
Neurocomputing 462 (2021) 426–439
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
Evolving Gaussian process kernels from elementary mathematical
expressions for time series extrapolation
https://doi.org/10.1016/j.neucom.2021.08.020
0925-2312/� 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author at: Software and System Engineering Group, Mondragon
University, Loramendi, 4, Arrasate 20500, Spain

E-mail address: iroman@mondragon.edu (I. Roman).

1 Note that we keep the acronym GP to refer to Gaussian Process, and Ge
refer to Genetic Programming.
Ibai Roman a,b,⇑, Roberto Santana a, Alexander Mendiburu a, Jose A. Lozano a,c

a Intelligent Systems Group, University of the Basque Country, UPV/EHU, Paseo Manuel de Lardizabal 1, Donostia 20018, Spain
b Software and System Engineering Group, Mondragon University, Loramendi, 4, Arrasate 20500, Spain
cBasque Center for Applied Mathematics, BCAM Alameda de Mazarredo 14, Bilbao 48009, Spain

a r t i c l e i n f o
Article history:
Received 18 August 2020
Revised 20 July 2021
Accepted 8 August 2021
Available online 12 August 2021
Communicated by Zidong Wang

Keywords:
Evolutionary search
Gaussian processes
Genetic programming
Kernel learning
Time series extrapolation
a b s t r a c t

Choosing the best kernel is crucial in many Machine Learning applications. Gaussian Processes are a
state-of-the-art technique for regression and classification that heavily relies on a kernel function.
However, in the Gaussian Processes literature, kernels have usually been either ad hoc designed, selected
from a predefined set, or searched for in a space of compositions of kernels which have been defined a
priori. In this paper, we propose a Genetic Programming algorithm that represents a kernel function as
a tree of elementary mathematical expressions. By means of this representation, a wider set of kernels
can be modeled, where potentially better solutions can be found, although new challenges also arise.
The proposed algorithm is able to overcome these difficulties and find kernels that accurately model
the characteristics of the data. This method has been tested in several real-world time series extrapola-
tion problems, improving the state-of-the-art results while reducing the complexity of the kernels.
� 2021 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Gaussian Processes (GPs) [1] are one of the most used tech-
niques in Machine Learning for regression and classification tasks.
Furthermore, they have also been applied to optimization tasks
under the umbrella of Bayesian optimization [2]. A GP is a collec-
tion of random variables, any finite set of which has a joint Gaus-
sian distribution. It is completely defined by a mean function and a
covariance function described in terms of a Positive Semidefinite
(PSD) kernel. The assumption in a GP is that, as the similarity
between two solutions increases, so does the similarity of the out-
put function at these solutions. The kernel function encodes the
particular manner in which the similarity between any two solu-
tions is defined, which makes it a key element in any application
of GPs.

While there is a repertoire of kernel functions available in the
literature [1,3,4], the choice of the most appropriate kernel for a
given problem is not straightforward. Moreover, kernels usually
have some parameters that need to be adjusted, which hardens
the kernel selection problem [5]. These parameters, often called
hyperparameters, are usually tuned by maximizing a given metric
(e.g., the marginal likelihood) [6].
In early applications of GPs, the kernel function used to be
designed by an expert [1], or selected from a predefined set [7].
However, some recent works tackle the question of automating
the choice of the kernel [8–10]. Compositional kernel search is
one of the most used techniques when automating the kernel
choice. In this technique, the kernel is always the combination of
a limited number of a priori defined kernels, and the kernel selec-
tion is reframed as a search in the space of possible kernel compo-
sitions. The compositional kernel search approaches take
advantage of some operands (e.g., sum, product, . . .) that guarantee
the composed kernel is PSD as long as its components are also PSD.
For example, in [8,10], the kernel search is carried out by means of
a greedy search procedure. A similar approach is presented in [9],
although in this work the search is guided by Genetic Programming
(GenProg)1 [11]. The solutions proposed by these methods have
shown their ability to capture function properties such as smooth-
ness, trends and periodicity [8,10]. In addition, as the behavior of
the base kernels and the operands is well-known, the behavior of
their composition may be guessed by an expert [8]. On the contrary,
these kernel search methods usually end up with very complicated
kernels, including many hyperparameters, which make them expen-
sive to optimize. Moreover, it must be noted that these approaches
rely on kernels that have already been proposed in the literature.
nProg to

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2021.08.020&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.neucom.2021.08.020
http://creativecommons.org/licenses/by/4.0/
mailto:iroman@mondragon.edu
https://doi.org/10.1016/j.neucom.2021.08.020
http://www.sciencedirect.com/science/journal/09252312
http://www.elsevier.com/locate/neucom

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
There is no reason to believe that kernels obtained by composing a
limited set of human-designed kernels are optimal for arbitrary
problems. Furthermore, using previously designed kernels as build-
ing blocks could bias the search and prevent the exploration of more
promising candidates.

In this paper, instead of considering a reduced set of base ker-
nels as building blocks, we propose using a set of elementary
mathematical expressions (e.g., product, sum, exponent, etc.) to
serve as components of a wider set of kernels. Our hypothesis is
that, by enlarging the space of possible solutions, the representa-
tion capability of GPs is expanded, allowing more accurate kernels
with a lower number of hyperparameters to be found.

Searching for the most appropriate solution in the space of
mathematical expressions is very challenging due to the vast num-
ber of kernels that can be generated and the lack of guarantee that
these kernels satisfy the PSD property. Note that, before evaluating
a kernel, its hyperparameters should be optimized, which limits
the number of kernels that can be explored due to the computa-
tional effort required to find these hyperparameters. We propose
a novel GenProg method, EvoCov, which is able to overcome these
challenges and learn adequate kernel functions for each problem.
This method does not rely on previously proposed kernels, and
thus, new kernels may naturally arise.

Although in this work we focus on time series extrapolation
problems, our contribution can be extended to other GP applica-
tions, such as classification. Moreover, some of the components
designed in EvoCov could be applied to other GenProg applications.
Further work is certainly needed to test whether or not they can
outperform existing kernels in these other domains.

The remainder of the paper is structured as follows: In the next
section, a background on GP regression is provided, including the
presentation of the best known GP kernel functions. In Section 3,
we present our kernel representation approach, based on elemen-
tary mathematical expressions. In Section 4, a novel GenProg
method, EvoCov, is proposed to search for GP kernel functions
based on such grammar. In Section 5, a review on related work is
provided. Next, in Section 6, we present an empirical validation
of the algorithm and comparisons with other methods. Finally, in
Section 7, the conclusions and the future work are presented.
2. Gaussian process regression

A Gaussian Process (GP) is a stochastic process, defined by a col-
lection of random variables, any finite number of which have a
joint Gaussian distribution [1]. A GP can be interpreted as a distri-
bution over functions, and each sample of a GP is a function. GPs
can be completely defined by a mean function m xð Þ and a covari-
ance function. GP models use a PSD kernel to define the covariance
between any two function values cov f xð Þ; f x0ð Þð Þ ¼ k x; x0ð Þ [3].
Given that, a GP can be expressed as follows:

f xð Þ � GP m xð Þ; k x; x0ð Þð Þ ð1Þ

where we assume that x 2 Rd and d 2 N.
GPs can be used for regression by obtaining their conditional

distribution given some (training) data, also known as the poste-
rior distribution. The joint distribution between the training out-
puts f ¼ f 1; f 2; . . . ; f nð Þ (where f i 2 R; i 2 1; . . . ;nf g and n 2 N) and
the test outputs f� ¼ f nþ1; f nþ2; . . . ; f nþn�

� �
is given by:

fT

fT�

" #
� N

M Xð Þ
M X�ð Þ

� �
;

K X;Xð Þ K X;X�ð Þ
K X�;Xð Þ K X�;X�ð Þ

� �� �
ð2Þ

where N l;Rð Þ is a multivariate Gaussian distribution,
X ¼ x1; x2; . . . ;xnð Þ (xi 2 Rd; i 2 1; . . . ; nf g and n 2 N) corresponds to
the training inputs, and X� ¼ xnþ1; xnþ2; . . . ; xnþn�ð Þ to the test inputs.
427
K X;X�ð Þ denotes the n� n� matrix of the covariances evaluated for
all the X;X�ð Þ pairs.

The predictive Gaussian distribution can be found by obtaining
the conditional distribution given the training data and the test
inputs:

f�jX�;X; f � N bM X�ð Þ; bK X�;X�ð Þ
� 	

bM X�ð Þ ¼ M X�ð Þ þ K X�;Xð ÞK X;Xð Þ�1 fT �M Xð Þ
� 	

bK X�;X�ð Þ ¼ K X�;X�ð Þ � K X�;Xð ÞK X;Xð Þ�1K X;X�ð Þ

ð3Þ

As in many previous works [12,7,13], we consider an a priori
equal-to-zero mean function (m xð Þ ¼ 0).

2.1. Kernel function

A Positive Semi-definite (PSD) kernel k is a symmetric function
S�S ! R on the set S, such that, the matrix M, where
mij ¼ k xi; xj

� �
;8x1; . . . ; xn 2 S and 8n 2 N, is a PSD matrix. A matrix

is PSD if uMuT P 0 for all real vectors u 2 Rn, which is equivalent
to saying that all its eigenvalues are non-negative.

2.2. Standard kernel functions

In this section, we introduce some of the best-known kernel
functions. These kernels can be divided into two main families:
stationary and non-stationary kernels [4].

A stationary kernel is translation invariant. Among the station-
ary kernels, we focus on isotropic kernels, as they are the most
used kernel functions in the literature. Such kernels can be defined
by the following equation:

k x;x0ð Þ ¼ bk rð Þ
r ¼ k x

hl
� x0

hl
k ð4Þ

where bk is a function that guarantees that the kernel is PSD and hl is
the lengthscale hyperparameter. The lengthscale hyperparameter
can be also a vector that expresses the relevance of each dimension
d, as suggested in Automatic Relevance Determination (ARD)
approaches [14,15].

On the contrary, in non-stationary kernels, the output of the
kernel may vary with translation transformations of the input
space. Within this family, the most common ones are those that
depend on the dot product of the input vectors, and they are usu-
ally referred to as dot-product kernels:

k x;x0ð Þ ¼ bk sð Þ
s ¼ x�hs1

hl

� 	
x0�hs1

hl

� 	T ð5Þ

where hl is again the lengthscale hyperparameter, hs is the shift
hyperparameter and 1 is a vector of ones.

