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isdom of groups (or wisdom of crowds) is the
iduals rather than that of a single expert.
a b s t r a c t

The minority game is a simple game theory model for describing the collective behavior of agents in an
idealized situation where they compete for some finite resources. In this paper, we assume that collective
behavior is generated by the aggregation of independent actions of agents and the action follows the
minority game. A probabilistic machine learning model is proposed to model the generative process of

most likely parameters use the trained system to make predictions. This model can be regarded as a new
learning paradigm of analyzing collective data by decomposing the generative process into independent
micro-level games. To demonstrate the effectiveness of the model, we conduct experiments on an
artificial data set and the real-world data. A set of selected stock indices are tested to capture their rises
and falls in the market.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Collective intelligence is a shared or group intelligence that
emerges from the interactions (both cooperative and competitive)
of individual agents and appears in consensus decision making. The
collective behavior of systems of many interacting degrees of free-
dom has been studied intensively in physics [23,22] and different
tools are applied in the study of emergence of the collective beha-
vior from interacting agents in economics and sociology [3]. Multi-
agent models are one of the most used approaches where each
individual agent is self-interested and follows its own rules. Pre-
valence of cooperation in groups of selfish agents seems to be
contradictory to the basic premise of natural selection. Evolutionary
game theory provides theoretical framework to address this pro-
blem. For example, Szolnoki et al. [29] find that wisdom of groups1

could promote cooperation in evolutionary social dilemmas. Nowak
[21] summarizes five rules of the evolution of cooperation and even
puts natural cooperation as the third fundamental principle of
evolution beside mutation and natural selection. Most related
research in evolutionary games is focused on the evolution of the
system dynamics [23]. For example, the prisoner's dilemma (PD)
awar@ust.hk (F. Khawar),

collective opinion of a group
game in particular is considered a classical paradigm of cooperation
vs defection [20]. Many variants have been proposed by considering
the PD game in different spatial structures including ordered net-
works [30], scale-free networks [16] and small-world networks [13].
A comprehensive review is available in [23]. In this research, we
turn our focus on the prediction power of the agent-based system
by decomposing the collective behavior into micro-level actions of
agents by reconstructing the generative process of collective
behavior using a probabilistic graphical model [14].

Multi-agent models are widely used to investigate how coop-
erative behavior emerges in different research areas including
psychology [27], micro-economics [10,28], financial market mod-
eling [11,12] and market mechanism designs [24,25]. In agent-
based modeling, the involving agents are with similar capability
and compete for a limited resource. Yet, the predictive power of
such systems is rather limited: the mapping from the collective
behavior to agents' individual actions is a one-to-many. Informa-
tion is lost in the process of aggregation from individual behavior
of many to one macro-level behavior. In order to overcome this
problem, Qin et al. [26] assume that the agents are homogeneous
with some representative behavior controlled by strategies. By
tuning the strategy parameters at agent level, we can find that
which strategy may yield the most likely macro-level behavior.

If we assume that every agent in the market knows the history
data, the key problem is to how to decide to act based on this
global information. These agents may share global information
and learn from past experience. In this research, we assume that
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agents act based on a simple game that is referred to as the min-
ority game. Proposed by Challet and Zhang [4], the minority game
(MG) is a simplified version of the El-Farol Bar [1] problem: In the
minority game, each odd number of players must choose one of
the two choices independently at each turn, the players who end
up in the minority side win the game. In the minority game, every
agent is assigned with strategy which the agent uses to make
choice based on perceived global information (collective behavior)
[7]. Heterogeneity is important as it is unrealistic that all agents
follow the same deterministic strategy [15].

In previous works [18,26], collective behavior is assumed to be
generated by groups of agents with the same strategies. The
Genetic Algorithm (GA) is used to optimize the agent behavior
parameters in order to get the most likely guess of the collective
behavior. Also, different games can be used to model the indivi-
dual behavior. More accurate a model is for individual behavior,
more likely collective behavior we can obtain from their aggre-
gation [8]. In this paper, we propose a novel generative graphical
model for modeling the process of generation of the collective
behavior from the individual behavior. We use the new model to
infer the behavior of individual agents from the available global
information. The trained system can be used to predict the future
collective behavior. The main contributions of this paper are the
following: (1) By studying the relationship between collective
behavior and its decomposed agent behavior that can be modeled
by the minority game, we propose a new framework for data
mining. (2) A graphical model is proposed to model the generative
process of the collective data from a group of individual actions.
Based on this model, we can infer the individual strategies and
predict future collective behavior. (3) We apply this framework to
practical time-series data mining tasks including FX rate and stock
index prediction. The experimental results demonstrate the
effectiveness of the new proposed model.

This paper is organized as follows: Section 2 introduces the
minority game and how to use it to model agent behavior. In
Section 3, we propose a graphical model for collective behavior
learning. Inference and prediction of the model is given in Section 4.
Section 5 gives experimental results on artificial data as well as the
real market data. Finally, conclusions and future work are given in
Section 6.
2 For the mathematical convenience, γð�Þ actually gives the output value by
adding 1 to the corresponding decimal number of the binary memory.

3 Beta distribution can be regarded as a special case of Dirichlet distribution. If
the game is with more than NðNZ3Þ choices, we then need to use N-dim Dirichlet
distribution as the prior.
2. Behavior modeling using the minority game

The minority game (MG) was originated from the El Farol Bar
problem and was formulated to analyze decision-making [1]. In
each round of the game, there are an odd number of players and
each one must independently choose one of the two choices, the
players who end up on the minority side are winners. The choice
of the minority players is referred to as the winning choice. There
is no prior communication among players and we assume that the
only global information available is the number of players of two
choices from the previous rounds.

