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Abstract

Different words in discourse arguments usually have varying contributions on the recog-

nition of implicit discourse relations. Following this intuition, we propose two attention-

based neural networks, namely inner attention model and outer attention model, to

learn better discourse representation by automatically estimating the degrees of rele-

vance of words to discourse relations. The former model only utilizes the informa-

tion inside discourse arguments, while the latter model builds upon an outside se-

mantic memory to exploit general world knowledge. Both models are capable of as-

signing more weights to relation-relevant words, and operate in an end-to-end man-

ner. Upon these two models, we further propose a full attention model that combines

their strengths into a unified framework. Extensive experiments on the PDTB data set

show that our model significantly benefits from highlighting relation-relevant words

and yields competitive and even better results against several state-of-the-art systems.

Keywords: implicit discourse relation recognition, attention network, memory

network, convolutional neural network

1. Introduction

Implicit discourse relation recognition (DRR) is a task of automatically identifying

the internal structure and logical relation of a coherent text without discourse connec-
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tives. DRR plays a vital role in a variety of nature language processing applications,

such as question answering [1], information extraction [2], machine translation [3] and5

so on. Although explicit DRR has recently achieved remarkable success [4, 5], implicit

DRR remains a serious challenge due to the absence of discourse connectives.

Most existing approaches to implicit DRR heavily rely on various manually de-

signed features to capture rich linguistic information for better performance [6]. In

spite of their success, feature engineering in this manner usually requires domain10

knowledge and the number of hand-crafted features is often huge (especially the com-

binational features capturing interactions between two arguments). This feature engi-

neering philosophy is rather time-consuming, thus is not easily adaptable.

Concerning this issue, Zhang et al. [7] adopt shallow convolution operations and

nonlinear transformations on the top of neural word embeddings to automatically learn15

input features for implicit DRR. Their model is general and flexible in the sense that

it requires no manual engineering. However, one drawback of their model is that it

treats all discourse words equally, neglecting the different degrees of importance of

words to discourse relations. Let’s consider the following implicit discourse relation

(comparison):20

(1) Our competitors say we overbid them,

(but) who cares.

Obviously, the words “competitors, overbid, cares” are more persuasive than the others

for relation recognition. Intuitively, discourse relations should be sensitive to words

that are tightly related and insensitive to words that occur in any discourse relations.25

Therefore, a model that can capture and discriminate the discourse-related words would

be more decisive when predicting. Previous studies have exploited position-dependent

word features, e.g. First-Last, First3 [6], which manually define different roles of

words in DRR. Nevertheless, we prefer developing a model that is able to learn these

differences automatically.30

Inspired by recent success of attention mechanisms [8, 9, 10] as well as memory

networks [9, 11, 12], in this paper, we propose two attention-based neural networks to

learn better discourse representations for implicit DRR. The basic idea behind is to treat
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different words in discourse arguments unequally and automatically identify different

degrees of importance of words to discourse relations so as to make the resulting repre-35

sentation place more emphasis on those discourse-relation-preferred words. According

to whether relying on external information, we classify our two models as inner atten-

tion model and outer attention model. The former only requires the discourse argument

itself to distinguish the word contributions, which are successively used to weight dis-

course word embeddings as an alternative of the mean-pooling operation in [7]. In40

contrast, the latter relies on an additional semantic memory to leverage a more general

external world knowledge. Following the spirit of memory network [11], we use the

content-based addressing strategy to assign each word a weight so as to retrieve a deep

semantic meaning representation for the discourse from the memory. Both kinds of in-

formation are complementary to each other, thus we further combine these two models45

into a unified framework, full attention model, to fully access the internal and exter-

nal information for better discourse representation. All models are end-to-end neural

networks, enabling the stochastic gradient descent optimization.

Our major contributions are twofold:

• We propose an inner, an outer and a full attention model to learn better discourse50

representation for implicit DRR. The exploration of different attention schemes

for implicit DRR, to the best of our knowledge, has never been investigated be-

fore.

• We conduct a series of experiments for English implicit DRR on the PDTB-style

corpus to evaluate the effectiveness of our proposed models.55

Experiment results on both one-against-all and four-way classification show that our

proposed models yield satisfactory improvements against several strong baselines in

terms of F1 score. Extensive analysis on the learned word contributions further dis-

closes some linguistic characteristics of the proposed models.

