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Anomalous response variability in a balanced
cortical network model
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Abstract

We use mean -eld theory to study the response properties of a simple randomly connected
model cortical network of leaky integrate-and--re neurons with balanced excitation and inhibition.
The formulation permits arbitrary temporal variation of the input to the network and takes exact
account of temporal -ring correlations. We -nd that neuronal -ring statistics depend sensitively
on the -ring threshold. In particular, spike count variances can be either signi-cantly greater than
or signi-cantly less than those for a Poisson process. These -ndings may help in understanding
the variability observed experimentally in cortical neuronal responses.
Published by Elsevier Science B.V.

PACS: 87.18.Sn; 87.19.La; 87.80.Vt

Keywords: Response variability; Cortical dynamics; Asynchronous -ring

1. Introduction

Cortical neuronal responses often exhibit a puzzling variability (see, e.g. [4]): spike
count distributions obtained for repeated presentations of a stimulus are frequently
broader than Poisson distributions with the same mean counts. In this paper we study
the statistics of neuronal responses in a simple model network with balanced excitation
and inhibition and -nd that they also show large variability.
To study the responses in our model, we utilize mean -eld theory, which is ex-

act in the limit of a large network with homogeneous connection probabilities [7].
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The mean -eld theory of balanced cortical networks has been studied by a num-
ber of authors [1,2,8,6], but generally in or near steady -ring states and assuming
that the self-consistent current input is uncorrelated. Here, like Ref. [7], we con-
sider time-dependent external drive (as in an experimental trial) and color the noise
correctly.

2. The model

For these exploratory investigations, we use a network of N mutually inhibitory
neurons with a 10% connection probability. This is probably the simplest model for
which one can achieve balanced asynchronous activity. The nonzero connections are
of equal strength, and the synaptic currents are assumed to act instantaneously, i.e.,
each presynaptic spike depresses the postsynaptic potential discontinously by a -xed
amount. We do not include transmission delays.
We -nd it convenient to scale variables in the way used by van Vreeswijk and

Sompolinsky [8]: When the mean number of neurons presynaptic to a given one is
K�1, each synaptic strength is given a value J=

√
K and the average synaptic current

scales like
√
K . It is inhibitory and is counterbalanced by an external excitatory current

which is also proportional to
√
K . The Euctuations in the synaptic current are smaller

than the mean by a factor of order 1=
√
K , i.e., of order 1. In steady state, the two

currents nearly cancel, leaving a net current of order 1. If the steady--ring state is
stable, disturbances of the rates relax very rapidly, in a time of order 1=

√
K .

The (subthreshold) membrane potentials of leaky integrate-and--re neurons are
described by

u̇ i(t) =−1
	
ui +

√
KI 0i (t)−

J√
K

∑

k; s

cij�(t − tsj); (1)

where 	 is their (common) membrane time constant, I 0i (t) is the excitatory external
input current felt by neuron i, cij is 1 or 0 according to whether there is a connection
from neuron j to neuron i, and tsj is the sth spike time of neuron j. The external
input I 0i (t) represents input from elsewhere in the brain (e.g., the preceding stage in a
sensory pathway), and as such is noisy itself. However, as the recurrent connections
in the randomly diluted network generate dynamical noise on their own, this extrinsic
noise does not have a big qualitative eIect, so we take I 0i (t) to be constant here. We
also take it to be uniform across the population.

3. Mean �eld theory

In mean -eld theory, one studies a single neuron for which the recurrent synaptic
current (the last term in (1)) is replaced by a self-consistent Gaussian current with
self-consistent mean and variance. It is Gaussian because of the central limit theorem:
it is the sum of a large number of (what can be proved to be) independent contributions
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from the other neurons. Explicitly, the subthreshold membrane potential of this single
neuron obeys

u̇=−1
	
ui +

√
K[I 0 + I 1(t)]: (2)

Whenever u reaches a threshold �, it -res a spike and u is reset to zero. The eIective
recurrent current I 1(t) has a mean 〈I 1(t)〉 = −Jr(t) proportional to the instantaneous
-ring rate r(t) of the neuron and a covariance