Let us first introduce the notations and terminology used in
this paper:

Agent: A player of the game is referred to as an agent and it is
the entity that makes decisions based on its strategy. The number
of agents that participate in the game is denoted by N, which
should be an odd number. An agent is indexed by an integer A:
AAf1;2;…;Ng.

Choice: An action made by an agent: a choice C has two possible
values: CAf0;1g. The total number of choices equals to N in each
round of the game.

Game: In a minority game, choices are represented by a vector
of N elements of binary values ½C1;C2;…;CN� where CiA 0;1f g the
ith agent's choice in this game. The total number of games is
denoted by G.

Minority choice: In every game, the choice of the agents is on
the minority side. Formally, let t denote the current game,
tAf1;2;…;G}, then the minority choice in game t is redefined by:

rðtÞ ¼ 0 If
XN
n ¼ 1

CnðtÞ4
N
2

1 Otherwise

8><
>: ð1Þ

Memory and history: In the minority game, we assume that the
agent's actions are governed by its strategy and minority choices of
previous rounds of the game. An agent with m-bit memory means
that the agent will take the information (minority choices) of the
previous m rounds into account for making its current decision.
The minority choices of the last m rounds at time t can be sim-
plified to the history:

HðtÞ ¼ γð½rðt�mÞ;…; rðt�2Þ; rðt�1Þ�Þ ð2Þ
where γð�Þ converts a binary vector into a decimal number2 for
representational convenience. HAf1;2;3;…;Kg and K ¼ 2m, where
K is the maximum number of all possible histories.

Strategy: An agent's strategy can be represented by a set of
rules, a lookup table or a function, which takes the histories as
input and output an action of the agent (i.e., make a choice) [4–6].
A strategy, denoted by S, can be regarded as a particular set of
choices on all the permutations on previous history of minority
choices. Therefore, there are 22m

possible strategies in the strategy
space and we assume that at one time each agent has exactly one
strategy. For example, Table 1 shows the 3-bit memory, history
and a sample strategy. Considering an agent employing the strat-
egy S, when given memory is ð101Þ2 (with corresponding history
6), the agent will definitely choose the side of 0.

Probabilistic strategy: As we can see from the above example, the
strategy can be represented by a lookup table and deterministic. It is
not a true assumption when considering the real-world choice
making. In this research, we first propose the probabilistic strategy
(PS), which maps the history to a probability distribution over the
two choices instead of one choice only. Therefore, a PS is a set of
distributions (one distribution for each given history) from which
the agent's choice can be sampled. We can use a Bernoulli dis-
tribution PBð�Þ for choosing from two choices. The bottom row of
Table 1 shows a sample of probabilistic strategy, where PBðαÞ gives
the probability of choosing 0, and of course, the probability of
choosing 1 is 1�PBðαÞ.

The advantage of using probabilistic strategy is that we are able
to incorporate uncertainty in the learning process by placing a
prior over choices. Based on the observations at each round of the
game, we can update the posterior in order to estimate the
probabilistic strategy. In the case of the minority game where we
have only two possible choices, therefore, we can use the Beta
distribution3 as the prior.
3. Graphical model for collective behavior learning

Previous works [8,15,18] show that collective behavior can be
decomposed into the aggregation of individual agents' actions and
each agent has its own deterministic strategy. However, in the
real-world, there is always uncertainty in decision making. It is



Table 1
A sample of strategy (S) and probabilistic strategy (PS) associated with 3-bit memory and the corresponding history (H).

Memory ð000Þ2 ð001Þ2 ð010Þ2 ð011Þ2 ð100Þ2 ð101Þ2 ð110Þ2 ð111Þ2
History (H) 1 2 3 4 5 6 7 8
Strategy (S) 1 0 1 1 0 0 0 1
PS PBð0:1Þ PBð0:8Þ PBð0:3Þ PBð0:1Þ PBð0:6Þ PBð0:8Þ PBð0:6Þ PBð0:3Þ

Fig. 1. Graphical model for collective behavior decomposition using the minority
games. Shaded random variable C and H can be observed while all others are latent
variables.
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hardly feasible for agents to follow deterministic strategies. In this
paper, we assume that the collective behavior is generated by
agents with probabilistic strategies.

Probabilistic graphical models (or simply graphical models) [2]
have the capability to deal with uncertainty by incorporating prior
beliefs about the domain and updating these beliefs as new evidence
is obtained. Using graphical models we can construct richly struc-
tured models to understand hidden relations. In this research, we
use a graphical model to describe the generative process of the
collective behavior. The task of the graphical model is two-fold:
(1) to decompose the collective behavior by inferring individual
agent behaviors; (2) to use these learned individual behaviors to
predict the future collective behavior.

3.1. Generative process

In this model, the minority choice and history are observed,
while agent index, choice distribution and agent distribution are
unobserved. As shown in Fig. 1, where the rectangular “plates”
denote replication and the number at bottom right of the box is
the times of replications. The generative process in the bigger plate
at bottom is replicated N times, therefore for each of the N choices
we will sample an agent distribution, agent index and a choice
from the choice distribution, corresponding to the observed his-
tory. The smaller plate above represents repeated sampling of
choice distribution for every agent given on all possible histories.

We start by choosing a probabilistic strategy from a Dirichlet
prior. Given the probabilistic strategy and the current history, we
can choose a particular distribution, from which we can sample a
choice. The agent who is chosen to make this choice is sampled
based on an agent distribution. This is repeated N times to gen-
erate all the choices of a game.

� For each agent with a given history:
○ Choose the choice distribution from a Dirichlet prior:
ϕn;k �Dir2 β

� �
.

� Observe the history H for the current game.
� For each choice:
○ Choose the agent distribution from a Dirichlet prior:
ψn �DirNðαÞ.