Table 1 shows eleven standard kernels used in different applica-
tions of GPs [1,3]. One of the most popular kernel choices, the
Squared Exponential (SE) kernel (also known as Radial Basis Func-
tion (RBF) or Exponentiated Quadratic) is described as kSE in the
table. This kernel is known to capture the smoothness property
of the data.

2.3. Model selection

The choice of the kernel function and its hyperparameters has a
critical influence on the behavior of the model, and it is crucial to
achieve good results in any application of GPs. This selection has
usually been made by choosing one kernel a priori, and then
adjusting the hyperparameters of the kernel function in order to
optimize a given metric for the data.

Table 1
Standard kernel functions. h0 and hp are the kernel hyperparameters, called amplitude
and period respectively. d is the Kronecker delta, while r and s are described in Eqs. (4)
and (5) respectively.

Kernel function expressions

Constant kCON x; x0ð Þ ¼ h0
White Noise kWN x; x0ð Þ ¼ h0 d x; x0ð Þ
Exponential kE rð Þ ¼ h20 exp �rð Þ
c exponential kEc rð Þ ¼ h20 exp �rcð Þ
Squared Exponential kSE rð Þ ¼ h20 exp � 1

2 r
2

� �
Matern12 kM12 rð Þ ¼ h20exp �rð Þ
Matern32 kM32 rð Þ ¼ h20 1þ

ffiffiffi
3

p
r

� 	
exp �

ffiffiffi
3

p
r

� 	
Matern52 kM52 rð Þ ¼ h20 1þ

ffiffiffi
5

p
r þ 5

3 r
2

� 	
exp �

ffiffiffi
5

p
r

� 	
Rational Quadratic kRQ rð Þ ¼ h20 1þ 1

2a r
2

� ��a
Periodic

kPER rð Þ ¼ h20 exp � 2 sin2 prð Þ
h2p

� �
Linear kLIN sð Þ ¼ s

Table 2
Proposed grammar for GPs. t indicates the number of different hyperparameters
allowed in the grammar (in this work it is set to t ¼ 20).

kernel: scalar start symbol
scalar:

scalarhp power
scalar þ scalar add
scalar � scalar multiply
scalar�1 div

escalar expffiffiffiffiffiffiffiffiffiffiffiffiffi
scalar

p
sqrt

scalar2 square

k vec
hp � vec0

hp k2 sq_distance

vec�1hp1
hp0

� 	
: vec0�1hp1

hp0

� 	T dot_product

hp constant
;

vec; vec0ð Þ:
sin 2px

hp

� 	
cos 2px

hp

� 	h i�
,

sin 2px0
hp

� 	
cos 2px0

hp

� 	h i
Þ spectral

x;x0ð Þ input
;

hp:
j � 1 j � 0:5 j 1 j 2 j 3 j 5

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
Although a variety of methods have been also proposed to opti-
mize the hyperparameters [16–19], the most common approach is
to find the hyperparameter set that maximizes the Log Marginal
Likelihood (LML):

log p fjX; hð Þ ¼ � 1
2maK

�1
a mT

a � 1
2 log jKaj � n

2 log 2p
with

mT
a ¼ fT �M Xð Þ

Ka ¼ K X;Xð Þ

ð6Þ

where h is the set of hyperparameters of the kernel and n is the
length of X.

Alternatively, a Leave-one-out Cross Validation (LOOCV) metric
was proposed by [1]. In this case, the likelihood of each sample of
the training data is measured given the rest of the data. Then, these
probabilities are added as follows:

LLOOCV X; f; hð Þ ¼
Xn
i¼1

log p f ijX; f�i; hð Þ

log p f ijX; f�i; hð Þ ¼ � f i�lið Þ2
2r2

i
� 1

2 logr
2
i � 1

2 log 2p

ð7Þ

where li and ri are the posterior mean and variance for xi given X�i

and f�i
2.

The selection of the right set of hyperparameters is known to be
a hard problem, particularly when few observations are available
[13,20,21]. Although in most cases the gradient of the LML and
the LOOCV has a closed-form expression, depending on the prob-
lem, these functions can be multi-modal and a greedy search pro-
cedure may lead to suboptimal results.

2.4. Kernel composition

When creating new kernels, it is usually difficult to prove
whether they are PSD or not. However, kernels that are PSD can
be combined to create new ones keeping the positive semi-
definiteness of its components [3,22] by means of the following
operations:

� Sum: k x;x0ð Þ ¼ k1 x;x0ð Þ þ k2 x;x0ð Þ.
� Product: k x;x0ð Þ ¼ k1 x;x0ð Þ � k2 x; x0ð Þ.
� Polynomial: k x;x0ð Þ ¼ p k1 x;x0ð Þð Þ, where p is a polynomial func-
tion with non-negative coefficients.

� Exponential: k x;x0ð Þ ¼ exp k1 x;x0ð Þð Þ.
2 X�i notation is used to indicate that xi was removed from X.

428
� Composition with a function: k x;x0ð Þ ¼ f xð Þk1 x;x0ð Þf x0ð Þ, with
f : Rd ! R.

� Mapping: k x;x0ð Þ ¼ k1 W xð Þ;W x0ð Þð Þ, with W : Rd ! Rd.

3. Gaussian Process kernel representation as elementary
mathematical expression trees

While previous approaches have proposed the composition of
kernel functions, in this work we break down the standard kernels
of Table 1 into basic mathematical expressions, in order to use
them as the building blocks for new kernels. Thus, these standard
kernel functions and their sum/product compositions are a subset
of our search space.

The kernel functions are described as an expression tree, com-
posed by the set of the terminals and non-terminals shown in
Table 2. The expression tree is strongly-typed [23], as the output
of each node matches the input type of its ancestor.

A scalar non-terminal is used as the start symbol of the gram-
mar. The þ;�, and̂ arithmetic operators, with their usual meanings
(addition, product and power, respectively), can be used to com-
bine scalar non-terminals. Also note that the exponent in the
power operator is a hyperparameter (hp) terminal. On the other
hand, in order to allow division operations over scalars, we intro-
duce the negative power. The scalar elements can be also obtained
by means of the square distance or dot product of two vectors
vec; vec0ð Þ, as described in Section 2.2. Similarly, the constant
non-terminal is included, which value depends on a hyperparame-
ter terminal. Pairs of vectors vec; vec0ð Þ can be obtained directly
using the input vectors of the kernel x;x0ð Þ or applying the spectral
transformation to them, in order to allow periodic kernels as sug-
gested by [24]. Finally, among hyperparameter terminals we can
find the input parameters of the kernel (h) or the constant values
indicated in Table 2.
4. Evolving kernel functions based on the new grammar

Once the grammar has been introduced, we present our Gen-
Prog [11] approach for GP kernel search, EvoCov. GenProg is an
j h0 j h1 j . . . j ht
;

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
Evolutionary Algorithm (EA) that allows to search in a set of possi-
ble computer programs by encoding each program as a gene. In our
case, the computer programs are the kernel functions.

EvoCov, shown in Algorithm1, takes into account two chal-
lenges related to this problem: The cost of evaluating the fitness
function (mainly due to hyperparameter optimization) and the fact
that many of the kernels generated during the search are not PSD.

Algorithm1: EvoCov algorithm

1: procedure EvoCovN, G, S, pm, pcx, b, dmin, dmax

2: pop ¼ GENRANDPOPN, dmin, dmax

3: bestfit�1 ¼ 1
4: all ¼ pop
5: i ¼ 0
6: while i < G� 1 do
7: EVALUATEpop
8: best ¼ SELECTpop, 1
9: bestfiti = GETFITNESSbest

10: relimprov ¼ bestfiti�1�bestfiti
jbestfiti j

11: if b < relimprov then
12: sel = SELECTpop, S
13: offspring = VARIATEsel, N � S, pm, pcx
14: else . Restart procedure
15: sel ¼ £
16: offspring ¼ GENRANDPOPN, dmin, dmax

17: bestfiti ¼ 1
18: end if
19: pop ¼ sel [offspring
20: all ¼ all [offspring
21: i ¼ iþ 1
22: end while
23: EVALUATEpop
24: best = SELECTall, 1
25: return best
26: end procedure

First, an initial population of N kernels is generated. In order to
do so, each individual is created at random, limited by a maximum
(dmax) and a minimum (dmin) depth. At each generation, the whole
population is evaluated. Next, the relative improvement (re-
limprov) is calculated, which measures the improvement from
the best fitness value of the previous generation to the best fitness
value in the current generation. If the relative improvement in the
current population is greater than a threshold b, a new population
is generated through selection and variation. After selecting the S
best individuals, a mutation or a crossover operator is randomly
applied with probability pm and pcx respectively (where
pcx ¼ 1� pm) to generate the offspring population. Since, due to
the hyperparameter inheritance (as explained in Section 4.3.2),
we want to re-evaluate the selected individuals and evaluate N
kernels at each generation, the offspring population consists of
N � S new individuals. When the relative improvement is lower
than or equal to the threshold, the current population is replaced
by a randomly generated one. This procedure is repeated for
G� 1 generations. Finally, the last population is evaluated and
the best individual found during the whole process is returned.

In this section we describe each of the methods used by Algo-
rithm1. First, we address the issue of randomly generating new
kernels for the initial population. The distinguished characteristic
of our proposal for generating the random kernels is that it does
not take into account any kernel proposed in the literature, while
guaranteeing a minimum depth and a maximum depth. Then, we
provide the variation operators conceived to generate kernels that
429
are likely to inherit useful properties from the selected ones. A
method to control the depth of the trees created by the variation
operators is also introduced. Next, we explain how the GP kernels
are evaluated. Finally, for comparison proposes, we include two
simpler methods: Random Search and Go With The First.

4.1. Initial population

We generate kernel functions at random and discard the non-
PSD ones until the desired population size is reached.

4.1.1. Random kernel generation
In order to randomly generate kernel expressions, we propose a

strongly-typed grow method based on the work presented by [11].
This approach creates kernels from scratch, without any knowl-
edge of previously proposed kernels. This is achieved by a recursive
process where, at each step, a random terminal or a random oper-
ator is added.

When generating random solutions, some of the solutions may
be too complex in terms of the number of terms in the expression,
and others too simple or trivial. Thus, we propose a method to con-
trol the depth of the generated expressions by setting a minimum
(dmin) and a maximum depth (dmax). As can be seen in Table 2, some
of the non-terminals have the same symbol on both sides of the
production rule. These non-terminals guarantee that, once
selected, the iterative procedure can continue growing this branch,
i.e., they are recursive. During the creation process, we select a uni-
formly random production rule depending on the current symbol.
If the minimum depth has not been reached, only recursive non-
terminals are used. Then, until the maximum depth is reached,
any non-terminal can be selected. Finally, when the maximum
depth is reached, only the terminals and the non-recursive non-
terminals are used, limiting the depth of the expression.