2. Symbol Definitions60

This section provides definitions for basic symbol notations used in this paper,

which are shown in Table 1.
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Symbol Definition

Arg1, Arg2 The first and second discourse argument annotated in PDTB corpus respectively.

Arg We use it to denote either Arg1 or Arg2.

L,M The word embedding matrix and semantic memory matrix respectively.

E We use it to denote either L or M .

X,xi The ordered vector list and the vector of the i-th word respectively.

d1 The dimension of word embedding.

d2 The dimension of the semantic memory matrix.

da The dimension of the attention space.

c, co, ca The representation of final, initial and attended discourse argument respectively.

p, po, pa The representation of final, initial and attended discourse respectively.

v We use it to denote either discourse or argument representation.

min,max, avg The min-pooling, max-pooling and mean-pooling operation respectively.

s, α The semantic matching score and attention weight respectively.

y, yg The predicted relation distribution and the ground truth respectively.

Table 1: Basic symbol notations.

3. Background

This section firstly explains the annotations in Penn Discourse Treebank (PDTB)

to better understand the DRR problem. We then review how discourse arguments are65

represented in the shallow convolution neural network (SCNN) model [7] as it forms

our basis and the neural baseline.

3.1. Annotations in PDTB

The PDTB [13] annotates discourse relations in a predicate-argument view, where

a discourse connective is considered to be a predicate that takes two text spans as its70

arguments. The argument, to which a discourse connective is syntactically attached, is

called Arg2 (e.g., the second sentence in example (1)). The other argument is called

Arg1 (e.g., the first sentence in example (1)).

Generally, PDTB provides annotations for both explicit and implicit discourse re-

lations. Implicit relations are annotated with connective expressions that best convey75
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the inferred implicit relations between adjacent sentences within the same paragraph.

As shown in example (1), the connective “but” is chose to express the inferred COM-

PARISON relation.

The relation tags in PDTB are arranged in a three-level hierarchy, where the top

level consists of four major semantic classes: TEMPORAL (TEM), CONTINGENCY80

(CON), EXPANSION (EXP) and COMPARISON (COM). For each class, a second level

of types is defined to provide finer semantic distinctions. A third level of subtypes is

defined for only some types to specify the semantic contribution of each argument.

Because the top-level relations are general enough to be annotated with a high inter-

annotator agreement and are common to most theories of discourse, in our experiments85

we use only this level of the annotations.

3.2. Argument Representation in SCNN

In SCNN, each word in vocabulary V is represented as a d1-dimensional dense,

real-valued vector, and all these vectors are stacked into a word embedding matrix

L ∈ Rd1×|V |, where |V | is the vocabulary size. Formally, given an argument which90

is an ordered list of n words, SCNN retrieves vector representation xi ∈ Rd1 for each

word from L and treats the resulting vector list X = (x1, x2, . . . , xn) as its input layer.

SCNN further extracts the major information contained in this vector list for argu-

ment representation. This is achieved via several convolution operations avg, min and

max as follows:

cavg = avg (x1, x2, . . . , xn) (1)

cmin = min (x1, x2, . . . , xn) (2)

cmax = max (x1, x2, . . . , xn) (3)

. The discourse argument is represented by the concatenation of these convolutional

features, i.e., cArg =
[
cavg; cmax; cmin

]
, where Arg means the Arg1 or Arg2.

5
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4. Attention-based Neural Networks95

4.1. Motivation

Although SCNN subsequently performs several nonlinear transformations on c suc-

cessively, it treats words in an argument without distinction of their different effects on

discourse relations, which may be problematic because discourse relations should be

more tightly related to relation-sensitive words as discussed in Section 1. Previous100

studies that successfully exploit Verbs, First-Last, First3 and Modality as features [14]

also suggest that words with different parts-of-speech, positions and modalities are dif-

ferent for the discourse relation recognition. We introduce an attention mechanism to

model these differences automatically.

4.2. The Method105

We aim at improving discourse representations by distinguishing word contribu-

tions in discourse arguments for the relation recognition. Formally, instead of assign-

ing each word with an equal weight as in Eq. (1), we weight each word differently

c̃ =
n∑

i=1

αiEi (4)

. Ei is the embedding of the i-th word, whose meaning differs in different models. αi

is the attention weight, which should reflect the degree of importance of the word Ei

in representing the whole discourse with respect to the final discourse relation recogni-

tion. Recall the above-mentioned example (1). If words “competitors, overbid, cares”

are detected as important words for DRR, there would be more chance that the final110

recognizer succeeds.