○ Choose an agent index An �MultðψnÞ, AnAf1;…;Ng.
○ Sample a choice from the choice distribution given the agent

index and history, i.e. Cn � BernoulliðϕAn ;HÞ, CnAf0;1g.

where Multð�Þ denotes a discrete multinomial distribution. We use
the concentration parameters α and β to parameterize the sym-
metric prior Dirichlet distributions.

The choice distribution ϕn;k is a probability distribution on two
possible choices for agent nAf1;2;…;Ng given history
kAf1;2;…;Kg. For a single agent n, the set of choice distributions
fϕn;1;ϕn;2;…;ϕn;Kg is just the probabilistic strategy of agent n. Each
ϕn;k is sampled from a sparse symmetric Dirichlet (Beta) distribution
parameterized by β. Given that the history is 1 and the current
choice in the game is made by agent 2 (agent index A¼2), ϕ1;2 is
used to represent the probability distribution of choosing 1 or 0. The
distribution ψn;nAf1;2;…;Ng, is the agent distribution for each
choice Cn and it is an N-dimensional random variable where each
component of the vector gives the probability of selecting the agent
index associated with that component. This agent distribution is
sampled from another Dirichlet distribution parameterized by α.
Generally, for each choice Cn made in a game we have the same
history H and a different agent distribution ψn so that the same
agent is not selected for making every choice in the game.

ψu jHðtÞaψ v jHðtÞ where u; vAf1;2;…;Ng
Also the nth choice of another game with a different history will
have a different agent distribution since the agent distribution
depends on the history:

ψn jHðt�1Þaψn jHðtÞ where Hðt�1ÞaHðtÞ
Similar to choice distribution, we save all the agent distributions

in a 2-dimensional array of vector elements where the rows corre-
spond to the order of the choice in the game that is to be made i.e.
the 1st, 2nd,…, Nth choice and the columns correspond to the his-
tory. Since every game will have the same history, one column of
this array will contain all the agent distributions for that game.

It is worth mentioning that the choices Cn are unordered
choices. If the actual choices made by the N¼5 agents were ½1;0;
1;0;0� in one game and ½0;1;1;0;0� in the other, then in both cases
the Cn would be ½0;0;0;1;1�. This is because we want to use our
model to decompose the collective behavior that only provides
global information of how many agents made a particular choice,
but we do not care not exactly which individual made that choice.
Once we have the information of how many agents made the
choice, it is enough to construct the model.

3.2. Joint distribution of the model

The new model we discussed above is a generative graphical
model which explores the relationship between micro-level
actions and macro-level behavior. The dependency relation can
be clearly seen from Fig. 1, therefore, the joint distribution of the
new model is as follows:

pðψ ;A;ϕ;C;HÞ ¼ pðψ1:N ;A1:N ;ϕ1:N;1:K ;C1:N ;H jα;βÞ

¼ ∏
N

i ¼ 1
∏
K

k ¼ 1
pðϕi;k jβÞpðHÞ

� ∏
N

n ¼ 1
pðψn jαÞpðAn jψnÞpðCn jAn;ϕ1:N;1:K ;HÞ

� �
ð3Þ



P
1:

2:
3:
4:
5:
6:

Table 2
Experiment results on an artificial dataset: the training data is generated by giving deterministic strategies, the learnt probabilistic strategies using the new graphical model
are right under its corresponding deterministic strategies.

Agent Strategy Memory/History

(000)2 (001)2 (010)2 (011)2 (100)2 (101)2 (110)2 (111)2
1 2 3 4 5 6 7 8

1 Original 0 0 1 0 1 1 0 0
Learned PBð0:92Þ PBð0:93Þ PBð0:07Þ PBð0:92Þ PBð0:08Þ PBð0:07Þ PBð0:95Þ PBð0:95Þ

2 Original 0 0 0 1 0 0 1 1
Learned PBð0:91Þ PBð0:93Þ PBð0:93Þ PBð0:08Þ PBð0:92Þ PBð0:92Þ PBð0:05Þ PBð0:05Þ

3 Original 1 1 0 1 0 1 0 0
Learned PBð0:09Þ PBð0:07Þ PBð0:93Þ PBð0:08Þ PBð0:92Þ PBð0:07Þ PBð0:95Þ PBð0:94Þ

4 Original 1 1 1 0 1 0 0 1
Learned PBð0:08Þ PBð0:07Þ PBð0:07Þ PBð0:46Þ PBð0:08Þ PBð0:71Þ PBð0:67Þ PBð0:06Þ

5 Original Rand. Rand. Rand. Rand. Rand. Rand. Rand. Rand.
Learned PBð0:41Þ PBð0:50Þ PBð0:60Þ PBð0:92Þ PBð0:50Þ PBð0:93Þ PBð0:95Þ PBð0:49Þ

Table 3
Equivalent strategies: table shows strategies of 6 agents and each group of three
agents results in the same minority choice.

Agent Index A History H

(00)2 (01)2 (10)2 (11)2
1 2 3 4

1 0 0 1 0
2 0 1 0 0
3 1 0 0 0
Minority Choice r 1 1 1 1
4 1 1 0 0
5 0 0 0 0
6 0 0 1 0
Minority Choice r 1 1 1 1
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where ϕ1:N;1:K denotes the set of choice distributions

fϕn;k j0onrN ;0okrKg
This is to say that the probability of choose Cn is evaluated by the
probabilistic strategy of An given the observed history H:

pðCn jAn;ϕ1:N;1:K ;HÞ ¼ϕAn ;H ð4Þ
Notice that since H is observable and does not depend on other

variables, it is deterministic and p(H) can be omitted from Eq. (4).
We can also see that once choices are observed the agent dis-
tributions ψn;H and choice distributions ϕn;k are conditionally
dependent according to d-separation.
7:
8:
9:

10:

11:
12:

13:
4. Model inference and prediction

In generative probabilistic modeling, we treat the data as arising
from a generative process that includes hidden and observed vari-
ables. This generative process defines a joint probability distribution
over both the observed and latent random variables. We perform data
analysis by using the joint distribution to compute the conditional
distribution of the latent variables. Our goal is to infer the individual
behaviors, then use these individual behaviors to predict the choices
for the next game and calculate our accuracy of prediction.