4.1.2. Dealing with non-PSD kernels
In order to mitigate the evaluation of non-PSD kernels, we have

applied to GPs the approach used by [25] in the field of SVMs:
check the positive definiteness of the matrix generated by a kernel
for some random data and attempt the generation of the kernel
again if this matrix is not PSD.

As mentioned in Section 2.1, any matrix generated by a PSD ker-
nel has to be symmetric and also PSD. To identify non-PSD kernels,
we generate w random uniformly distributed datasets
X ¼ x1; x2; . . . ;xnð Þ (where xi 2 Rd; i 2 1; . . . ;nf g and n 2 N) and
check the M matrix produced by the kernel for each dataset. If
any M matrix does not match any of the following conditions,
the generation process of the kernel is repeated:

� M ¼ MT: As previously mentioned, the matrix given by a PSD
kernel should be symmetric.

� None of the elements in the main diagonal (mii) is negative: It
has been proved [26] that, if any of the elements in the main
diagonal are negative, the matrix is not PSD.

� None of the eigenvalues of M is negative: Similarly, all the
eigenvalues of the matrix should be non-negative.

Compliance with all these conditions is necessary but not suffi-
cient for a kernel to be PSD, and if the kernel is not PSD, the covari-
ance matrix can not be inverted for GP inference. Thus, if after
passing the PSD check, we find out that the kernel is not PSD dur-
ing the evaluation step, the fitness value of the kernel is penalized.
Fortunately, this validity check is severe enough to avoid most of
the false positives. Among the kernels that were generated and val-
idated during the preliminary experiments, only 0:67% were not
PSD.

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
4.2. Variation operators for kernel generation

Our kernel search method is based on perturbation or variation
methods that modify previous solutions to obtain new ones. We
use two variation operators which are randomly selected at every
VARIATE function call in Algorithm1: A crossover operator, which
combines two kernel functions to generate a new one that inherits
some of the features of its parents, and a mutation operator, which
introduces slight modifications to the original kernel to obtain a
new individual. We also explain how the algorithm controls the
depth of the trees generated by these variation methods.

4.2.1. Crossover
A purely random crossover operator hardly ever produces PSD

kernels. Since kernel function evaluation is a computationally
costly process, we would like to avoid non-PSD kernels. As
explained in Section 2.4, the product or the sum of two PSD kernels
is also PSD. Hence, a crossover method could just combine two PSD
kernels with any of these operators to generate a new PSD kernel.

However, this procedure rapidly increases the depth of the
expressions. Therefore, we propose a crossover operator that ran-
domly selects a sub-expression from each kernel and combines
them with the sum or the product operator. As this method does
not guarantee that the resulting kernel is PSD, this operation must
be repeated if a non-PSD kernel is found. Nevertheless, the method
increases the chance of obtaining a PSD kernel, since, if both of the
sub-expressions are PSD, the result is guaranteed to be also PSD.

4.2.2. Mutation
Based on [27], the algorithm applies a mutation operator that

randomly selects one of the following methods in a type-safe
manner:

Insert: Inserts a randomly chosen recursive non-terminal (see
Section 4.1.1) at a random position in the kernel expression,
as long as its output and the output of the one at the selected
position agree. The sub-expression that was at the chosen posi-
tion is used as an argument of the newly created non-terminal.
If this non-terminal requires more arguments, a new sub-
expression is randomly generated using the random generation
method described in Section 4.1.1.
Shrink: This method shrinks the kernel expression by randomly
choosing a non-terminal and replacing it with one of its argu-
ments (also randomly chosen) of the same type.
Uniform: Selects a position uniformly at random in the kernel
expression and replaces the sub-expression at that point by a
randomly generated one. Note that the output type of the
new sub-expression must match the output type of the
replaced one.
Replacement: Replaces a randomly chosen non-terminal from
the kernel expression by another non-terminal with the same
number of arguments and types, also randomly chosen.

As these methods do not guarantee that the generated kernels
are PSD, mutations are repeated if a non-PSD kernel is detected
(see Section 4.1.2).

4.2.3. Bloat control
None of the variation methods described above limits the depth

of the kernel expression. Depending on the operators, the depth of
the expressions may increase without any limit during the search,
making the resulting kernel functions highly complex and useless
for practical applications. This is a well-known problem in GenProg
literature, known as bloating [11]. In our work, when the depth of a
kernel expression becomes larger than omax, we discard the expres-
sion. In this case, the mutation or the crossover method is repeated
430
until a kernel with the desired depth is obtained, or a limit of qmax

trials is reached. If this number of trials is exceeded, one of the par-
ent kernels is returned unchanged.

4.3. Evaluation

In our approach, in contrast to other GenProg applications, the
solutions do not encode all the necessary information to be evalu-
ated. In order to evaluate each kernel, we need to set the value of
the hyperparameters. Thus, the fitness of the solutions depends on
the results of the hyperparameter optimization. Both search proce-
dures, the selection of the best hyperparameters for each kernel
and the selection of the best kernel given these hyperparameters,
are illustrated in Fig. 1.

Following the work done in [10], we use the Bayesian Informa-
tion Criterion (BIC) [28] as a quality metric for each kernel. BIC is a
metric for model selection which adds a regularization term to the
LML to penalize the complexity of the kernels. This metric serves as
the fitness function of our GenProg algorithm and it can be
expressed as follows:

BIC kið Þ ¼ 2 log p fjX; ki; hi;best
� �� q log n ð8Þ

where q is the number of hyperparameters of the kernel and n is the
number of data points in X. hi;best is the best hyperparameter set for
the kernel ki according to a given metric.

Before computing the BIC associated to a given kernel, the
hyperparameters have to be optimized. As we have discussed in
Section 2.3, several metrics (LML, LOOCV, . . .) can be used to mea-
sure the quality of each hyperparameter set. Thus, we find the best
hyperparameter set for kernel i as follows:

hi;best ¼ argmaxj METRIC f;X; ki; hi;j
� � ð9Þ
4.3.1. Hyperparameter optimization algorithm
The hyperparameters are optimized by means of Powell’s local

search algorithm [29]. As this algorithm does not deal with bound-
aries, the search space has to be constrained by penalizing non-
feasible hyperparameter sets. Moreover, as the function to opti-
mize might be multi-modal, a multi-start approach was used, per-
forming a restart every time the stopping criteria of Powell’s
algorithm are met, and getting the best overall result. Note that,
as a result of the inclusion of the randomized restarts, the hyperpa-
rameters found for a certain kernel in two independent evaluations
may not be the same. In fact, this implies that the fitness function
optimized by the GenProg algorithm, i.e., BIC, is stochastic.

4.3.2. Random restarts and hyperparameter inheritance
The initial solutions for the restarts of the hyperparameter opti-

mization algorithm are sampled from two different distributions
depending on the origin of the kernel. In the randomly generated
kernels, the initial hyperparameters for these restarts are sampled
from a uniform distribution within the search bounds. On the other
hand, if a kernel is generated through any of the variation methods,
we take advantage of the information gathered in previous hyper-
parameter optimization procedures by adapting the inheritance
technique described by [10,8] to the particularities of GenProg.
Instead of restarting the multi-start optimization from a uniform
distribution, each restart is sampled from a Gaussian distribution
centered on the hyperparameter values of the parent individuals
and with a pre-defined variance (rh). This inheritance method is
particularly useful when the variation performs few changes to
the expression.

Note that, in Algorithm 1, the selected individuals are kept for
the next population and the whole population is evaluated at each
generation. Thus, some individuals may be evaluated several times

Fig. 1. Two nested search procedures: The selection of the best hyperparameters for each kernel is made according to a given METRIC, such as LML or LOOCV, and the
selection of the best kernels according to the BIC.

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
during the search. This procedure, along with the hyperparameter
inheritance, allows the selected individuals to keep optimizing
their hyperparameters across generations, and compete fairly with
the individuals in the offspring population, which inherit the
hyperparameters.

4.4. Selection

We perform a search in the kernel function space to find the
kernel that maximizes the BIC. Thus, the selection operator shown
in Algorithm1 selects the S best kernels according to the BIC metric
by applying truncation selection.

5. Related work

In this section, we review the work carried out in the literature
related to this paper. First, we discuss works that design ad hoc
kernels based on expert knowledge. Subsequently, we review the
works which propose an automatic design of kernels.

In ad hoc kernel approaches [1,30], the authors assume that the
choice of the kernel function is clear from a priori knowledge about
the problem. Then, the hyperparameters are optimized to adjust
each kernel. In [1], an ad hoc kernel is introduced to fit the Mauna
Loa Atmospheric CO2 time series, which is a well-known problem
in the GP literature due to its several periodic patterns. On the
other hand, in [31], the authors propose a product of a Squared
Exponential and a periodic kernel to construct a control signal.
Similarly, the authors of [30] designed an ad hoc kernel to predict
the number of occurrences of certain hashtags in Twitter, given the
past records. Finally, the authors of [32] took advantage of the
Bochner Theorem [33] to design kernels that were able to model
the periodical patterns of time series. Regarding the hyperparame-
ter optimization, Deep Learning methods have also been applied to
pre-train and fine-tune the hyperparameters of the covariance
functions [34].

Regarding the automatic design of kernels, many works have
followed the kernel composition approach by using the properties
shown in Section 2.4 to generate new kernels [9,10]. Authors of [9]
propose a GenProg method for compositional kernel search, using
the standard kernels shown in Table 1 as building blocks. They also
consider the sum, product and scale as primitives, along with a
dimension mask. The hyperparameters where not included in the
431
grammar, as only the hyperparameters present in the standard
kernels are considered. The experimentation of this work was lim-
ited to the Mauna Loa Atmospheric CO2 time series and some syn-
thetic 2-dimensional datasets. In addition to GenProg, other search
methods have been proposed to search for kernel composition
structures in GPs, such as the greedy search procedure proposed
in [10]. In that work, the best kernel function in terms of BIC is
searched in the space of possible compositions (sums and prod-
ucts) of simpler kernels. In [8], the authors improve the previous
approach by adding change-point and change-window kernels.
Similarly, multiple kernel learning (MKL) approaches have tried
to create new kernels by adding the standard ones [35].

