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a b s t r a c t 

Visually grounded paraphrases (VGPs) describe the same visual concept but in different wording. Previ- 

ous studies have developed models to identify VGPs from language and visual features. In these existing 

methods, language and visual features are simply fused. However, our detailed analysis indicates that 

VGPs with different lexical similarities require different weights on language and visual features to maxi- 

mize identification performance. This motivates us to propose a gated neural network model to adaptively 

control the weights. In addition, because VGP identification is closely related to phrase localization, we 

also propose a way to explicitly incorporate phrase-object correspondences. From our evaluation in detail, 

we confirmed our model outperforms the state-of-the-art model. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Paraphrases are textual representations that describe the same

emantics in different ways [4] . Paraphrase identification can fa-

ilitate flexible matching of text, which has a wide range of ap-

lications, including machine translation [7] , summarization [49] ,

uestion answering [37] , text normalization [26] , textual entail-

ent recognition [1] , and semantic parsing [3] . 

Text is often accompanied by images: for instance, many news

rticles come with symbolic images that well represent their con-

ent. Such images can convey more concrete ideas on described

ontent and help smoother communication. These images also al-

ow us to extend the idea of paraphrases to count for visual

oncepts (concepts appear in an image). One interesting work

s visually grounded paraphrases (VGPs) coined by [8] , which are

araphrase-like expressions that refer to the same visual concept

n an image. For example, “a squirrel” and “a brown squirrel,” “a

reen glass bottle” and “a beer” for the images in Fig. 1 are VGPs.

ecause of the inherent nature of images, VGPs should refer to a

oncrete visual concept. 

We argue that such textual representations can benefit various

ision and language tasks. Take image captioning [41] as an ex-

mple, one way of applying VGPs can be the improvement of the
∗ Corresponding author. 
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valuation. 1 Other applications can be visual question answering

44] and visual dialogue [11] , where the same visual concept can

e described in different ways by different users or even the same

ser through the dialogue. 

The work [8] is the pioneering and only study that we are

ware of for VGP identification, which proposes a supervised simi-

arity model using neural networks. They formulate the VGP iden-

ification task as a binary classification problem and use an atten-

ion mechanism over an image to incorporate visual features. They

valuate their model with the Flickr30k entities dataset [32] and

how that visual features are helpful but give only a small gain. 

We analyze VGPs on the Flickr30k entities dataset in Section 3 ,

nd show that on one hand, many pairs of VGPs have a high lexical

imilarity. Thus language features are often enough for VGP iden-

ification. Visual features for them could lead to errors due to in-

ccurate visual grounding. On the other hand, there are also many

GPs that are difficult to be identified by language features only. 

We also argue that the VGP identification is highly related to

hrase localization, which localizes an image region corresponding

o a phrase [33,38] . If we have a perfect phrase localization algo-

ithm, VGP identification turns out to be a trivial task. All we need

s to apply phrase localization to VGP candidates and check if the

orresponding image regions largely overlap or not. Unfortunately,
1 Current evaluation metrics such as BLEU scores cannot evaluate generated cap- 

ions with different wording from references. With VGP identification, the evalu- 

tion of phrases describing the same visual concept in different wording will be 

ossible. 

https://doi.org/10.1016/j.neucom.2020.04.066
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Fig. 1. Our gated network adaptively uses language and visual clues for VGP identi- 

fication. In the left example, input phrase pairs may be easily inferred that they are 

describing the same visual concept in the image without looking at it. On the other 

hand, for lexically dissimilar VGPs in the right example, visual clues from a corre- 

sponding image can help predict whether the two phrases correspond to similar 

visual concepts. 
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it is not the case, at least currently, and dedicated methods for VGP

identification are necessary. 

Based on above observations, we propose a VGP identification

model with a gated network. To facilitate the power of visual

grounding, our model is built upon a phrase localization model,

such as [31,48] ( Fig. 3 ). Given a pair of phrases and an associated

image, our model first applies phrase localization to get an image

region for each phrase. Language features are then extracted from

the phrases, and visual features are extracted from localized im-

age regions. Phrase localization is a challenging task, and even the

state-of-the-art model can fail to detect image regions for input

phrases, which means that the visual features can be completely

spoiled. Our gated network handles this issue by adaptively adjust-

ing the weights for each modality. The model predicts the proba-

bility that the input phrases are VGPs based on the features fused

with the weights. Our contributions are follows: 

• Our VGP analysis points out the importance of the respective

use of language and visual features for identifying different

types of VGPs, which deepens the understanding of VGPs. 