4.1. Decomposition of collective behavior

The decomposition of collective behavior can be done by inferring
the posterior distribution of the hidden variables. The choices and
the history are the macro-level (collective) behavior and the post-
erior of the agent distributions pðψ1:N jC1:N ;HÞ and choice
distributions pðϕ1:N;1:K jC1:N ;HÞ are the micro-level (agent) behavior.
Here the notation ψ1:N denotes the set of distributions
{ψn j0onrNg ¼ fψ1;ψ2;…;ψNg. The posterior distribution can be
written as:

pðψ1:N ;A1:N ;ϕ1:N;1:K jC1:N ;H;α;βÞ ¼
pðψ1:N ;A1:N ;ϕ1:N;1:K ;C1:N ;Hjα;βÞ

pðC1:N jα;βÞ
ð5Þ

where the numerator of Eq. (5) is defined in Eq. (3). In order to
normalize this posterior distribution we need to marginalize over the
latent variables to give the denominator as shown below:

pðC1:N jα;βÞ ¼ ∏
N

i ¼ 1
∏
K

k ¼ 1

Z
∏
N

n ¼ 1

Z
pðψn jαÞ

�
X
An

pðAn jψnÞpðCn jAn;ϕ1:N;1:K ;HÞ dψnpðϕi;k jβÞ dϕi;k

ð6Þ

Algorithm 1. Model inference and prediction.
arameters: α, β, Number of agents N, Number of games G
Construct a Bayesian inference engine E using Variational
Message Passing in Infer.Net
for t ¼ 1-G do
if t ¼ 1 then
Assign symmetric Dirichlet priors as in Eq. (7)

else
Assign posterior distributions from the last game as the

current prior distribution as in Eq. (8)
end if
Observe choices C1:NðtÞ and history H(t) and input them to E.
Execute E and calculate the posterior agent and choice
distributions.
Given the posteriors of step-9 and Hðtþ1Þ, execute E to

infer predicted choice distributions of Eq. (9)
To get PC1:Nðtþ1Þ, sample from the distributions in Eq. (9)
Predict the minority choice of the next game r̂ðtþ1Þ from

Eq. (11)
Calculate the prediction accuracy from Eq. (12)

end for
14:

Posterior inference can be done using approximate message
passing algorithm [14], specifically we use the Variational Message
Passing (VMP) algorithm [31] in the Infer.Net [19] package. VMP is
deterministic approximate inference algorithm that is guaranteed
to converge to some solutions and it works by using only local



Fig. 2. Prediction accuracy on artificially generated data with random agents. Left-hand side (random collective behavior): the number of agents making choice-1 in 1000
runs of fixed strategy minority games. Right-hand side: the accuracy of the prediction in percentage (%).

Fig. 3. Prediction accuracy on artificially generated data with adaptive and random agents. Left-hand side (random collective behavior): the number of agents making
choice-1 in 1000 runs of fixed strategy minority games. Right-hand side: the accuracy of the prediction in percentage (%).
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message passing operations. The inference algorithm is outlined
in Algorithm 1.

We start by constructing a Bayesian inference engine E using
Variational Message Passing in Infer.Net. For the first game, we
start by assigning symmetric Dirichlet priors to agent distribution
and choice distribution:

ψ1:Nð1Þ �DirNðαÞ
ϕ1:N;1:K ð1Þ �Dir2ðβÞ ð7Þ

Otherwise, for subsequent games we start by assigning the pos-
terior distributions from the last game as the current prior:

pðψ1:NðtÞÞ ¼ pðψ1:Nðt�1ÞjC1:Nðt�1Þ;Hðt�1ÞÞ
pðϕ1:N;1:K ðtÞÞ ¼ pðϕ1:N;1:K ðt�1ÞjC1:Nðt�1Þ;Hðt�1ÞÞ ð8Þ

where C1:Nðt�1Þ are the observed choices and Hðt�1Þ is the
observed history of the previous game t�1, pðψ1:NðtÞÞ and pð
ϕ1:N;1:K ðtÞÞ are the priors for the current game t, pðψ1:Nðt�1ÞjC1:N

ðt�1Þ;Hðt�1ÞÞ and pðϕ1:N;1:K ðt�1ÞjC1:Nðt�1Þ;Hðt�1ÞÞ are the
posteriors from the last game. After assigning the priors we
observe the collective data for the current game i.e. choices C1:NðtÞ
and history H(t). This collective data can be thought of as an input
to the model. Then approximate inference is performed using VMP
and Infer.Net by executing the inference engine E to infer the local
behavior which is the posterior of the choice distribution pðϕ1:N;1:K
ðtÞjC1:NðtÞ;HðtÞÞ and the agent distribution pðψ1:NðtÞjC1:NðtÞ;HðtÞÞ.