The idea of using elementary mathematical expressions as
building blocks of kernel functions has been applied to other fields,
such as Support Vector Machines (SVMs) [36] and Relevance Vec-
tor Machines (RVMs) [37]. Some of these approaches [37–39] do
not guarantee that kernels are PSD. In SVM and RVM, although ker-
nels theoretically have to be PSD in order to do the kernel-trick, in
practice, many kernels can be used even if they are not of this kind.
Some other approaches, such as [40,41], guarantee that the kernels
are PSD by means of the kernel composition properties shown in
Section 2.4, similar to the compositional kernel search methods
in the GP literature. Finally, in [25,36,42] the non-PSD kernels are
penalized or discarded as in our approach. The authors of [36,42]
propose a method to penalize (giving the worst possible fitness)
the non-PSD kernels in evaluation time. On the other hand, in
[25], if during the random generation a non-PSD kernel is found,
it is discarded and the creation is retried. However, as stated by
the authors, their approach was not able to improve the results
of the standard kernels in SVM. The above mentioned approaches
deal with hyperparameters by means of optimizing small grids or
adding random constants to the GenProg grammar. To the best of
our knowledge, more complex techniques such as the hyperparam-
eter inheritance have not been applied in this context.
6. Experiments

In this section, we describe the experiments we carried out to
analyze the performance of our proposal. We solve extrapolation
problems from real-world time series and compare our proposal
to the main methods discussed in Section 5 (compositional kernel

Table 3
Description of the time series used in the experiments. The visually identifiable
periodic patterns are described with the letter P, and if many periods are present,
P + is shown. The ascendant trends are represented by AT and exponential growths by
EXP. N denotes the presence of noise, while C indicates a trend change at some point
in the time series.

Name Size Properties

Airline 144 P, AT
Solar 402 P, C
Mauna Loa Atmospheric CO2 545 P, AT
Beveridge Wheat Price Index 370 P, C
Daily minimum temperatures in Melbourne 1000 P N
Internet traffic data (bits) 1000 P+
Monthly average daily calls 180 N, C
Monthly critical radio frequencies 240 P+
Monthly production of gas in Australia 476 P, AT
Monthly prod. of sulphuric acid in Australia 462 N
Monthly U.S. male unemployment 408 P, AT
Number of daily births in Quebec 1000 N
Real daily wages in England (£) 735 EXP

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
methods and ad hoc kernel approaches) in such tasks. The goal of
our experiments is threefold:

� To compare EvoCov to state-of-the-art methods that rely on
kernel composition.

� To compare our proposal to the ad hoc kernels proposed in the
literature.

� To study the influence of the metric used to optimize the hyper-
parameters in time series extrapolation problems.

First, an introduction to the time series extrapolation problem is
given, before describing the experimental setup. Then, three exper-
iments are shown, one for each objective of the experimentation.

6.1. Time series extrapolation problems

Although time series extrapolation can be implemented in dif-
ferent ways, in our problem, data points are associated with a time
index variable and the extrapolation problem consists in producing
a prediction for each time index for a time interval in the future.
While properties like the smoothness of the data have been exten-
sively studied in GP literature for interpolation problems, extrapo-
lation problems require additional data patterns to be exploited,
such as periodicities and trends, which have not been studied to
the same extent.

Real-world time series extrapolation problems have been con-
sidered for the evaluation of our methods, being more realistic
than synthetic time series benchmarks. These problems are charac-
terized by a limited amount of generally noisy data, with strong
variations from the training set to the test set due to the temporal
bias between both sets.

Following the work done in [8], in the first two experiments, we
use the real-world time series described in Table 33. We trained all
the algorithms on the first 90% of the data, and predicted the remain-
ing 10%.

6.2. Alternative search methods

In order to verify that every component of the GenProg algo-
rithm introduced in the previous section is providing benefits to
the kernel search, we include two algorithms to be used as a base-
line in the experiments. In order to test the joint contribution of
the mutation and crossover operators, a Random Search algorithm
[43] is proposed, which only uses the same random generation and
selection methods as EvoCov. Also, in order to measure the gain
produced by the crossover operator, we propose an algorithm
which does not depend on this operator, the GoWithTheFirst algo-
rithm, inspired by the ‘‘go with the winner” methods [44].

6.2.1. Random Search algorithm
This Random Search method generates a random population by

iteratively following the random generation method described in
Section 4.1.1 until the desired population size is achieved (N). Next,
it chooses the best solution according to the selection criterion
described in Section 4.4.

6.2.2. GoWithTheFirst algorithm
The GoWithTheFirst algorithm, (i) generates an initial popula-

tion of size N, (ii) applies a hill-climbing procedure for H evalua-
tions for each individual, by generating a random mutation, and
keeping the best solution between the original and the mutated
one, and (iii) discards the worst individual among this optimized
population, according to the selection criteria.
3 The time series data can be found at https://pkg.yangzhuoranyang.com/tsdl/

432
The steps (ii) and (iii) are repeated until only one kernel is left.

6.3. Experimental setup

For the GP regression, a noisy approach was used, by adding a
GP with a white noise kernel to the model, and including its noise
hyperparameter to the hyperparameter optimization process. For
the random generation method, dmin ¼ 5 and dmax ¼ 15 were used
to limit the size of each expression tree. In order to discard the
non-PSD kernels, the positive semi-definiteness conditions
described in Section 4.1.2 were checked in w ¼ 20 random data-
sets. Besides, to avoid bloating, a maximum depth of omax ¼ 40
was allowed, and the number of attempts was limited to
qmax ¼ 250 in each variation operator.

In the Random Search algorithm, N ¼ 20000 was set to generate
the initial population. Similarly, in the GoWithTheFirst algorithm,
N ¼ 13 initial individuals and H ¼ 200 local search evaluations
were used in order to have a comparable evaluation budget.
Finally, after some preliminary experiments with the EvoCov
approach in the Mauna Loa Atmospheric CO2 dataset, we set the
parameters to the following values: N ¼ 141;G ¼ 141;
S ¼ 14; pm ¼ 0:4; pcx ¼ 0:6 and b ¼ 1e� 5. These parameters are
fixed for all the datasets and experiments.

The proposed algorithms were coded in Python, based on the EA
software DEAP4 [27], and made publicly available in the Python
Package Index5. Due to the stochastic nature of our algorithms, each
kernel search process was repeated 10 times in all the experiments.

Regarding the hyperparameter optimization, in every restart of
Powell’s optimization algorithm [29], a Gaussian noise with
rh ¼ 0:1 was added to the inherited hyperparameters. Since the
computational time required to evaluate the hyperparameters
increases significantly with the size of the time series, and due to
computational constraints, we decided to adjust the number of
evaluations allowed in the hyperparameter optimization depend-
ing on the length of the time series, in order to establish a similar
run time for each data set. Thus, we allow Q ¼ ref fun call�
ref ts len2

current ts len2
evaluations. ref fun call and ref ts len are parameters

of the algorithm describing the desired number of evaluations
(ref fun call) for a reference time series size (ref ts len), and
current ts len is the length of the current time series. In the exper-
iments, the reference time series size was set to ref ts len ¼ 350,
for which ref fun call ¼ 300 evaluations were allowed.
4 https://deap.readthedocs.io
5 https://pypi.org/project/evocov/

https://pkg.yangzhuoranyang.com/tsdl/
https://deap.readthedocs.io
https://pypi.org/project/evocov/

6 The tests were carried out using the SCMAMP R package [47]

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
6.4. Metric comparison for hyperparameter optimization

In GP literature, hyperparameter optimization is considered a
crucial task. Most of the works carried out in this field rely on
the LML for hyperparameter optimization [9,10]. However, it has
been reported that the LML may lead to suboptimal results under
certain conditions, where LOOCV could be more robust[45].
Regarding the kernel optimization, having a consistent method to
optimize the hyperparameters helps to obtain more reliable evalu-
ations of the individuals. Hence, before evaluating the differences
among the kernel search algorithms introduced in the previous
sections, we decided to perform an experiment to test if other
alternative metrics to LML and LOOCV can improve the results in
time series extrapolation problems.

Apart from the well-known LML and LOOCV, we tested other
metrics specifically designed to optimize the hyperparameters in
extrapolation problems. While LML measures the probability of
the training data given the prior GP model, the goal in extrapola-
tion is to increase the probability of the test data given the poste-
rior GP model. Therefore, along with the prior LML, we also
measure the posterior LML, by splitting the training set at a given
point in time into the training-training and training-test sets. Thus,
the probability of the training-test set given a GP model condi-
tioned to the training-training set, i.e., the posterior LML, can be
measured as follows:

log p fjX;X�; hð Þ ¼ � 1
2
cma

bK�1
a
cmT

a � 1
2 log jbKaj � n

2 log 2p
withcmT

a ¼ fT � bM X�ð ÞbKa ¼ bK X�;X�ð Þ

ð10Þ

where bM X�ð Þ and bK X�;X�ð Þ can be obtained as in Eq. (3).
Furthermore, we also use the Negative Log Predictive Densities

(NLPD) [46] as a extrapolation oriented version of the LOOCV.
NLPD adds the likelihood of each prediction in the training-test
set, given some hyperparameters and the training-training data
as follows:

LNLPD X�; f�;X; f; hð Þ ¼ � 1
n�

Xn�
i¼1

log p f �ijX�i;X; f; hð Þ ð11Þ

where n� is the number of test samples in X�, and f� corresponds to
their function values.

Finally, we also measure the Root Mean Squared Error (RMSE)
in the training-test set as a measure of the quality of the
hyperparameters.

Having such a variety of metrics to choose from, it is unclear
which of these metrics is most suitable for time series extrapola-
tion tasks. We would like to find the best metric to optimize the
hyperpameters of some of the most competitive kernel structures
in the time series described in Table 3. Thus, we considered the
best kernels found for each of the problems in [10]. For each metric
and time series, we carried out an optimization process with Pow-
ell’s algorithm, in order to find which one leads to the best results
in terms of the RMSE in the test set. Each optimization process
starts from a random hyperparameter set and stops when
Q ¼ 5000 samples have been taken. Due to the randomness of
the process, 10 trials were carried out.

In Table 4, the results in the test set are shown for the thirteen
time series in terms of average RMSE. The NLPD outperforms the
rest of the metrics in five of the problems, while LML gets the best
overall results in four time series and RMSE is the best choice in
three. These three metrics show better average results compared
to posterior LML and LOOCV, as the former is only able to obtain
the best results in the Daily Minimum Temperatures in Melbourne
time series, and the latter is not able to beat other metrics in any
433
of the problems. As expected, in these extrapolation problems,
LOOCV is the metric with the worst performance for hyperparam-
eter optimization.