• We propose a novel model with explicit phrase localization and

a gate network to balance the use of visual and language fea-

tures adaptively. 

• Experimental results on the Flickr30k entities dataset indicate

that our model outperforms the state-of-the-art model [8] and

that language and visual clues are complementary. 

2. Related work 

2.1. Phrase localization 

Phrase localization is a task to find an image region that corre-

sponds to a given phrase in a caption [13,31,32,38,42,45,48] , which

is closely related to the VGP identification task. Our model utilizes

a phrase localization model, e.g. , [31] . Referring expression compre-

hension [9,30,46,47] is also closely related to phrase localization

and so VGP identification, which addresses the problem of con-

necting a natural language query to an image region. Unlike phrase

localization, referring expressions accompanied by properties, such

as attributes of objects and relations to other objects, so that they

can identify only one object in the image. Both phrase localization

and referring expression comprehension involve computing vision-

to-language similarity. On the other hand, VGP identification tries

to compute the semantic similarity between phrasal expressions

themselves conditioned on an image. 
.2. Paraphrase identification 

Paraphrase identification has been studied in the NLP commu-

ity in the last few decades. Previous works identify paraphrases

rom either monolingual corpora [5,24,27] or bilingual parallel cor-

ora [2,6,14] . The former is based on distributional similarity, stat-

ng that paraphrases appear in similar context in monolingual cor-

ora [5,24,27] . The latter uses bilingual pivoting, which assumes

hat paraphrases in one language are translated into a same phrase

n another language [2,6,14] . These works only use languages for

dentifying paraphrases. VGP identification in contrast identifies

GPs from multimodal datasets consisting of images and their cap-

ions. Moreover, VGPs in the Flickr30k entities dataset are very

ifferent from the original definition of paraphrases because the

ataset contains noun phrases and two phrases are counted as VGP

hen they refer to the same visual concept in a given image, so

hat they maybe not paraphrases linguistically. We follow the same

efinition of VGPs as [8] in this paper. 

Paraphrases also have been studied in the multimodal context.

egneri et al. [35] collected sentence level paraphrases by align-

ng video scripts with the same time frame; these sentence level

araphrases are essentially similar to captions of an image. Lin

t al. [25] introduced the visual paraphrasing task, namely identi-

ying whether two descriptions consisting of several sentences are

alking about the same visual scene or not. Han et al. [15] calcu-

ated the semantic relations such as paraphrases of a phrase pair

ith their image sets, which are retrieved by search engines given

he phrase pair. 

.3. Coreference resolution 

Coreference resolution is a task to find the expressions that re-

er to the same entity in text [40] . VGP identification differs from

onventional coreference resolution in the way that it requires vi-

ual grounding. In addition, the targets of coreference resolution

re the entities in a sentence or a document, while our targets are

he entities in the captions of an image that are quasi-paraphrases

ut are not related to each other in the discourse level like sen-

ences in a document. Conventional coreference resolution meth-

ds are based on a pipeline that first parses sentences to extract

ead-word features and then manually designs rules for entity pro-

osals [10,12,34,43] . An end-to-end coreference resolution model

lso proposed, which jointly identifies entities and clusters them

23] . 

Coreference resolution also has been studied in multimodal

asks. Kong et al. [20] improved visual scene parsing by find-

ng nouns and pronouns referring to the same object in an im-

ge. Kottur et al. [21] applied coreference resolution in visual dia-

ogue, to identify what a pronoun is referring in a dialogue. Huang

t al. [17,18] studied coreference resolution in instructional videos,

hich temporally links an entity to an action in a video. 

. Analysis of Flick30k VGP dataset 

We introduce the dataset construction in [8] and provide lexical

nalysis on phrase pairs to justify our model design. 