4.2. Prediction

Once we have obtained the local behavior we can use this local
behavior to predict the collective behavior of the subsequent
games. Given the inferred posteriors of agent and choice dis-
tribution and history of next game Hðtþ1Þ, we execute the engine
E to infer Bernoulli distributions of the predicted choices (PC) of the
next game which are defined by:

p PC1:Nðtþ1Þjψ1:NðtÞ;A1:Nðtþ1Þ;ϕ1:N;1:K ðtÞ;
�

Hðtþ1ÞÞ � BernoulliðϕA1:N ðtþ1Þ;Hðtþ1ÞÞ ð9Þ

where PC1:Nðtþ1Þ are the predicted choices of the next game. To
get the predicted choices of the next game we sample from the
inferred predicted choice distributions of Eq. (9), therefore:

PC1:Nðtþ1Þ � BernoulliðϕA1:N ðtþ1Þ;Hðtþ1ÞÞ ð10Þ



P

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:

0 500 1000 1500 2000 2500 3000 3500 4000 4500
−15

−10

−5

0

5

10

15

Traiding Days/Games

D
iff

er
en

ce
 b

et
w

ee
n 

op
en

in
g 

an
d 

cl
os

in
g 

pr
ic

e

Fig. 4. Price differences between opening and closing prices within a trading day
on NOK.
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Fig. 5. Normalized price differences between opening and closing prices.
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Fig. 6. Estimated numbers of agents making choice 1 in the minority game mod-
eling on the NOK dataset.
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where PC1:Nðtþ1ÞAf0;1g. Using these predicted choices we obtain
the predicted minority choice of the next game r̂ðtþ1Þ defined as:

r̂ðtþ1Þ ¼ 0 If
XN
n ¼ 1

PCnðtþ1Þ4N
2

1 Otherwise

8><
>: ð11Þ

We can then use this predicted minority choice to calculate the
prediction accuracy Acc(t) after observing game t, which is defined
as:

AccðtÞ ¼ # r̂ðtþ1Þ ¼ rðtþ1Þ� �
# r̂ðtþ1Þ ¼ rðtþ1Þ� �þ# r̂ðtþ1Þarðtþ1Þ� � ð12Þ

where the #ð�Þ is an incremental counter, initialized with 0 at t ¼ 1,
that increments by 1 each time its argument ð�Þ is true. In other
words, Acc(t) is the number of times the correct prediction of the
minority choice is made divided by the total number of games
given the data of all the previous games.
5. Experimental Studies

In this section we conduct two experiments to test perfor-
mance of the new proposed model, one experiment is on an
artificial data and the other one is on the real-world financial data.
Specifically, we use the model to predict the trend of rises and falls
of a stock in market. In our experiments, α¼ 0:009, β¼ 1 to ensure
uniform symmetric Dirichlet distribution. The reason for choosing
α⪡1 is that it makes the agent distribution sparse and we can
select only one agent to make that choice. Also for all subsequent
experiments we have set m¼4 and therefore we have used a 4-bit
history and K¼16.

5.1. Experiments with artificial data

To test the validity of our model we first conduct experiments
on artificial datasets which are generated according to predefined
parameters for the minority game and we can use our model to
learn the individual behavior and then make predictions. The
artificial data is generated by Algorithm 2. It basically simulates
how the collective data is generated by aggregation of agent
behavior.

Algorithm 2. Artificial data generation with random agents.
arameters: Number of agents N, Number of games G,
Number of random agents R, History size K, Current history
H, Counter C.
for n¼ 1-N do
Randomly generate a deterministic strategy for each agent.

end for
for t ¼ 1-G do
for n¼ 1-N do
if n4N�R then
Make a random choice.

else
Make a choice based on Agent n's strategy given H.
end if
If agent n made choice-1 then increment counter C.

end for
if C4N=2 then
Minority choice is 0 and update H.

else
Minority choice is 1 and update H.

end if
end for
18:

We assume that there are two kinds of agents in the system:
The first kind are the agents with strategy (we call them strategic
agents in order to differentiate them from other types of agents),
they make choices governed by its strategy given the observed
history. The second kind are random agents who follow no strategy
at all, they make random decision and that is also why we give
them that name. In this experiment, the random agents make
choice from a uniform distribution. The presence of random agents
is a realistic assumption, because in the real-world, there are
always certain unknown factors that make some people take



Table 4
Descriptions of datasets and corresponding prediction accuracy using our model.

Dataset (Index) Start Date Acc. t¼800 Acc. t¼1000 τ

1. Adidas AG (ADS.DE) 01/03/2000 53.51 53.51 4.00
2. Agilent Technologies Inc (A) 11/10/2003 54.05 54.24 1.50
3. Apple Inc (AAPL) 08/27/1986 56.22 55.52 1.50
4. AT&T Inc(T) 06/30/1988 54.35 53.59 2.50
5. BT Group plc (BT) 04/05/1991 56.86 55.06 1.50
6. General Electric Company (GE) 01/02/1997 53.75 53.05 1.50
7. Google Inc. (GOOG) 05/22/2009 49.46 50.54 0.25
8. Hollywood Media Corp. (HOLL) 04/18/2000 56.22 55.58 2.50
9. Intel Corporation (INTC) 07/09/1986 54.95 56.33 1.00
10. McDonald's Corp. (MCD) 09/27/1991 53.08 55.26 2.00
11. Mercer International Inc. (MERC) 01/07/1991 62.11 59.04 5.00
12. Microsoft Corporation (MSFT) 03/13/1986 51.14 52.73 1.00
13. Nike Inc. (NKE) 06/22/2007 51.91 52.77 1.50
14. Oracle Corporation (ORCL) 07/06/1990 53.48 53.09 1.00
15. Pepsico Inc. (PEP) 10/09/2001 54.52 53.49 3.00
16. The Boeing Company (BA) 01/02/1962 54.25 52.93 1.50
17. The Walt Disney Company (DIS) 04/29/1986 55.15 53.55 15.5
18. Toyota Motor Corporation (TM) 04/13/1993 69.30 67.39 4.00
19. Wal-Mart Stores Inc. (WMT) 08/25/1987 55.85 56.49 2.00
20. Forest Laboratories Inc. (FRX) 04/19/1988 56.45 55.56 1.50
21. Nokia Corporation (NOK) 04/25/1995 51.67 52.91 1.00
22. Sonic Corp. (SONC) 02/28/1991 54.78 55.44 5.00
23. CN Eastern Airlines (600115SS) 11/05/1997 52.31 51.29 8.00
24. CN Medicine & Health (600056SS) 09/16/2005 51.61 52.15 4.00
25. CN Minsheng Banking (600016SS) 12/19/2000 56.59 56.14 15.0
26. CN Television Media (600088SS) 06/16/1997 49.43 50.82 5.00
27. CN Unicom (Hong Kong) (600050SS) 10/09/2002 54.45 54.54 15.0
28. CN Yangtze Power (600900SS) 11/18/2003 52.17 52.43 20.0
29. Huaneng Power (600011SS) 12/06/2001 50.27 50.70 25.0
30. Qingdao Haier (600690SS) 01/02/2001 50.74 50.44 20.0
31. Shandong Bohui Paper (600966SS) 06/08/2004 54.52 52.29 20.0
32. SPD Bank Co., Ltd. (600000SS) 01/02/2001 51.54 51.85 35.0
33. Shenergy Company (600642SS) 01/02/2001 53.95 51.05 8.00
34. Hisense Electric (600060SS) 04/22/1997 49.10 50.52 25.0
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random decisions. Even some people's decisions are totally ran-
dom and unpredictable.4