Statistical tests were used to determine if there is a metric that
is more robust than the others in time series extrapolation prob-
lems6. First, we averaged all the RMSE results for each metric and
time series, and then applied Friedman’s test [48]. We found signif-
icant differences between all the metrics (a ¼ 0:05. p-value =
8:454e� 5). Then, we applied a post hoc test based on Friedman’s
test, and adjusted the results with Shaffer’s correction [49]. In
Fig. 2, the critical differences between the metrics are shown. As
can be seen, there are no significant differences between NLPD,
LML, RMSE and posterior LML. Similarly, the results between LOOCV
and posterior LML do not differ significantly.

Overall, it can be seen that there is no metric best suited for
guiding the hyperparameter optimization for all the time series,
and the choice of the best metric depends on the problem. How-
ever, it is clear that some of these metrics, such as LOOCV, do not
produce competitive results for any dataset.

6.5. Testing the proposed grammar

Once we have selected a metric to optimize the hyperparame-
ters, we test whether better kernels can be found with our gram-
mar, compared to kernel composition approaches. Particularly,
we would like to know:

1. Whether it is possible to improve the composed kernels by
means of manipulating elementary mathematical expressions,
as we propose in this work.

2. Whether the proposed mutation operator allows such an
improvement.

Considering the best kernels found by [10] for each time series,
we generated 200 random mutations from each kernel, according
to the method described in Section 4.2.2. Note that those original
kernels had already been optimized by the cited kernel composi-
tion approach. Next, we performed a hyperparameter optimization
process using the LML metric for each mutation, departing from
the best hyperparameter values found in the original work. Finally,
we measured the RMSE in the test set for all these mutations
against the RMSE provided by [10].

Table 5 shows the results of this experiment for the 13 time ser-
ies previously introduced. In 12 out of 13 time series, among the
200 randomly generated kernels, there are some kernels that have
better results than the original one in terms of RMSE with fewer
hyperparameters.

As we have shown in this experiment, we conclude that it is
possible to improve the results achieved by kernels optimized
through kernel composition, by manipulating their elementary
mathematical expressions. We can also confirm that the mutation
operator presented in this work allows such improvements.

6.6. Time series extrapolation benchmark

In view of the results obtained in the previous section, we eval-
uated EvoCov, along with the proposed alternative search methods,
in the benchmark presented by [8]. To the best of our knowledge,
this work provides the most extensive comparison in the literature
in time series extrapolation with GPs. In this benchmark the fol-
lowing algorithms can be found:

Eureqa: A Symbolic Regression engine that uses genetic algo-

Table 4
Hyperparameter optimization metrics compared across different time series. The average RMSE in the test set is shown for each metric. The best results for each time series are
shown in bold.

LML LOOCV Post. LML NLPD RMSE

Airline 37.00 230.27 157.96 57.10 97.34
Solar 269.12 539.64 925.25 279.24 132.04
Mauna Loa 4.40 37.61 3.94 2.34 3.19
Wheat Price 54.13 99.64 67.94 52.58 266.37
Mel. Temps. 4.92 6.63 4.62 5.62 4.67
Traffic data 49352.14 4994073.33 38259.26 23756.89 25970.23
Avg. calls. 212.22 43078.20 1460.47 844.32 55.08
Radio freqs. 2.14 2.01 1.27 0.74 1.63
Gas Aus. 13791.03 179944.80 26403.55 18066.63 50771.39
Acid Aus. 39.58 1979.48 56.56 53.42 67.89
U.S. unemp. 142.30 4436.13 265.76 192.34 219.65
Births Queb. 44.78 16203.27 49.84 44.54 46.40
Wages Eng. 23.26 40.97 15.16 15.38 13.61

Fig. 2. Critical differences diagram between hyperparameter optimization metrics.
The metrics are ordered following their rankings. The metrics with no significant
differences between them are matched with a straight line.

Table 5
Results of the random mutation experiment. In the second column, the ratio of
mutated kernels that are better fitted, in terms of RMSE, than the best kernel achieved
by [10] is shown. The ratio of kernels that are simpler than the original one, according
to the number of hyperparameters, is illustrated in the third column. In the last
column, the ratio of kernels that are both better fitted and simpler can be found.

Name Better fitted Simpler Both

Airline 0.38 0.43 0.13
Solar 0.55 0.32 0.21
Mauna Loa 0.18 0.34 0.05
Wheat Price 0.40 0.19 0.11
Mel. Temps. 0.23 0.27 0.00
Traffic data 0.24 0.38 0.07
Avg. calls. 0.50 0.48 0.20
Radio freqs. 0.36 0.30 0.05
Gas Aus. 0.71 0.41 0.30
Acid Aus. 0.56 0.43 0.23
U.S. unemp. 0.47 0.38 0.15
Births Queb. 0.48 0.32 0.13
Wages Eng. 0.38 0.28 0.08

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
rithms to search in the space of the possible equations [50].
Although this approach may seem similar to our work, Eureqa
learns the predictive function itself, while our approach pro-
vides a probabilistic prediction by means of GPs.
Linear Regression (LIN): The basic linear regression is approxi-
mated by a GP model with a Linear kernel. The hyperparame-
ters are learned by the LML optimization.
434
Squared Exponential (SE): A GPmodel with the SE kernel shown
in Table 1 is used. The hyperparameters are also learned by
optimizing the LML.
Bayesian variant of multiple kernel learning (MKL): A weighted
sum of base kernels is used to construct more complex ones
[51].
Change Point (CP) Modeling: A GP based approach allowing
changepoints in kernels, that is, a combination of kernels where
the weight of each of the components depends on the inputs
[52–54].
Spectral Mixture Kernels (SK): These kernels model the spectral
density with a Gaussian mixture [32].
Trend-Cyclical-Irregular (TCI) Models: The statistical model
described by [55] is approximated by means of GPs and com-
bining the Periodic kernels with Linear ones as covariance
function.
GPSS: The greedy GP kernel search method described by [10] is
used.
ABCD accuracy (ABCDa): An improvement of GPSS, introduced
by [8], which includes the ChangeWindow and ChangePoint
kernels.
ABCD interpretability (ABCDi): A modification of the previous
approach that focuses on interpretability. This approach favors
additive components as they are more interpretable by the
practitioners. Similarly, the authors decided to remove the
Rational Quadratic kernel as it is more difficult to describe auto-
matically [8].

All the compositions of kernels that are included in GPSS can be
represented in our grammar. Thus, the search space of EvoCov is a
superset of the search space of GPSS. On the other hand, ABCD
approaches include ChangeWindow and ChangePoint kernels that
cannot be modeled with the current grammar of EvoCov. Hence,
different kernels can be found by these approaches.

EvoCov is presented in two variants, one using LML to optimize
the hyperparameters (EvoCov-LML), and the other variant using
the NLPD metric (EvoCov-NLPD). LML is one of the most widely
used metrics in the GP literature, and it is also the metric used
by the competing GP methods. Although the differences between
LML and NLPD were not significant in the experiment of the Sec-
tion 6.4, we also include a EvoCov variant using this metric, in
order to measure its performance when evolving kernels.

Table 6 shows the numerical results of the experimentation for
each time series, while in Fig. 3, the overall results are illustrated.
Note that RMSE is standardized by dividing by the smallest RMSE
achieved in the experiments for each dataset, so that the best per-

Table 6
Standardized RMSE for each extrapolation problem and algorithm is shown. In our approaches, the best, the worst and the mean values are illustrated. The best results on average
for each time series are shown in bold, while the best results among all methods are highlighted with an asterisk. Finally, in order to represent the distribution of the results over
all problems, the mean and the median statistics are shown.

ABCDa GPSS ABCDi CP LIN MKL SE SP-bic TCI eureqa Random Search Go With The First EvoCov LML EvoCov NLPD

Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst

Airline 1.34 1.35 2.47 5.63 5.80 5.55 37.80 1.17 1.69 3.80 1.18 3.31 4.81 1.02 1.45 2.04 1.0* 1.31 2.01 1.11 1.56 2.27
Solar 1.66 2.13 2.08 1.71 1.77 1.65 2.66 1.99 1.70 4.36 1.0* 2.39 2.79 1.08 1.84 2.76 1.07 1.84 3.91 1.01 1.60 2.28
Mauna Loa 3.46 1.46 2.47 4.29 7.87 4.30 4.56 3.26 3.18 6.28 8.53 23.44 51.22 1.0* 1.50 2.81 1.07 1.35 2.08 1.08 2.50 7.94
Wheat Price 1.13 1.11 1.26 1.06 1.08 3.19 3.23 3.19 3.19 1.39 1.01 2.08 3.24 1.0* 2.37 8.37 1.04 1.29 2.03 1.32 1.77 2.87
Mel. Temps. 1.01 1.0* 1.01 1.35 1.52 1.35 2.73 1.03 1.00 1.29 1.00 1.03 1.14 1.00 1.01 1.01 1.00 1.02 1.17 1.01 1.02 1.05
Traffic data 1.46 1.70 2.96 6.10 7.21 5.98 6.04 4.94 3.13 9.15 5.32 10.78 13.68 1.64 3.89 6.74 1.0* 3.63 5.92 1.46 4.82 6.63
Avg. calls. 2.98 2.26 1.0* 3.54 28.76 1.80 22.63 11.04 1.80 493.30 1.21 7.76 22.72 1.33 6.82 20.89 1.16 2.81 5.78 1.45 11.69 34.33
Radio freqs. 5.61 3.32 3.40 5.65 7.79 5.65 15.29 1.81 4.17 2.55 1.31 2.69 4.51 1.0* 1.35 2.12 1.07 1.68 2.25 1.78 4.08 6.78
Gas Aus. 1.01 3.33 2.06 3.16 2.66 2.91 2.87 1.62 1.52 2.74 1.79 5.02 9.74 1.0* 2.75 6.09 1.06 2.50 4.65 1.39 2.34 4.89
Acid Aus. 1.11 1.82 1.60 2.49 3.89 1.78 1.20 1.58 1.99 2.18 1.68 2.04 2.96 1.0* 1.52 2.22 1.08 1.43 2.23 2.03 2.33 2.67
U.S. unemp. 2.91 1.66 2.73 2.24 1.35 2.30 2.54 4.81 3.01 3.01 1.32 5.25 28.20 1.30 1.59 2.02 1.0* 1.74 3.23 1.17 1.84 3.87
Births Queb. 1.17 1.25 1.11 2.04 2.17 2.05 1.84 1.71 1.73 2.14 1.30 1.74 1.98 1.0* 1.13 1.30 1.05 1.21 1.74 1.14 1.45 1.76
Wages Eng. 3.03 3.24 4.00 5.84 4.25 3.16 5.35 3.63 3.12 1.0* 2.61 3.04 3.83 2.99 3.60 4.12 2.88 3.55 4.10 1.28 2.56 3.42

Mean 2.14 1.97 2.16 3.47 5.85 3.21 8.36 3.21 2.40 41.01 5.43 2.36 1.95 3.00
Median 1.46 1.70 2.08 3.16 3.89 2.91 3.23 1.99 1.99 2.74 2.68 1.56 1.48 1.83

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
formance on each dataset has a value of 1. Also, it is worth men-
tioning that, in the experiments conducted by [8], only one trial
for each time series and algorithm was carried out7, and, for our
algorithms, the mean and the best of ten trials are shown.