.1. Dataset 

VGP identification is first proposed by Chu et al. [8] . They use

lickr30k entities dataset [32] , which is a large-scale image cap-

ioning dataset containing multiple captions for a single image.

aptions for an image can be regarded as a quasi-sentence-level

araphrase corpus, which often contains VGPs. Each entity ( i.e. ,

oun phrase) of the captions is manually aligned with an image

egion. This dataset contains approximately 30k images and each
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Fig. 2. Distribution of VGPs and non-VGPs for different word overlaps. Most phrases 

are VGPs when two phrases have at least one word in common. 
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mage has 5 captions. Other image captioning dataset with mul-

iple descriptions, such as Visual Genome [22] , are also possible

ources as VGPs. However, to apply such datasets for our task, ex-

ensive annotations to align paraphrases and corresponding visual

oncepts are needed, which unfortunately are unavailable besides

lickr30k. 

We used the same splits as in [31] , which have 29,769, 10 0 0,

nd 10 0 0 images for training, validation, and testing, respectively.

e extracted all possible noun phrase pairs. Each pair is from

wo different captions associated with one image. We removed

rivial pairs that are lexically identical. Consequently, we obtained

oughly 2,383k, 80k, and 81k noun phrase pairs for training, vali-

ation, and testing, respectively. We treated phrase pairs associated

ith the same image region as VGP and all other pairs as non-VGP.

he ratio of VGPs out of all phrase pairs is approximately 13% for

ll splits. 

.2. Word overlap 

To understand the dataset, we explore lexical similarity be-

ween phrase pairs. As a metric of lexical similarity, we use Jaccard

imilarity between a phrase pair. 2 Fig. 2 shows the Jaccard similar-

ty distribution on the validation set. We can see that most phrase

airs are non-VGPS when there are no word overlap. On the other

and, phrases with common words are more likely to be VGPs.

herefore, for identifying VGPs, a simple similarity based on word

verlap can be a strong clue. However, there still are a large num-

er of VGPs that share no words among them. For such VGPs, a

odel should exploit visual features to get additional cues. 

. Our model 

Motivated by the analysis in Section 3 , we propose a gated net-

ork for VGP identification. Fig. 3 shows an overview of our model.

he model takes a pair of noun phrases and the associated im-

ge as input and predicts whether the input phrases are VGPs or

ot. The phrases are represented by phrase embeddings. To extract

isual features from the image, we first apply phrase localization

hat aligns each phrase to their corresponding image regions. From

he image regions, we extract visual features with a pre-trained

eep model. Two distinct multi-layer perceptrons (MLPs) transform

he features of each modality. Other architectures which take a

air of features and transform them into an output feature can

e plugged into the model. As the model architecture of feature

ransformation is not the main contribution of this paper, we do

ot further explore architectures of this module. After transform-

ng both phrase and visual features, our model predicts weights
2 Stop words are discarded when calculating Jaccard similarity. 
or each modality and fuse the features with the weights. The out-

ut feature is fed into an MLP to predict the probability of being

GPs. 

.1. Language features 

For phrase features, we use the 300-D word2vec word embed-

ings trained on the Google News corpus 3 [28] . The embedding

f each word are computed and average-pooled over all words in

he phrase to obtain a phrase embedding. We remove stop words

hen computing the embedding. Chu et al. [8] tested their model

ith other types of phrase embeddings, such as Fisher vectors and

isher vectors with CCA that projects phrase and image region fea-

ures into a common space, but we found that the average-pooled

ord embeddings worked best. This may mean that simpler phrase

mbeddings work well for phrases consisting of few words. Each

hrase feature goes through an MLP network φ, given by 

(x ) = f (W 2 f (W 1 x + b 1 ) + b 2 ) , (1) 

nd both are merged together as 

 l = f (φ(x p1 ) + φ(x p2 )) (2) 

o get the language feature x l ∈ R 

10 0 0 , wher e x p1 and x p2 are an

verage-pooled 300-D word embedding for each phrase, respec-

ively; and f is the ReLU nonlinearity. 