The attention weight αi is typically generated by normalizing a match score vector

over all the words in E,

αi =
exp(si)∑n
j=1 exp(sj)

(5)

with,

si = g(v,Ei) (6)

6



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

max min

atte
ntion

representation
attentional

original
representation

argument representation

max min

argument representation

avg

max min

original
representation

Ww

Wo

attention

Figure 1: Attention in (S-)InAtt model for one argument. Word embeddings are represented by blue color,

while the min and max convolutions are indicated in purple and green color respectively. Additionally, we

use gray color to denote the attention space, and nodes in dash box are learned attentional weights.

, where v is the representation of discourse/argument. g(·) is a scoring function that

estimates how useful each word Ei is to the corresponding discourse. This scoring

function differs in our proposed two models.

The above descriptions can be formulated into the following abstract form:

c̃ = Attention(v,E) (7)

. In this way, the attention network uses the discourse embedding v to extract relation-115

relevant part c̃ from words E for relation classification. The overall framework is

the same for all our models, but different models may have different inputs v,E and

scoring functions g(·). We elaborate our inner attention model, outer attention model

and their combined full attention model from this high-level philosophy.

4.2.1. Inner Attention Model120

The inner attention model (InAtt) assumes that relation-specific word embeddings

are more expressive than the general word embeddings for relation recognition. There-

fore, replacing cavg in Eq. (1) with c̃ in Eq. (4) could benefit the task of implicit DRR.

The attention mechanism in InAtt can be summarized as follows:

cArg
a = Attention(cArg

o ,XArg) (8)

, where E = XArg and v = cArg
o is the word embedding matrix and original/initial

representation for argument Arg respectively. The output cArg
a is a d1-dimensional

vector for argument Arg alone, with the subscript a denoting the attention.

7
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Figure 1 illustrates the architecture of InAtt. We employ the concatenation of min

and max convolution features as the initial representation for an argument since these

features are well exploited and desirable to selectively capture crucial informative as-

pects inside XArg:

cArg
o =

[
cArg,max; cArg,min

]
∈ R2d1 (9)

. This initial representation is further taken to highlight relation-relevant words in Arg

via the scoring function g(·) as in [8] (see the gray colors in Figure 1):

g(cArg
o ,XArg

i ) =Wa tanh(Woc
Arg
o +WwX

Arg
i ) (10)

, where Wo ∈ Rda×2d1 ,Ww ∈ Rda×d1 ,Wa ∈ R1×da are weight matrices and da

denotes the attention dimensionality. This scoring function firstly projects the word125

and initial discourse representations into a common feature space, in which it then

fully qualifies their semantic matching degrees with non-linear transformation followed

by a cosine-style estimation through Wa. If the word XArg
i is important to relation

recognition, the model would tune these weight matrices to automatically align cArg
o

and XArg
i so as to improve their matching degrees, i.e. a high score g(cArg

o ,XArg
i ).130

Clearly, the InAtt model only utilizes the information inside discourse arguments.

To represent the whole discourse, InAtt concatenates both the initial and attended

representations of two arguments and applies several nonlinear transformations as fol-

lows:

p = f(
[
cArg1
o ; cArg1

a ; cArg2
o , cArg2

a

]
) ∈ R6d1 (11)

, where f(·) = tanh(·)/‖ tanh(·)‖. The recognition of discourse relation from p is de-

scribed in Section 5.

Model Variants In the above description, we assume that the attention distribution

over an argument is calculated based on itself. That is, we compare the original argu-

ment representation of Arg1 to its own word embedding matrix in order to obtain the

attention distribution over words in this argument. This is also done for Arg2. We call

8
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this variant self-attention InAtt, or S-InAtt for short, i.e.,

cArg1
a = Attention(cArg1

o ,XArg1) (12)

cArg2
a = Attention(cArg2

o ,XArg2) (13)

.