As we can see in Table 6, EvoCov-LML achieves the best average
result across all problems. On the other hand, its median result is
the second best, very close to ABCDa, which obtains the best med-
ian result. Nevertheless, Fig. 3 indicates that the results obtained
by EvoCov-LML have a lower interquartile range than those
achieved by ABCDa. GoWithTheFirst algorithm scored the third
best median RMSE, although its average performance is not as
good as EvoCov-LML’s. GPSS also delivers a solid performance, with
the lowest interquartile range, achieving the second best average
result, although it also shows a higher median than the aforemen-
tioned algorithms. Regarding the proposed NLPD EvoCov variant,
its results are poorer than those of EvoCov-LML, indicating that this
metric is not as good at evolving kernels as it is at optimizing
hyperparameters. The Random Search also shows a worse perfor-
mance than EvoCov approaches, with a very high variance, con-
firming the contribution of the mutation and crossover operators.
Out of the GP approaches, although Eureqa outperforms the rest
of the approaches in one time series, this symbolic regression
engine is outperformed by EvoCov-LML in the rest of the time
series.

Table 7 shows the number of hyperparameters of the best ker-
nel found for each algorithm in each problem. It can be seen that
the compositional kernel approaches (ABCDi, ABCDa and GPSS)
have always more hyperparameters than any of our approaches
on average. The only exception can be found in Number of daily
births in Quebec time series, where ABCDi uses 6 hyperparameters,
and EvoCov-LML and EvoCov-NLPD use 6.8 and 7.0 hyperparame-
ters respectively.

We also conducted the tests of significance in this experiment.
In order to compare the single evaluations found in [8], with the 10
trials conducted in our experiments, the median values of the latter
were computed. Again, we applied Friedman’s test [48], finding
significant differences between the methods (a ¼ 0:05. p-value =
1:5e� 7). Then, we applied the post hoc test, and adjusted the
results with Shaffer’s correction [49], to produce the critical differ-
ences diagram shown in Fig. 4. As shown in the figure, the EvoCov-
LML approach obtains the best ranking on average, and signifi-
7 The results were gathered from the supplementary material of [8].
435
cantly better results that CP, Random Search, eureqa LIN and SE
approaches.

Overall, EvoCov-LML is a competitive approach compared to the
current state-of-the-art compositional kernel search approaches.
In spite of not including the ChangePoint and ChangeWindow ker-
nels, this approach is able to obtain comparable results to ABCDa,
with kernels that have fewer hyperparameters, which makes them
easier to optimize. Unfortunately, having only one execution of the
methods compared to does not allowmore sound conclusions to be
provided.
6.7. Comparing our proposal to ad hoc kernel approaches

As we have mentioned in Section 2.4, many works in GPs pro-
pose a human-designed specific kernel for each particular problem.
In the work carried out by [30], the number of tweets that contain
a given hashtag in the Twitter timeline was predicted by means of
GPs. The authors show that this time series information is also use-
ful to predict the hashtags that a tweet has given its content. They
propose an ad hoc kernel, Periodic Spikes (PS), that captures the
periodicities of these hashtag time series. For example, the #good-
morning hashtag shows a clear periodic pattern, as it is more fre-
quently tweeted in the mornings. On the other hand, there are
some hashtags, such as #np (now playing), that do not follow the
periodic pattern mentioned above, and according to the authors,
there are kernels better suited than PS for these problems. Our pro-
posal should be able to identify these situations, and offer the best
possible kernel without human intervention.

Hence, we carried out the experiment introduced by [30],
where #goodmorning, #breakfast, #confessionhour, #fail, #fyi and
#raw hashtags were predicted8. For each hashtag, the number of
tweets per hour was collected, using one month for training and
the next one for testing, except for the #goodmorning hashtag, as
in the original paper, where only 3 weeks were gathered, having
2 weeks to train and the last one to test.

In Fig. 5, an example of the hashtag prediction is illustrated,
where the best model given by our approach in a single run is
shown. In this problem, a periodic trend can be appreciated, which
is successfully captured by our model.

Table 8 shows a comparison between EvoCov-LML, EvoCov-
NLPD and the PS kernel. The experiments with the PS kernel were
8 Data can be found at https://web.sas.upenn.edu/danielpr/resources/

https://web.sas.upenn.edu/danielpr/resources/

Fig. 3. Standardized RMSE of each algorithm over all problems. Note that the results of our algorithms have more observations due to the 10 trials.

Table 7
Number of hyperparameters for each extrapolation problem and algorithm. The noise hyperparameter is also considered. In our approaches, the average number of
hyperparameters is shown. In ABCDa some data is missing as it could not be found in the supplementary material of the work done by [8].

ABCDa GPSS ABCDi CP LIN MKL SE SP-bic TCI Random Search Go With The First EvoCov LML EvoCov NLPD

Airline 12 15 12 8 4 5 3 16 8 6.1 6.3 10.2 8.5
Solar 23 13 19 18 4 7 3 13 10 4.8 5.4 7.0 6.3
Mauna Loa 10 11 12 5 4 5 3 12 8 6.7 4.9 7.0 10.8
Wheat Price 14 7 13 13 4 5 3 7 5 5.4 4.9 6.6 5.8
Mel. Temps. 9 9 8 6 4 6 3 9 7 4.5 4.5 4.2 5.3
Traffic data 18 15 26 13 4 5 3 13 8 4.1 6.0 10.1 6.3
Avg. calls. 18 19 16 11 4 7 3 7 7 5.1 8.2 11.3 7.6
Radio freqs. 15 9 13 5 4 5 3 12 8 6.0 6.1 7.6 8.0
Gas Aus. 28 21 21 18 4 5 3 13 11 5.8 8.0 13.4 8.7
Acid Aus. 19 17 17 13 4 7 3 12 9 5.4 6.5 7.5 7.2
U.S. unemp. 13 15 10 9 4 4 3 18 8 6.4 4.8 7.1 8.3
Births Queb. - 11 6 5 4 5 3 9 6 5.0 5.6 6.8 7.0
Wages Eng. - 13 19 18 4 7 3 10 7 3.0 5.0 6.3 5.6

Mean 16.3 13.5 14.8 10.9 4 5.6 3 11.6 7.8 5.3 5.9 8.1 7.3

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
carried out using our software, and Q ¼ 5000 samples were
allowed to find the best hyperparameters for this kernel. As can
be seen, EvoCov-NLPD is the best approach on average, obtaining
the best results in the #confessionhour problem. EvoCov-LML is
able to get the best score for the #fail and #fyi hashtags, finding
436
a complex periodic pattern. It is also worth mentioning that the
best trials of this algorithm obtain the best results in four out of
five problems. However, in simpler periodic time series, such as #-
goodmorning, #breakfast and #raw, the PS kernel is the best choice,
getting the best median result.

Fig. 4. Critical differences diagram of the Benchmark. The metrics are ordered
following their rankings. The metrics with no significant differences between them
are matched with a straight line.

Fig. 5. Extrapolation of #goodmorning hashtag time series. The dots represent the
last samples of the training set, while the triangles show the samples of the test set.
The prediction given by a GP model with a kernel learned by the EvoCov-LML
method is illustrated with a continuous blue curve for the mean, and the light blue
shadow shows 3 times the standard deviation.

Table 9
Number of hyperparameters for each extrapolation problem and algorithm. The noise
hyperparameter is also considered. In our approaches, the average number of
hyperparameters is shown.

PS EvoCov-NLPD EvoCov-LML

#breakfast 3.0 4.8 5.7
#confessionhour 3.0 5.3 10.7
#fail 3.0 7.0 6.5
#fyi 3.0 4.3 2.9
#goodmorning 3.0 7.2 7.9

#raw 3.0 5.5 11.2

Mean 3.0 5.7 7.5

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
Table 9 shows the number of hyperparameters used by the dif-
ferent approaches. As expected, our approaches use more hyperpa-
rameters than the PS kernel, as this kernel is specifically designed
for these problems.

All in all, the PS kernel is able to hold the best results in three
out of six problems. On the other hand, the EvoCov approaches,
Table 8
The PS ad hoc kernel compared to EvoCov-LML and EvoCov-NLPD, in hashtag prediction pro
all the approaches, the best, the worst and the mean results are illustrated. The best re
highlighted with an asterisk.

PS

Best Mean Worst Best

#breakfast 1.019 1.045 1.093 1.00*
#confessionhour 320.167 320.19 320.243 1.00*
#fail 1.008 1.363 4.300 1.00*
#fyi 1.019 1.05 1.075 1.024
#goodmorning 1.00* 1.058 1.103 1.317

#raw 1.004 1.365 1.820 1.155

Mean 54.345
Median 1.211

437
without any knowledge about the problem, are able to obtain sim-
ilar predictions to PS, even EvoCov-LML improving the results of
the PS kernel in #fyi. Also note that the EvoCov approaches are able
to produce better average results than the PS kernel, showing a
more adaptable behavior.

7. Conclusions

Kernel functions are widely used in several Machine Learning
methods. GPs are one of these techniques, where a PSD kernel is
used as a covariance function. This kernel function has to be care-
fully selected to achieve good results in any GP application.
Although initial approaches used to rely on predefined kernels or
ad hoc solutions for specific problems, there is an increasing inter-
est in automatically learning these kernels. In this work, we have
presented an evolutionary approach to learn kernel functions for
GPs. While other approaches are based on kernel composition, in
our approach, kernels are modeled by means of basic mathematical
expressions.