In our experiment, there are a total of R random agents and N�R
strategic agents. We start by generating a strategy for each of the
strategic agents. These strategies were generated by sampling from a
uniform distribution over the closed integer interval of ½0;1� for every
value of history and hence the length of each strategy is equal to K.
The agent makes choice from its own strategy and the remaining R
random agents make random choices. After every agent makes its
independent choice at the end of the game, the statistics of choices-1
and 0 can be obtained, by which we can easily find which are the
minority choices and which agents are winners in this round.

5.1.1. Learning with complete information and fixed strategies
In this experiment, we assume that the complete information

of agents' actions is available, i.e., we know which agent has made
which choice. Using this information we can use the graphical
model to infer the strategies of the agents. Unordered choices of
5 agents for 100 games and the distributions ψn are input to the
graphical model, where one of the five agents is a random agent.
Table 2 shows the strategies used to generate the input data and
the corresponding strategies learned by the graphical model
(Agent 5 is the random agent).

For every agent the original strategies are represented as a choice
of either 0 or 1 for every 3-bit history and the learned strategies are
represented by a Bernoulli distribution PBðαÞ. From Table 2 we can see
4 Someone may argue that such uncertainty is due to the lack of information, it
does not really mean that this human is random and unpredictable. In our
experiments, we simply consider the agents with no predefined deterministic
strategy are random agents. We do not try to go deep into modeling their random
patterns.
that, with complete information and 20% random agents, the model
can learn the strategies with a fairly high accuracy. The only exception
is for the 4th agent, it fails to obtain a good approximation of the
original strategy given history 4 (memory ð011Þ2). It is also obvious
that there are bad results for the random agent, as no system can
perform better than 0.5 in our case.

5.1.2. Learning with partial information and fixed strategies
Learning with complete information is however unrealistic as

in practice we might only be given the choices of the agents and
the corresponding history and the information of which agent
made what choice (the distributions ψn) might not be available.
Although, in this scenario learning the strategies of agents exactly
might not be possible, we would still be able to learn strategies
that collectively give the same result. This is because the strategy
space grows exponentially with m and the mapping from the
strategy space to the minority choice r is not unique. For example
two possible equivalent groups of strategies for three agents are
shown in Table 3 and it can be seen that the choices of agents 1, 2,
3 and agents 4, 5, 6 result in the same global behavior r. Therefore,
once the minority choices {1, 1, 1, 1} are provided to the graphical
model, it can learn any of the equivalent strategies of the agents
that would result in these minority choices.

Therefore, the choices and the history of each game are
observed and the corresponding strategies are learned. In the
following experiment, we set the total number of agents as 31 and
10% of these are random agents in 1000 games. We repeat this
experiment 10 times and the average accuracy (Eq. (12)) is plotted
with error bars in Fig. 2. We can see that the prediction accuracy
can reach up to almost 86% on average after 1000 runs of the
minority game even though the global behavior seems totally
random and unpredictable.
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1.Adidas AG (ADS.DE)
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2.Agilent Technologies Inc (A)

50 100 150 200 250 300 350 400 450
40

50

60

70

80

Number of Games

P
er

ce
nt

ag
e 

A
cc

ur
ac

y

3.Apple Inc (AAPL)
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4.AT&T Inc(T)
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5.BT Group plc (BT)

Fig. 7. Experimental results on real-world stock data: averaged prediction accuracy
with standard deviation is compared to the random predictor. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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5.1.3. Learning with adaptive strategies
In the previous section, we assume that all agents keep fixed

strategies for all the time. This could be unrealistic when an agent
receives little reward with its initial strategy. Therefore, in the
following experiments, we allow some agents to change their
strategies when they fail to obtain fair rewards. This can be mea-
sured by the losing probability that indicates the percentage that
agent loses in the past games. There must exist a threshold λ for an
adaptive agent: if its losing probability is bigger than λ, it will
change its strategy by regenerating a random strategy; otherwise,
it will keep the same. We assume that only a subset of agents are
capable of changing their strategy by using feedbacks. Then, we
have a mixture of agents of being adaptive (able to re-evaluate its
strategy and change it), strategic (with fixed strategy and never
change) and random.