.2. Visual features 

Our model localizes an image region for each phrase and uses

he additional visual clues to identify VGPs. This is one of key dif-

erences from [8] , which employs top-down attention on an in-

ut image. Top-down attention mechanism enhances visual fea-

ures corresponding to uniformly located grid regions. However,

bject-level regions are more natural input to represent visual con-

epts. Based on this idea, we retrieve an object-level region for

ach phrase. We expect that the visual similarity between the im-

ge regions can help find VGPs even when the phrases have low

exical similarity. 

We employ the methods [31,48] in our experiments, as the au-

hors released their implementation. Moreover, the models trained

n the Flickr30k entities dataset are also publicly available. Note

hat other phrase localization methods can be used in our model

ithout significant modification. 

After obtaining a corresponding image region for each phrase,

e extract an image region embedding. Our method uses VGG16

39] as in Faster R-CNN [36] . The image region embeddings are

hen fed into an MLP network ψ , defined as 

(x ) = f (W 4 f (W 3 x + b 3 ) + b 4 ) , (3) 

nd are fused with 

 v = f (ψ(x v1 ) + ψ(x v2 )) , (4) 

here x v1 and x v2 are image region embeddings in R 

4096 , and x v ∈
 

10 0 0 is the output visual feature. 

.3. Gated network 

VGP identification can be an easy task when lexical similarity is

igh; however, this is not always the case and a large number of

GPs do not share common words. The visual features are useful

or such VGPs. This observation motivates us to develop a gated

etwork, which computes how much each modality should con-

ribute when predicting the probability of being VGPs. 
3 https://github.com/mmihaltz/word2vec-GoogleNews-vectors 

https://github.com/mmihaltz/word2vec-GoogleNews-vectors
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Fig. 3. An overview of our VGP identification model. It takes a pair of noun phrases in different captions and their associated image as input. Image regions corresponding 

to phrases are obtained by phrase localization models, e.g. , [31,48] . Visual features are fed into our model to compute the probability of being VGPs. Our model uses a gated 

network to adaptively weight language and visual features. 
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4 https://github.com/BryanPlummer/pl-clc 
Our gated network computes the weights for language and vi-

sual features separately. The weights for language and visual fea-

tures, g l and g v , respectively, are computed by 

g l = σ (U l [ x v , x l ] + s l ) (5)

g v = σ (U v [ x v , x l ] + s v ) , (6)

where σ is the sigmoid nonlinearity and [ · , · ] is the concatena-

tion. After a fully-connected layer, the language and visual features

are fused using the weights as 

y = g l � tanh (W l x l + b l ) 

+ g v � tanh (W v x v + b v ) , (7)

where � is the element-wise product and y ∈ R 

300 . The increase

of the computational cost by the gated network is rather limited,

compared to the whole computation. To be specific, the gate mech-

anism only increases computational time of the forward and back-

ward processes by 2%. 

4.4. VGP prediction 

Finally, we feed the gate network’s output y to a two-layer MLP

network to compute the probability of being VGPs. The unit sizes

for the two-layer MLP network are 128 and 1, respectively. That is,

h = f (W 5 y + b 5 ) (8)

z = σ (W 6 h + b 6 ) . (9)

We use dropout regularization before the second layer and batch

normalization before every ReLU nonlinearity. 

5. Experimental settings 

5.1. Baselines 

Chu et al. (2018) [8] : We report the best model in [8] . Their

model simply fuses phrase and visual features. Instead of phrase

localization, they use an attention mechanism over feature maps

of images. 

Word-overlap: We also tested a naive baseline model that pre-

dicts VGPs based solely on lexical similarity between phrases. We

used the Jaccard similarity and classifies phrases into VGPs/non-

GPs when the similarity is larger than a threshold, which is opti-

mized on the validation set. 
BoundingBox-overlap: The BoundingBox overlap model classi-

ed VGPs based on the overlap of detected image regions. We

rained a logistic regression model that takes IoU of two image re-

ions and predicts the probability of being VGPs. 