〈�I 1(t)�I 1(t′)〉= J 2(1− K=N )
K

C(t; t′); (3)

where C(t; t′)=〈[S(t)−r(t)][S(t′)−r(t′)]〉 is the autocorrelation function of the neuronal
-ring S(t) =

∑
s �(t − ts). The K in the denominator in (3) comes from the aver-

aging over K independent inputs, and the 1 − K=N in the numerator is a correction
for -nite connection concentration K=N . It can be derived using the methods
of Ref. [5].
This model cannot be solved exactly analytically, but it is simple to solve numer-

ically, using the method -rst introduced for spin glasses by Eisfeller and Opper [3].
We start with a guess at the form of the mean and covariance function of the random
current I 1(t) and run a series of “trials”, in each of which we integrate (2) for an
independent realization of I 1(t). By averaging the output of the neuron over the trials,
we get an estimate of r(t) and C(t; t′), which is used to generate new examples of
I 1(t) for another set of trials. This loop is then iterated until the statistics converge to
self-consistency. In our calculations here, we used 10 000 trials per iteration and up to
30 iterations.
Each trial was 100 integration steps (which we call “milliseconds”) long. We chose

parameters K =500, N =5000, and 	=10 ms. The external excitatory input I 0(t) was
constant at a low value (evoking a background -ring rate of 3 Hz) during the -rst and
last 10 ms. In the middle 80 ms, an additional “stimulus” input, which peaked about
15 ms after onset, was added. It typically evoked about 4–5 spikes, with peak rates
around 100 Hz. The spike count distributions, PSTHs and covariance functions were
computed for a number of values of the -ring threshold �.

4. Results

For all cases studied, the relaxation of the network to its state of balanced excitation
and inhibition was very rapid, as expected, so the response tracked the time course of
the excitatory external input closely. The overall response strengths vary only weakly
with threshold: a factor of 16 diIerence between the smallest and largest threshold
values produced only an 18% diIerence in mean response. This is because the increased
-ring that would be produced by lowering the threshold is largely compensated by the
comcomitant increase in inhibition.
However, varying the threshold had a strong eIect on the irregularity of the -ring.

Fig. 1 shows the spike count distributions for three threshold values with ratio 1:4:16.
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Fig. 1. Count statistics for threshold 0:125(+); 0:5(×) and 2:0(∗). The solid line shows the good -t to a
Poisson distribution for the mean spike count (5.1574) obtained for threshold 0.5.

While the intermediate value -ts a Poisson distribution well, the low threshold leads
to an anomalously broad distribution (Fano factor (variance/mean ratio) F = 2:3) and
the high one to an anomalously narrow one (F = 0:25).
These diIerences are also evident in the autocorrelation function C(t; t′). Fig. 2

shows C(t′; t) as a function of t for a -xed value of t′ for the same three threshold
values as in the preceding -gure. For the lowest threshold, there is a “hill” centered
around t = t′, while for the highest there is a valley. These are indicative of spike
“bunching” and “antibunching”, respectively, leading naturally to the higher and lower
spike count Euctuations seen in Fig. 1. The intermediate threshold value shows very
little correlation (apart from the delta-function peak at t= t′), consistent with the nearly
Poisson count distribution found in this case.

5. Discussion

Measured Fano factors in visual and IT cortex [4] vary over a range at least as large
as the one-order-of-magnitude diIerence between those for the smallest and largest
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Fig. 2. Autocorrelation functions C(30; t) for thresholds 0.125 (solid), 0.5 (longer dashes) and 2.0 (shorter
dashes).

thresholds described above. Of course, threshold diIerences are not the only possi-
ble source of such response variability. We have also explored the eIects of varying
synaptic strengths, with similar results, and it seems likely that diIerences in a wide
variety of single-neuron properties can have the same kind of eIect.
Neurons in a local cortical network cannot all be expected to have the same threshold,

and furthermore, their thresholds (or other parameters) may Euctuate (uncontrollably)
from trial to trial. We have also found large variations in the Fano factor in a model
where these Euctuations are assumed independent for diIerent neurons and in diIerent
trials.
All these results are only suggestive, and more systematic work, both experiments

and modeling, is called for. However, they do point to the possibility that the observed
response variability of cortical neurons may be accounted for in terms of natural vari-
ations in properties from neuron to neuron and trial to trial.
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