Previous work [6, 15] have found that cross-argument interaction is beneficial for

discourse semantic discovery. Following them, we further explore a cross-argument

attention strategy. We use the original Arg1/Arg2 argument representation to match

the Arg2/Arg1 argument embedding matrix in order to obtain the attention distribution

over Arg2/Arg1. We call this variant cross-attention InAtt, or shortly C-InAtt, i.e.,

cArg1
a = Attention(cArg2

o ,XArg1) (14)

cArg2
a = Attention(cArg1

o ,XArg2) (15)

.135

These two variants are investigated and compared in our experiments.

4.2.2. Outer Attention Model

The outer attention model (OutAtt) is inspired by the cognitive psychology [16, 17].

Even if discourse connectives are not provided, humans can still easily succeed in rec-

ognizing the relations of discourse arguments. One reason for this, according to cogni-140

tive psychology, would be that humans have a semantic memory in mind, which helps

them comprehend word senses and further argument meanings via composition. After

understanding what two arguments of a discourse convey, humans can easily interpret

the discourse relation of the two arguments. This semantic memory, as discussed by

Tulving (1972), refers to general knowledge including “words and other verbal sym-145

bols, their meaning and referents, about relations among them, and about rules, formu-

las, and algorithms for manipulating them”. It can be retrieved to help disambiguation

and comprehension whenever the barrier of cognition occurs.

Accordingly, the OutAtt model assumes there exists an external semantic memory

(a pretrained word embedding matrix) that already encodes some world knowledge,

and simulates the human behavior by retrieving relation-relevant knowledge from it to

9
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Figure 2: Attention in OutAtt model. We use the shallow and deep yellow color to indicate the original and

attended discourse representation respectively. The dashed red box shows the bilinear-style computation for

attention weights.

overcome the cognition barrier through an attention network. Formally, the attention

mechanism in OutAtt can be summarized as follows:

pa = Attention(pDis
o ,MDis) (16)

, whereE = MDis ∈ Rd2×m and v = pDis
o is the semantic memory matrix and original

representation for the whole discourseDis (rather than argumentArg) respectively. d2150

is the dimension of word embedding in the memory, and m is the number of words in

the whole discourse. Compared against the word embedding L, our semantic memory

M differs significantly in the following two aspects: 1) M is trained on general-topic

corpora, while L is discourse-relation-related. This ensures that general knowledge

about words can be encoded into M. 2) M is fixed (i.e., not tuned at all) during training,155

while L must be further tuned to capture relations of discourse arguments. This is

because we hope that the semantic and syntactic attributes encoded in the semantic

memory can be preserved throughout our neural network. Intuitively, we utilize the

task-specific embeddings L to extract related information from general embeddings M

so as to enhance the expressiveness of learned discourse representations.160

Figure 2 illustrates the architecture of OutAtt. We use the discourse representa-

tion in SCNN [7] as our original representation in Eq. (16) due to its simplicity and

10
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effectiveness:

pDis
o = f(

[
cArg1; cArg2

]
) ∈ R6d1 (17)

. As the semantic embedding in M is unchanged throughout our experiment, we employ

a bilinear network as our scoring function g(·) to fully model the interaction between

discourse and memory(see the read box in Figure 2):

g(pDis
o ,MDis

i ) = pDis
o

′
WsM

Dis
i

′
(18)

with (as shown by “ 1©” in Figure 2),

pDis
o

′
= tanh(Wpp

Dis
o + b′) (19)

MDis
i

′
= tanh(WmMDis

i + b′) (20)

, where pDis
o
′ ∈ Rda ,MDis

i
′ ∈ Rda are the corresponding representations in a com-

mon attention space. In this space, each element in the weight matrix Ws, e.g. Wsij ,

assesses the semantic matching degree of the i-th discourse representation pDis
oi and

the j-th external memory MDis
ij

, which enables the model to learn to automatically

strain the discourse with its semantic-related memories. Notice that we differentiate165

the transformation matrix Wp in Eq. (19) to the Wm in Eq. (20), since the original rep-

resentation and semantic memory originate from different semantic spaces. However,

we share the same bias term for them. This will force our model to learn to encode

attention semantics into the transformation matrices, rather than simply the biases.

The OutAtt model represents the whole discourse by concatenating both the origi-

nal and attended discourse representation:

p =
[
pDis
o ; pa

]
∈ R6d1+d2 (21)

.170

4.2.3. Full Attention Model

With InAtt and OutAtt leveraging internal and external information respectively,

the full attention model (FullAtt) attempts to combine their strengths together to jointly

model both kinds of information. Intuitively, these kinds of information are comple-

mentary to each other such that their combination could further boost the recognition175

performance.
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Basically, the FullAtt model is a variant of OutAtt model as formulated in Eq. (16).