This work has made the following contributions:

� Basic mathematical expressions as building blocks for GP ker-
nels: We propose to bring the progress made in other Machine
Learning areas to the GPs by considering its covariance function
as a program that can be learned.

� Fast PSD check for GP kernels: Although some of the kernels
generated by this new random method are not PSD, we have
defined a kernel validation procedure that rapidly discards most
non-PSD expression trees based on the properties of the covari-
ance matrix.

� Hyperparameter inheritance: We have incorporated hyperpa-
rameter inheritance within GenProg, improving the efficiency
of the algorithm.

� Metric comparison for hyperparameter optimization: We pro-
vide valuable insights about the suitability and performance
of several metrics for hyperparameter optimization in extrapo-
lation problems.
blems. Standardized RMSE for each extrapolation problem and algorithm is shown. In
sults on average are shown in bold, while the best results among all methods are

EvoCov-NLPD EvoCov-LML

Mean Worst Best Mean Worst

1.09 1.319 1.06 1.148 1.537
97.229 320.339 1.017 197.542 320.472
1.034 1.168 1.007 1.096 1.401
1.041 1.056 1.00* 1.001 1.008
1.527 1.786 1.003 1.103 1.299
1.754 1.837 1.00* 1.677 1.833

17.279 33.928
1.309 1.125

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
� Extensive benchmark in realistic problems: We have evaluated
our proposal in an extensive benchmark of realistic problems,
showing that our agnostic algorithm is competitive to a wide
range of methods.

Altogether, these contributions enabled the design of a GenProg
variant which is able to improve the state-of-the-art results in the
application of GP to time series extrapolation. We can conclude
that there is no need to rely on a priori defined kernels for GP time
series extrapolation problems. According to the results of the
experiment conducted in Section 6.5 it is possible to learn simpler
and better kernels by evolving mathematical expression trees.

Further research in the grammar is suggested, extending it to
ChangePoint and ChangeWindow kernels. We also suggest to
investigate alternative regularization schemes as for the BIC met-
ric, taking into account the correlation of the time series data. On
the other hand, we propose continuing the work carried out to
measure the performance of the hyperparameter optimization
metrics for GP extrapolation problems. Finally, the application of
the proposed technique to real-time applications must be carefully
analyzed. In an scenario in which a training procedure can be exe-
cuted with some preliminary data, our approach could be used to
find the best performing kernel. Then, this (previously trained) ker-
nel could be evaluated at real-time with little computational effort,
comparable to that required by standard kernels.

CRediT authorship contribution statement

Ibai Roman: Writing - original draft, Software. Roberto San-
tana: Conceptualization, Writing - review & editing. Alexander
Mendiburu: Investigation, Validation. Jose A. Lozano: Software,
Methodology.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been supported by the Spanish Ministry of
Science and Innovation (project PID2019-104966 GB-I00), and
the Basque Government (projects KK-2020/00049 and IT1244-19,
and ELKARTEK program). Jose A. Lozano is also supported by BERC
2018–2021 (Basque government) and BCAM Severo Ochoa accred-
itation SEV-2017-0718 (Spanish Ministry of Science and
Innovation).

References

[1] C.E. Rasmussen, C.K. Williams, Gaussian processes for machine learning, MIT
Press, 2006.

[2] J. Močkus, V. Tiesis, A. Zilinskas, The application of Bayesian methods for
seeking the extremum, in: Towards Global Optimization, Vol. 2, Elsevier, 1978,
pp. 117–129..

[3] D. Duvenaud, Automatic model construction with Gaussian processes,
University of Cambridge, Thesis, 2014.

[4] M.G. Genton, Classes of Kernels for Machine Learning: A Statistics Perspective,
J. Mach. Learn. Res. 2 (2002) 299–312.

[5] S. Ali, K.A. Smith-Miles, A meta-learning approach to automatic kernel
selection for support vector machines, Neurocomputing 70 (1) (2006) 173–
186, https://doi.org/10.1016/j.neucom.2006.03.004.

[6] M. Blum, M. Riedmiller, Optimization of Gaussian Process Hyperparameters
using Rprop, in: European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning, 2013, pp. 339–344..

[7] E. Brochu, V.M. Cora, N. de Freitas, A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and
Hierarchical Reinforcement Learning, arXiv:1012.2599 [cs]ArXiv: 1012.2599
(Dec. 2010)..
438
[8] J.R. Lloyd, D. Duvenaud, R. Grosse, J.B. Tenenbaum, Z. Ghahramani, Automatic
Construction and Natural-Language Description of Nonparametric Regression
Models, in: Proceedings of the Twenty-Eighth AAAI Conference on Artificial
Intelligence, AAAI’14, AAAI Press, 2014, pp. 1242–1250, event-place: Québec
City, Québec, Canada..

[9] G. Kronberger, M. Kommenda, Evolution of Covariance Functions for Gaussian
Process Regression Using Genetic Programming, in: Computer Aided Systems
Theory - EUROCAST 2013, Lecture Notes in Computer Science, Springer, Berlin,
Heidelberg, 2013, pp. 308–315. doi:10.1007/978-3-642-53856-8_39..

[10] D. Duvenaud, J. Lloyd, R. Grosse, J. Tenenbaum, Z. Ghahramani, Structure
Discovery in Nonparametric Regression through Compositional Kernel Search,
in: Proceedings of The 30th International Conference on Machine Learning,
2013, pp. 1166–1174.

[11] J.R. Koza, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, 1992.

[12] W. Chu, Z. Ghahramani, Gaussian Processes for Ordinal Regression, J. Mach.
Learn. Res. 6 (Jul) (2005) 1019–1041.

[13] Z. Wang, N. de Freitas, Theoretical Analysis of Bayesian Optimisation with
Unknown Gaussian Process Hyper-Parameters, arXiv:1406.7758 [cs, stat]
ArXiv: 1406.7758 (Jun. 2014)..

[14] D.J.C. MacKay, Bayesian Methods for Backpropagation Networks, in: Models of
Neural Networks III, Physics of Neural Networks, Springer, New York, NY,
1996, pp. 211–254. doi:10.1007/978-1-4612-0723-8_6..

[15] R.M. Neal, Bayesian Learning for Neural Networks, Springer-Verlag, New York,
1996.

[16] S. Sundararajan, S.S. Keerthi, Predictive Approaches for Choosing
Hyperparameters in Gaussian Processes, Neural Comput. 13 (5) (2001)
1103–1118, https://doi.org/10.1162/08997660151134343.

[17] D.J.J. Toal, N.W. Bressloff, A.J. Keane, Kriging Hyperparameter Tuning
Strategies, Am. Inst. Aeronautics Astronautics J. 46 (5) (2008) 1240–1252,
https://doi.org/10.2514/1.34822.

[18] D.J.J. Toal, N.W. Bressloff, A.J. Keane, C.M.E. Holden, The development of a
hybridized particle swarm for kriging hyperparameter tuning, Eng. Optim. 43
(6) (2011) 675–699, https://doi.org/10.1080/0305215X.2010.508524.

[19] R. Garnett, M.A. Osborne, P. Hennig, Active Learning of Linear Embeddings for
Gaussian Processes, in: Proceedings of the Thirtieth Conference on Uncertainty
in Artificial Intelligence, AUAI Press, Arlington, Virginia, United States, 2014,
pp. 230–239.

[20] R. Benassi, J. Bect, E. Vazquez, Robust Gaussian Process-Based Global
Optimization Using a Fully Bayesian Expected Improvement Criterion, in: C.
A.C. Coello (Ed.), Learning and Intelligent Optimization, no. 6683 in Lecture
Notes in Computer Science, Springer, Berlin Heidelberg, 2011, pp. 176–190.

[21] A.D. Bull, Convergence Rates of Efficient Global Optimization Algorithms, J.
Mach. Learn. Res. 12 (2011) 2879–2904.

[22] N. Durrande, D. Ginsbourger, O. Roustant, Additive covariance kernels for high-
dimensional Gaussian process modeling, Annales de la Faculté de Sciences de
Toulouse Tome 21 (numéro 3) (2012) p. 481–499..

[23] D.J. Montana, Strongly Typed Genetic Programming, Evol. Comput. 3 (2) (1995)
199–230, https://doi.org/10.1162/evco.1995.3.2.199.

[24] N. Haji Ghassemi, M. Deisenroth, Analytic Long-Term Forecasting with
Periodic Gaussian Processes, Proc. Mach. Learn. Res. (2014) 303–311.

[25] P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs, W. Konen, Tuning and
evolution of support vector kernels, Evol. Intel. 5 (3) (2012) 153–170, https://
doi.org/10.1007/s12065-012-0073-8.

[26] F. Zhang, Positive Semidefinite Matrices, in: Matrix Theory, Universitext,
Springer, New York, NY, 2011, pp. 199–252. doi:10.1007/978-1-4614-1099-
7_7..

[27] F.-A. Fortin, F.-M.D. Rainville, M.-A. Gardner, M. Parizeau, C. Gagné, DEAP:
Evolutionary Algorithms Made Easy, J. Mach. Learn. Res. 13 (Jul) (2012) 2171–
2175.

[28] G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (2) (1978) 461–
464, https://doi.org/10.1214/aos/1176344136.

[29] M.J.D. Powell, An efficient method for finding the minimum of a function of
several variables without calculating derivatives, Computer J. 7 (2) (1964)
155–162, https://doi.org/10.1093/comjnl/7.2.155.

[30] D. Preot�iuc-Pietro, T. Cohn, A temporal model of text periodicities using
Gaussian Processes, in: Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, 2013, pp. 977–988.

[31] E.D. Klenske, M.N. Zeilinger, B. Schölkopf, P. Hennig, Nonparametric dynamics
estimation for time periodic systems, in: 2013 51st Annual Allerton
Conference on Communication, Control, and Computing (Allerton), 2013, pp.
486–493. doi:10.1109/Allerton.2013.6736564..

[32] A. Wilson, R. Adams, Gaussian Process Kernels for Pattern Discovery and
Extrapolation, in: Proceedings of The 30th International Conference on
Machine Learning, 2013, pp. 1067–1075.

[33] S. Bochner, Lectures on Fourier Integrals. (AM-42), Princeton University Press,
1959, google-Books-ID: O1jQCwAAQBAJ..

[34] G.E. Hinton, R.R. Salakhutdinov, Using Deep Belief Nets to Learn Covariance
Kernels for Gaussian Processes, in: J.C. Platt, D. Koller, Y. Singer, S.T. Roweis
(Eds.), Advances in Neural Information Processing Systems 20, Curran
Associates Inc, 2008, pp. 1249–1256.