In the following experiments, we assume that each adaptive
agent has its own threshold sampled from the normal distribution:
λ�N ð0:6;0:12Þ. This configuration can generate heterogeneous
behavior to be more realistic to the real-world scenarios. More-
over, the strategy change can only happen after every 200 games
as this allows the model to observe sufficient data to make valid
predictions.

Fig. 3 shows the performance of the model in 1000 runs, in
which there are 31 agents with 10% random agents and 20%
adaptive agents. The averaged accuracy of 10 games is plotted
along with error bars in the right-hand side of Fig. 3. As seen from
the results, the accuracy of the prediction increases to around 80%
within the first 200 games after that the adaptive agents start to
change their strategy, and that results in a sudden drop in pre-
diction accuracy. Subsequently, after every 200 games the strate-
gies will change. Surprisingly, the model can quickly capture the
change and reach a pretty high accuracy of 70%, though it is
slightly worse comparing to the experiments with strategic
agents only.

5.2. Experiments on stock market

The minority game is related to many real-world complex
collective bahavior [4,12,17] including financial markets. On the
macro-level, the behavior of real-world market data appears ran-
dom and unpredictable, but in our experiments we assume the
collective behavior of these markets as being generated according
to the minority game and then by using the new proposed model,
we can infer local behaviors to predict possible future trends of
these market data.

5.2.1. Preprocessing of stock market data
In our experiment, we ignore the exact price change of a stock

but only care whether the stock rises or falls within a trading day.
That can be regarded as two choices in the minority game. For-
mally, for a stock market index, let the opening price of that
trading day be denoted by Po(t) and the closing price for that
trading day be denoted by Pc(t), then the stock index fluctuation
for a trading day can be encoded to the minority choices by:

rðtÞ ¼ 1 If PcðtÞZPoðtÞ
0 Otherwise

�
ð13Þ

From these minority choices we can use Eq. (2) to obtain the
history value for each game which will be observed by our gra-
phical model. For the following experiments we arbitrarily decide
N ¼ 31 because we can never know the actual number of agents in
the real market so we decide on a value that leads to fast execution
while not compromising on performance. Actually, arbitrary
choice of N is a valid assumption because for any large number of
agents it is possible to reduce their actions to lesser number group
behavior. One agent is not a trader, but it is a group of traders with
similar behaviors.

Based on the fluctuation of stock prices, we can simulate the
relative numbers of choice 1 and 0. Fig. 4 shows the price change
within a trading day on Nokia Corporation (NOK). As we can see
from the figure, the scale of price difference is drastically changed
after trading day 1500. Therefore, we need to normalize the data
in order to obtain a fair estimation of parameters. We take the
maximum of the opening price Pmax (rounded to the nearest
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11.Mercer International Inc. (MERC)
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12.Microsoft Corporation (MSFT)
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13.Nike Inc. (NKE)
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14.Oracle Corporation (ORCL)

50 100 150 200 250 300 350 400 450
40

50

60

70

80

Number of Games

P
er

ce
nt

ag
e 

A
cc

ur
ac

y

15.Pepsico Inc. (PEP)

Fig. 9. Experimental results on real-world stock data: averaged prediction accuracy
with standard deviation is compared to the random predictor. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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6.General Electric Company (GE)
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7.Google Inc. (GOOG)
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8.Hollywood Media Corp. (HOLL) 
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9.Intel Corporation (INTC)
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10.McDonald’s Corp. (MCD)

Fig. 8. Experimental results on real-world stock data: averaged prediction accuracy
with standard deviation is compared to the random predictor. (For interpretation of
the references to color in this figure caption, the reader is referred to the web
version of this paper.)
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integer) and then use Eq. (14) for normalization:

PNðtÞ ¼
Pmax

roundðPoðtÞÞ
ðPoðtÞ�PcðtÞÞ ð14Þ

where PN(t) is the normalized price differences and they are
plotted in Fig. 5. Our aim is that PN(t) can represent the number of
choice 1 (#C1) within a minority game configuration, it has to be
positive integers. We shift PN(t) and round it to the nearest integer,
#C1ðtÞ can be obtained as follows:

#C1ðtÞ ¼ roundðτnPNðtÞþυÞ ð15Þ
where τ is the scaling factor and υ is the shifting magnitude. The
shifting factor is set to N=2 in our experiments. Since we have used
N¼31, then υ¼ 15:5. #C1ðtÞ for Nokia Corporation (NOK) dataset is
shown in Fig. 6.

5.2.2. Experimental evaluation and analysis
We test our model on 34 real-world stock market data. We took

this data from both Chinese and foreign stock markets in different
industries so that we can test our model against diverse stock
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21.Nokia Corporation (NOK)
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22.Sonic Corp. (SONC)
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23.China Eastern Airlines Corporation Ltd. (600115SS)
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24.China Medicine And Health Products (600056SS)
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25.China Minsheng Banking Corp Ltd.(600016SS)

Fig. 11. Experimental results on real-world stock data: averaged prediction accu-
racy with standard deviation is compared to the random predictor. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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16.The Boeing Company (BA)
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17.The Walt Disney Company (DIS)
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18.Toyota Motor Corporation (TM)
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19.Wal−Mart Stores Inc. (WMT)
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20.Forest Laboratories Inc. (FRX)

Fig. 10. Experimental results on real-world stock data: averaged prediction accu-
racy with standard deviation is compared to the random predictor. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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indexes. We take the preprocessed choices (#C1) data of first 1000
trading days (games) for training and the remaining data for test.
All the data is downloadable from Yahoo! Finance.5 In order to get
stable and unbiased results we conducted the experiment 10 times
on each data set and then calculated the corresponding error bars
(standard deviations). Table 4 shows the details of the datasets
along with the final prediction results. The first column is the
5 http://finance.yahoo.com/
name of the dataset followed by the stock code in parenthesis and
the datasets can be searched and downloaded using these codes.
The second column shows the starting date of each dataset. The
third and the fourth columns show the prediction accuracy after
800 and 1000 games, respectively. The value of normalization
parameter τ is shown in the last column.