Phrase-only: The phrase-only model classifies VGPs without

ooking at images. This model is trained only with the phrase fea-

ures; therefore, the phrase-only model computes y by 

 = tanh (W l x l + b l ) . (10)

Visual-only: The visual-only model uses only visual features.

nstead of fusing language and visual features, y is computed by

 = tanh (W v x v + b v ) . (11)

.2. Gate mechanisms 

We evaluated different configurations of gate mechanisms for

omparison to ours. 

Language gate: Instead of computing gates from both language

nd visual features, the gate weights are computed only from lan-

uage features. Therefore, the gate weights are computed as 

 l = σ (U l x l + u l ) (12)

 v = σ (U v x l + u v ) . (13)

Visual gate: As in the language gate network, the visual gate

etwork uses only visual features to control both gates; therefore,

he gate weights are computed as: 

 l = σ (U l x v + u l ) , (14)

 v = σ (U v x v + u v ) . (15)

.3. Phrase localization methods 

We used the following two phrase localization methods for the

isual-only and our models. 

PL-CLC: We tested an existing method in [31] (PL-CLC). Their

ethod maps phrases and image regions using canonical correla-

ion analysis (CCA) [16] and ranks image regions using the cosine

CA distance. They also combine other sorts of scores based on

bject detection results, region sizes, colors, and spatial relation-

hips as clues for phrase localization. We used their pre-trained

odel, which is publicly available. 4 The resulting IoU distribution

https://github.com/BryanPlummer/pl-clc
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-

Fig. 4. Distribution of IoUs. 

o  

i  

I  

d  

a

 

l  

m  

p  

a  

t  

a  

F

5

 

v  

t  

e  

h  

w  

h  

d

W  

t  

d  

t

6

6

 

o  

t  

a  

o  

T

 

p  

fi  

a  

d  

f  

m  

Table 1 

F1, precision, and recall scores of VGP identification on the 

Flickr 30k entities dataset. 

F1 Prec. Rec. 

Chu et al. (2018) [8] 84.16 82.71 85.67 

Word-overlap 61.25 74.15 52.18 

Phrase-only 85.66 84.72 86.61 

Visual-only (PL-CLC) 57.73 51.86 65.09 

Visual-only (DDPN) 66.36 60.92 72.87 

BoundingBox-overlap (DDPN) 73.43 73.83 73.05 

Ours (PL-CLC) 85.10 83.36 86.91 

Ours (DDPN) 86.48 85.81 87.16 

Ours + BBox (DDPN) 86.50 84.92 88.15 

Table 2 

Comparison of different gate mechanisms with 

DDPN for phrase localization. 

Gate mechanism F1 Prec. Rec. 

Without gate 86.43 84.54 88.40 

Language gate 86.22 86.05 86.39 

Visual gate 86.22 84.74 87.75 

Multimodal gate 86.48 85.81 87.16 

Table 3 

L2 norm of gate weights. 

Gate 

mechanism 

‖ g l ‖ 2 ‖ g v ‖ 2 
Mean Std. Mean Std. 

Language gate 135.98 10.32 82.50 9.22 

Visual gate 113.36 8.34 69.48 2.88 

Multimodal gate 131.14 9.38 77.81 5.05 
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f this phrase localization method over the validation set is shown

n Fig. 4 (a). The accuracy (IoU ≥ 0.5) is 52.53% and the average

oU is 0.48. We can see from this distribution that the most pre-

ictions are close to the gold standards in some extent, but many

re completely off. 

DDPN: We also tested our model with another recently pub-

ished phrase localization method. For this, we used the imple-

entation of DDPN [48] , 5 which is the current state-of-the-art

hrase localization method. This method increases both diversity

nd discriminative power of generated proposals, which improves

he phrase localization accuracy. The accuracy (IoU ≥ 0.5) is 80.40%

nd the average IoU is 0.67. The IoU distribution is shown in

ig. 4 (b). 

.4. Training 

We used the following settings for training the phrase-only,

isual-only, and our models. Adam [19] was used for optimiza-

ion with the mini-batch size of 500. We used the sigmoid cross-

ntropy as the loss function. During training, the learning rate was

alved at every epoch. We terminated training after 5 epochs, at

hich the loss converged on the validation set. We tuned the

yperparameters of the initial learning rate, weight decay, and

ropout, with Bayesian optimization [29] implemented in GPyOpt. 6 

e initialized the parameters of VGG16 for visual feature extrac-

ion with the model trained on the PASCAL VOC2007 detection

ataset provided in chainercv, 7 and fixed its parameters during

raining. 

