant impact of the natural gradient
for this learning dynamics is shown and an additional modification
of IP learning introduced, which targets to further optimize IP
by keeping the parameters close to a suitable working point. These
modifications improve IP learning over the previous learning
scheme and can be applied to any of the known applications of IP
learning.

Second, the implicit capability of IP learning to cope with drifts
in the input is analyzed for the first time and identified as a very
special mechanism and novel approach to drift compensation. It
internalizes the effects of drift into the learned model by adapta-
tion of the activation function parameters without the need to
change the input data. This adaptation is achieved without the
usage of online error feedback. This is a novel and highly useful
approach and can be applied when using ELM feed forward type
networks. However, it turns out that the drift compensation effect
works well only in connection with the proposed modifications
and improvements of the IP learning dynamics. Further work
shall be directed towards a closer comparison of possible drift
compensation schemes and towards the identification of problem
domains where this scheme works well. In particular the inter-
play of IP learning speed and drift speed deserves attention in
order to reliably compensate input changes. Nevertheless, the
current contribution provides a first account on drift compensa-
tion with IP learning and yields encouraging results on synthetic
and first real world data obtained through improved natural
gradient learning.
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