Figs. 7–13 show the prediction accuracy compared to the ran-
dom prediction (red-dashed curves) on each data set. Therefore, as
long as our prediction accuracy is above the random predictor,
we can think that our proposed model has learned the latent

http://finance.yahoo.com/
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31.Shandong Bohui Paper Industrial Co., Ltd. (600966SS)
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32.SPD Bank Co., Ltd. (600000S)
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33.Shenergy Company Limited (600642SS)
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34.Hisense Electric Co., Ltd. (600060SS)

Fig. 13. Experimental results on real-world stock data: averaged prediction accu-
racy with standard deviation is compared to the random predictor. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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26.China Television Media Ltd. (600088SS)
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27.China Unicom (Hong Kong) Ltd. (600050SS)
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28.China Yangtze Power Co., Ltd. (600900SS)
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29.Huaneng Power International Inc. (600011SS)
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30.Qingdao Haier Co., Ltd. (600690SS)

Fig. 12. Experimental results on real-world stock data: averaged prediction accu-
racy with standard deviation is compared to the random predictor. (For inter-
pretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)
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micro–macro relations and can predict the future trends some-
how. Given the test data, most of our results are better than ran-
dom predictions with a few exceptions. Datasets (stocks) 1–
6,8,11,13–20,22–23,25,27–29,31,33 perform much better than
random prediction. Datasets 7,12,21,32 perform slightly better
than the random prediction. Although their accuracy is higher
than random prediction, they sometimes overlap with the random
prediction. Datasets 9,10 perform less accurately than random
prediction for the first 200 games but subsequently their accuracy
increase and they perform better than random predictions. Data-
sets 26,30 and 34 perform slightly lower than random prediction
but their final accuracy is comparable to random prediction. From
Table 4 we can see that the accuracy of our model is between
50.44% and 69% depending on different datasets. These results
indicate the presence of statistical patterns within the data can be
captured by our model. However, for a minority of test data, our
model does not perform that well, but nevertheless it does not go
below the baseline accuracy of 50%. The reason for this dip in
performance can be either due to the modeling assumptions of our
graphical model or the complication of the data itself.

Du et al. [8] proposed a model called Minority Game Data
Mining (MGDM), in which the MG is also used to decompose the
collective behavior instead of inferring individual behavior from
data. Genetic algorithms were used to search for all possible
combinations of strategies that yield best results. Table 5 compares
the performance of MGDM to our model (GM-MG graphical model
based on minority game). Results of our algorithm are at least
comparable and in fact outperform the MGDM model on 5 of the
9 datasets.



Table 5
Performance comparisons to the MGDM [8] model.

Dataset name (Index) Start date MG-GM MGDM

China Eastern Airlines (600115SS) 11/05/1997 52.31 55.62
China Minsheng Banking (600016SS) 12/19/2000 56.59 55.71
China Television Media (600088SS) 06/16/1997 49.43 50.69
China Unicom (600050SS) 10/09/2002 54.45 51.34
Huaneng Power (600011SS) 12/06/2001 50.27 50.87
Qingdao Haier (600690SS) 01/02/2001 50.74 49.52
Shandong Bohui Paper (600966SS) 06/08/2004 54.52 53.94
SPD Bank (600000S) 01/02/2001 51.54 55.99
Shenergy (600642SS) 01/02/2001 53.95 51.78
Hisense Electric (600060SS) 04/22/1997 49.10 53.13
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Fig. 14. Effects of structure in data on prediction accuracy.
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Fig. 14 shows #C1ðtÞ for three representational datasets: Apple
Inc (AAPL), Mercer International Inc. (MERC) and Toyota Motor
Corporation (TM). From this figure we can observe that although
the #C1ðtÞ for the TM dataset is still apparently random, it has
slightly more obvious structure than the MERC dataset. The same
can be observed on the MERC and AAPL datasets. As a result it is
not surprising that of these three datasets our model has the
highest accuracy for the TM dataset and the lowest for the AAPL
dataset. In our experiments, we used MS Visual C# 2010 along
with Matlab on a 32-bit computer with 3 GB of RAM and two
2.93 GHz processors. For one iteration of Algorithm 1 it takes
around 1.1 s if the number of agents N is 31. Therefore the total
duration for 10 iterations of Algorithm 1 for 1000 games is around
1 h and 30 min.
6. Conclusions and Future Work

The collective behavior always seems to be complex, random
and unpredictable. Based on the research in evolutionary
dynamics, agents following simple games may generate complex
collective behavior. The micro–macro relation has been a hot topic
in statistical physics. In this paper, we turned our focus on whether
such system may have the capability of prediction if we can esti-
mate the agent's behavior by using observable collective data. We
proposed a framework of using probabilistic graphical models to
investigate micro–macro relations and such a trained model can
be used to make future prediction. This can also be viewed as a
new machine learning paradigm by decomposing collective
behavior to an aggregation of micro-level behavior of agents. We
first performed experiments on an artificial data set to validate our
model and then test it on the real-world market data. Although
finding patterns of real-world market data has always been a
controversial topic as it violates the efficient-market hypothesis
(EMH) [9]. However, based on our empirical studies, we indeed
found statistical significant patterns based on history data. In the
future work, we will explore how the factors like memory size,
agent size would influence the system. In order to model the
complex collective behavior in the real-world, the minority game
may not be enough, we need to investigate different games to
generate more likely micro-level behavior.
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