. Results and discussion 

.1. Quantitative evaluation 

We evaluated the performance of VGP identification in terms

f the F1, precision, and recall scores. A phrase pair was predicted

o be VGPs when its VGP identification probability is higher than

 certain threshold. We report the performance with the thresh-

ld tuned on the validation set so that the F1 score is maximized.

able 1 shows the results. 

Importance of language clues. The word overlap and the

hrase-only models demonstrate that language clues are quite ef-

cient to find VGPs on this dataset. The word overlap model

chieved better performance than the visual-only models. This in-

icates that simple language similarity benefits more than visual

eatures when a single modality is individually used as input. The

ain reason of this high F1 score of the word overlap model is
5 https://github.com/XiangChenchao/DDPN 

6 https://github.com/SheffieldML/GPyOpt 
7 https://github.com/chainer/chainercv 

g  

a

 

F  

c  
he characteristic of the Flickr30k entities dataset that contains

any VGPs with word overlap as described in Section 3 , e.g. , “a

at” and “a pink hat.” Language clues are often enough to find

uch VGPs. Comparison between the word overlap and phrase-only

odels shows a learning-based approach built upon word embed-

ing boosts the performance. 

Comparison of different gate mechanisms. Table 2 compares

ifferent gate mechanisms. We can see that the language gate

chieved a high precision, while the visual gate performed better

n recall. One of the reasons for this can be that visual features are

ore noisy than language features due to erroneous phrase local-

zation. Without gate mechanisms, the model got the high recall

ut the precision is lower than others. The model tends to depend

oo much on language clues. This may make it difficult to decline

exically similar non-VGPs. The multimodal gate showed the best

erformance, which is consistent with our assumption that both

anguage and visual features have their advantage and disadvan-

age for VGP identification, and thus they should be used adap-

ively. 

Table 3 shows the means and standard deviations of the L2

orm of the weights of each gate mechanism. A larger norm for

ate weights indicates that the model leverages more features from

hat gate. Therefore the table implies that the language features

ontribute more than visual features among all gate mechanisms,

hich supports our analysis in Section 3 . The large standard de-

iation of the language gate shows that the model aggressively

hanges gate weights according to language features. We assume

hat language features provide richer clues to control the flow from

ach modality. In contrast, the visual gate learned rather stable

ate weights. The multimodal gate mechanism balances both char-

cteristics and achieved the best performance. 

How does phrase localization error affect VGP identification?

ig. 5 shows results with respect to the performance of phrase lo-

alization. For this, because the VGP identification takes a phrase

https://github.com/XiangChenchao/DDPN
https://github.com/SheffieldML/GPyOpt
https://github.com/chainer/chainercv
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Fig. 5. F1 scores computed for phrase pairs with different IoUs. We split the test 

set into ten sections based on IoU of phrase localization. Top: F1 scores of models 

with PL-CLC. Bottom: Scores of models with DDPN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Hard VGP and non-VGP examples. “A stuffed animal” and “her teddy bear”

are VGPs, but they have no common words. “A motorcycle” and “a motorcycle rider”

depict different visual concepts, but they have a word “motorcycle” in common. 

Fig. 7. Scores for easy and hard VGP identification. 
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pair as input, we computed the IoU of phrase localization results

and took the average of them. We then split the test set based on

the averaged IoUs. 

With PL-CLC, the overall scores drop compared to the phrase-

only model. We believe the reason is the erroneous phrase local-

ization of PL-CLC; the extracted image regions can be irrelevant to

the input phrases, which makes the training process hard to learn

from visual features. This leads to a model that substantially ig-

nores visual features even if the image region is correct ( i.e. , with

higher IoUs). Moreover, optimization of the model is harder than

the phrase-only model because of the larger parameter size. On

the other hand, ours with DDPN boosts the performance. Same as

in ours with PL-CLC, the performance drops when phrase localiza-

tion fails, i.e. , the average IoU is less than 0.5, but the proportion of

errors in phrase localization is much smaller than PL-CLC ( Fig. 4 ).