[35] Z. Zhu, J. Zhang, J. Zou, C. Deng, Multi-Kernel Gaussian Process Latent Variable
Regression Model for High-dimensional Sequential Data Modeling,
Neurocomputing (2018), https://doi.org/10.1016/j.neucom.2018.07.082.

[36] L. Dios�an, A. Rogozan, J.P. Pecuchet, Evolving kernel functions for SVMs by
genetic programming, in: Sixth International Conference on Machine Learning

http://refhub.elsevier.com/S0925-2312(21)01204-2/h0005
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0005
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0005
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0015
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0020
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0020
https://doi.org/10.1016/j.neucom.2006.03.004
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0050
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0050
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0050
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0050
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0050
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0055
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0055
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0055
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0060
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0060
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0075
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0075
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0075
https://doi.org/10.1162/08997660151134343
https://doi.org/10.2514/1.34822
https://doi.org/10.1080/0305215X.2010.508524
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0095
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0095
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0095
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0095
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0095
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0100
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0100
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0100
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0100
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0100
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0100
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0105
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0105
https://doi.org/10.1162/evco.1995.3.2.199
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0120
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0120
https://doi.org/10.1007/s12065-012-0073-8
https://doi.org/10.1007/s12065-012-0073-8
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0135
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0135
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0135
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1093/comjnl/7.2.155
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0150
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0150
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0150
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0150
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0150
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0160
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0160
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0160
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0160
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0170
https://doi.org/10.1016/j.neucom.2018.07.082

I. Roman, R. Santana, A. Mendiburu et al. Neurocomputing 462 (2021) 426–439
and Applications (ICMLA 2007), 2006, pp. 19–24, https://doi.org/10.1109/
ICMLA.2007.70.

[37] W. Bing, Z. Wen-qiong, C. Ling, L. Jia-hong, A GP-based kernel construction and
optimization method for RVM, in: 2010 The 2nd International Conference on
Computer and Automation Engineering (ICCAE), Vol. 4, 2010, pp. 419–423.
doi:10.1109/ICCAE.2010.5451646..

[38] T. Howley, M.G. Madden, The Genetic Kernel Support Vector Machine:
Description and Evaluation, Artif. Intell. Rev. 24 (3–4) (2005) 379–395,
https://doi.org/10.1007/s10462-005-9009-3.

[39] C. Gagné, M. Schoenauer, M. Sebag, M. Tomassini, Genetic Programming for
Kernel-Based Learning with Co-evolving Subsets Selection, in: Parallel
Problem Solving from Nature - PPSN IX, in: Lect. Notes Comput. Sci.,
Springer, Berlin, Heidelberg, 2006, pp. 1008–1017, https://doi.org/10.1007/
11844297_102.

[40] L. Dios�an, A. Rogozan, J.-P. Pecuchet, Improving classification performance of
Support Vector Machine by genetically optimising kernel shape and hyper-
parameters, Appl. Intell. 36 (2) (2012) 280–294, https://doi.org/10.1007/
s10489-010-0260-1.

[41] K.M. Sullivan, S. Luke, Evolving Kernels for Support Vector Machine
Classification, in: Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’07, ACM, New York, NY, USA, 2007, pp.
1702–1707. doi:10.1145/1276958.1277292..

[42] T. Howley, M.G. Madden, An Evolutionary Approach to Automatic Kernel
Construction, in: Artificial Neural Networks - ICANN 2006, Lecture Notes in
Computer Science, Springer, Berlin, Heidelberg, 2006, pp. 417–426.
doi:10.1007/11840930_43..

[43] L. Rastrigin, The convergence of the random search method in the extremal
control of a many parameter system, Automaton Remote Control 24 (1963)
1337–1342.

[44] D. Aldous, U. Vazirani, ”Go with the winners” algorithms, in: Proceedings 35th
Annual Symposium on Foundations of Computer Science, 1994, pp. 492–501,
https://doi.org/10.1109/SFCS.1994.365742.

[45] F. Bachoc, Cross Validation and Maximum Likelihood estimations of hyper-
parameters of Gaussian processes with model misspecification, Comput.
Statistics Data Anal. 66 (2013) 55–69, https://doi.org/10.1016/j.
csda.2013.03.016.

[46] J. Quiñonero-Candela, C.E. Rasmussen, F. Sinz, O. Bousquet, B. Schölkopf,
Evaluating Predictive Uncertainty Challenge, in: J. Quiñonero-Candela, I.
Dagan, B. Magnini, F. d’Alché Buc (Eds.), Machine Learning Challenges.
Evaluating Predictive Uncertainty, Visual Object Classification, and
Recognising Tectual Entailment, Lect. Notes Comput. Sci., Springer, Berlin
Heidelberg, 2006, pp. 1–27.

[47] B. Calvo, G. Santafé, scmamp: Statistical Comparison of Multiple Algorithms in
Multiple Problems, The R Journal 8 (1) (2016) 248–256.

[48] M. Friedman, The use of ranks to avoid the assumption of normality implicit in
the analysis of variance, Journal of the American Statistical Association 32
(200) (1937) 675–701.

[49] J.P. Shaffer, Modified Sequentially Rejective Multiple Test Procedures, J. Am.
Stat. Assoc. (2012).

[50] M. Schmidt, H. Lipson, Eureqa (version 0.98 beta)[software], Nutonian,
Somerville, Mass, USA (2013)..

[51] F.R. Bach, G.R.G. Lanckriet, M.I. Jordan, Multiple Kernel Learning, Conic Duality,
and the SMO Algorithm, in: Proceedings of the Twenty-first International
Conference on Machine Learning, ICML ’04, ACM, New York, NY, USA, 2004, pp.
6–. doi:10.1145/1015330.1015424..

[52] R. Garnett, M.A. Osborne, S. Reece, A. Rogers, S.J. Roberts, Sequential Bayesian
Prediction in the Presence of Changepoints and Faults, Computer J. 53 (9)
(2010) 1430–1446, https://doi.org/10.1093/comjnl/bxq003.

[53] Y. Saatçi, R. Turner, C.E. Rasmussen, Gaussian Process Change Point Models, in:
Proceedings of the 27th International Conference on International Conference
on Machine Learning, 2010, pp. 927–934.

[54] E.B. Fox, D.B. Dunson, Multiresolution Gaussian Processes, in: F. Pereira, C.J.C.
Burges, L. Bottou, K.Q. Weinberger (Eds.), Advances in Neural Information
Processing Systems 25, Curran Associates Inc, 2012, pp. 737–745.

[55] D. Lind, W. Marchal, S. Wathen, Basic Statistics for Business & Economics,
McGraw-Hill/Irwin series Business statistics, McGraw-Hill/Irwin, 2006.
439
Ibai Roman received his bachelor degree in Computer
Science fromMondragon University in 2010. In 2020, he
obtained a Ph.D. in Computer Science from the Univer-
sity of the Basque Country UPV/EHU. He is currently a
lecturer and researcher at the Mondragon University.
His research interests are Bayesian Optimization and
Gaussian Process.
Roberto Santana received and M.Sc. degree in Com-
puter Science from the University of Havana, Cuba, in
1996. He received a Ph.D. in Mathematics from the
University of Havana in 2005 and a Ph.D. in Computer
Science from the University of the Basque Country, in
Spain, in 2006. He is a Tenured researcher at the Intel-
ligent Systems Group (ISG), Department of Computer
Science and Artificial Intelligence, University of the
Basque Country UPV/EHU, Spain. Roberto Santana’s
research interests comprise the use of probabilistic
graphical models in evolutionary algorithms and the
application of Machine Learning methods to problems

from bioinformatics and neuroinformatics. He has published over 25 papers in
international journals, more than 60 papers in international conferences.
Alexander Mendiburu is an associate professor at the
department of Computer Architecture and Technology,
school of Computer Science, University of the Basque
Country UPV/EHU. His main research areas are Evolu-
tionary Computation, Probabilistic Graphical Models,
Time Series, and Parallel Computing.
Jose A. Lozano His research interests are in the field of
Statistical Machine Learning and Combinatorial Opti-
mization. Particularly in Machine Learning, he pursues
the design and evaluation of new classification para-
digms and algorithms which are able to produce pre-
dictive models which can be applied in different fields.
On the other hand, in the Combinatorial Optimization
field he has contributed to developing new heuristics
and metaheuristic algorithms which are able to find a
balance between the quality of the solutions and com-
putational time, study their theoretical properties and
apply them in the solution of real problems.

https://doi.org/10.1109/ICMLA.2007.70
https://doi.org/10.1109/ICMLA.2007.70
https://doi.org/10.1007/s10462-005-9009-3
https://doi.org/10.1007/11844297_102
https://doi.org/10.1007/11844297_102
https://doi.org/10.1007/s10489-010-0260-1
https://doi.org/10.1007/s10489-010-0260-1
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0215
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0215
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0215
https://doi.org/10.1109/SFCS.1994.365742
https://doi.org/10.1016/j.csda.2013.03.016
https://doi.org/10.1016/j.csda.2013.03.016
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0230
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0235
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0235
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0240
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0240
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0240
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0245
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0245
https://doi.org/10.1093/comjnl/bxq003
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0265
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0265
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0265
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0265
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0270
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0275
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0275
http://refhub.elsevier.com/S0925-2312(21)01204-2/h0275

	Evolving Gaussian process kernels from elementary mathematical expressions for time series extrapolation
	1 Introduction
	2 Gaussian process regression
	2.1 Kernel function
	2.2 Standard kernel functions
	2.3 Model selection
	2.4 Kernel composition

	3 Gaussian Process kernel representation as elementary mathematical expression trees
	4 Evolving kernel functions based on the new grammar
	4.1 Initial population
	4.1.1 Random kernel generation
	4.1.2 Dealing with non-PSD kernels

	4.2 Variation operators for kernel generation
	4.2.1 Crossover
	4.2.2 Mutation
	4.2.3 Bloat control

	4.3 Evaluation
	4.3.1 Hyperparameter optimization algorithm
	4.3.2 Random restarts and hyperparameter inheritance

	4.4 Selection

	5 Related work
	6 Experiments
	6.1 Time series extrapolation problems
	6.2 Alternative search methods
	6.2.1 Random Search algorithm
	6.2.2 GoWithTheFirst algorithm

	6.3 Experimental setup
	6.4 Metric comparison for hyperparameter optimization
	6.5 Testing the proposed grammar
	6.6 Time series extrapolation benchmark
	6.7 Comparing our proposal to ad hoc kernel approaches

	7 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References