This results in the improvement in the total F1 score. 

The results suggest that visual features are helpful when phrase

localization can find relevant image regions; otherwise, visual fea-

tures are likely to work negatively. 

Is phrase localization all you need? We observed that

BoundingBox-overlap achieved F1 score of 73.43%, which is a

strong baseline of VGP identification. We also tested Ours+BBox

(DDPN) which inputs bounding boxes’ IoU values to the last MLP

network, in addition to the output of the gated network. However,

the improvement by incorporating IoU values into our model is

rather limited. 

Visual features extracted from more accurate phrase localization

boost the performance. However, the result by visual-only sug-

gests that learning powerful visual features for the VGP task is still

challenging. The visual-only model with DDPN got the F1 score of

66.36% ( Table 1 ), while its phrase localization performs well. 

Based on these observations, it is hard to further improve VGP

identification using only phrase localization, on the other hand,

incorporating language features drastically increases the F1 score.

Therefore, language features are still important even when phrase

localization performs well. 

Fig. 5 provides insights in detail. As shown Fig. 5 , the gain from

language features is especially large when phrase localization fails.

For example, there are significant differences between the per-

formance of visual-only and ours for samples whose average IoU

≤ 0.5. On the other hand, we can still gain some boosts from lan-

guage features when both phrases localized accurately. 
When do visual features help? We also investigated how vi-

ual features affect VGP identification. We divided the test set into

wo categories, “easy” and “hard,” in terms of word overlap mea-

ured by the Jaccard similarity. We computed the median of the

accard similarity of positive VGPs in the validation set and found

hat it was 0.25. Hard phrase pairs include hard positives and hard

egatives, where hard positives are VGPs whose Jaccard similar-

ty between phrases is less than the median, and hard negatives

re non-VGPs whose Jaccard similarity is larger than 0.25. Others

re grouped into easy phrase pairs. Fig. 6 shows some examples of

ard phrase pairs. 

Fig. 7 shows F1, precision, and recall scores computed for easy

nd hard phrase pairs. Note that the number of easy and hard

hrase pairs are imbalanced. Most easy phrase pairs are non-VGPs;

herefore, precision scores are likely to be low. For easy phrase

airs, the phrase-only model and ours, which use both language

nd visual features, do not show significant difference. For hard

hrase pairs, compared to the phrase-only model, ours (DDPN) im-

roved the performance by 1.56% and 2.30%, in precision and re-

all, respectively. Therefore, language features are highly efficient

or lexically similar VGPs, but we can gain further improvement in

nding lexically different VGPs by incorporating visual features. 
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Fig. 8. Examples of VGP identification. The red boxes are phrase localization results. 
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.2. Qualitative evaluation 

We also conducted qualitative evaluation by comparing the re-

ults of the phrase-only model to our model. Fig. 8 (a) shows an

xample that VGP identification was improved by incorporating vi-

ual clues. In the example, DDPN successfully found image regions

escribed by input phrases. On the other hand, the visual clues af-

ected negatively in Fig. 8 (b). Localized image regions for “denim

veralls” and “a floral patterned skirt” overlap. These image regions

ay result in similar visual features that can make our model in-

orrectly classify the phrases into VGPs. To avoid such errors, fine-

rained image region extraction, e.g. , instance segmentation is re-

uired. 

. Conclusion 

We proposed a gated network with phrase localization for VGP

dentification. Experimental results showed the effectiveness of the

roposed model. We observed that visual features benefits VGP

dentification, especially for lexically different VGPs. However, the

rror in phrase localization propagates to VGP identification; there-

ore, phrase localization needs to be accurate. 

Our future work includes building a novel VGP dataset. The

lickr30k entity dataset only has noun VGPs corresponding to sin-

le objects. We will extend the dataset by collecting more complex

GPs that describe relations between objects, e.g. , “a man riding a

ike” and “a young man on a bicycle.” Exploring fine-grained im-

ge region extraction such as instance segmentation, will be an-

ther interesting direction. 
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