Nevertheless, instead of using the vanilla discourse representation pDis
o (see Eq. (17)),

FullAtt employs the representation p of InAtt (see Eq. (11)) as its original discourse

representation. Therefore, in FullAtt model, the internal information can help provide180

more evidence to extract more relation-relevant words from the additional semantic

memory.

Since there are several variants in InAtt, we further classify our FullAtt model into

S-FullAtt and C-FullAtt model accordingly.

5. Parameter Learning185

With the learned discourse representation p (see Eq. (11) and Eq. (21)), our models

predict the discourse relation using a softmax layer:

y = softmax(Wrp+ br) (22)

, where y ∈ Rl is the predict discourse relation distribution, and l denotes the number

of discourse relations. The softmax(·) function constrains a list of real values into a

real-valued distribution.

To assess how well the predicted relation y represents the gold relation yg , we

employ the following cross-entropy error:

E(y, yg) = −
∑l

j
ygj × log (yj) (23)

. Given a training corpus containing T instances, the joint training objective of our

models is to minimize the above error:

J(θ) =
1

T

∑T

t=1
E(y(t), y(t)g ) + λ||θ||2 (24)

, where λ is the hyperparameter for regularization.

In the phase of parameter initialization, we use the toolkit Word2Vec1 to pretrain the190

word embeddings L on a large-scale unlabeled data, and randomly initialize the other

1https://code.google.com/p/word2vec/

12
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Relation
# Sentences

Train Dev Test

COM 1942 197 152

CON 3342 295 279

EXP 7004 671 574

TEM 760 64 85

Table 2: Statistics of implicit discourse relations in the training (Train), development (Dev) and test (Test)

sets.

parameters using normal distribution (µ = 0, σ = 0.01). To optimize these parameters,

we apply the L-BFGS algorithm2 to the gradient of Eq. (24) which, accordingly, can

be computed through standard backpropogation algorithm.

With respect to the semantic memory MDis, we choose the GoogleNews-vectors-195

negative3003. This data contains 300-dimensional vectors (thus, d2 = 300) for 3 mil-

lion words and phrases. It is trained on part of Google News dataset (about 100 billion

words). The wide coverage and newswire domain of its training corpus as well as

the syntactic property of Word2Vec models make this vector a good choice for our

discussed semantic memory.200

6. Experiments

We carried out a series of experiments to evaluate the effectiveness of our models

on English implicit DRR task using PDTB 2.0 corpus4 [13]. This corpus contains dis-

course annotations over 2,312 Wall Street Journal articles, and is organized in different

sections. Following previous work [14, 18, 19, 7], we used sections 2-20 as training205

set, sections 21-22 as test set and sections 0-1 as development set for hyperparameter

optimization.

We formulated the task in two variants: 1) four separate one-against-all binary

2http://www.chokkan.org/software/liblbfgs/
3https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS 21pQmM/edit?pref=2&pli=1
4http://www.seas.upenn.edu/ pdtb/

13
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classification problems: each top-level class of implicit discourse relations vs. the other

three discourse relation classes [14, 7, 20]; and 2) four-way classification, which is

more natural in realistic settings. With respect to the former, we randomly extracted the

same number of positive and negative instances as our training data for each discourse

relation class in order to deal with the imbalance issue. However, all instances in the

test and development set are kept. With respect to the latter, we employed the instance

reweighting trick to deal with the imbalance problem. We reweighted each instance

following Rutherford and Xue [21]:

wij =
n

uj · k
(25)

, where uj is the total number of instances from class j and k is the number of classes

in the dataset of size n. The statistics of various data sets are listed in Table 2.

We employed a large-scale unlabeled data set for word embedding initialization,210

which contains 1.02M sentences with 33.5M words. We tokenized all data using Stan-

ford NLP Tool5. According to previous work [7] and preliminary experiments on the

development set, we set d1 = 128, d2 = 300, da = 64, λ = 1e−4 for all experiments.

6.1. Baseline Methods

We chose two different methods as our baselines: an SVM with feature engineering215

and a neural network with learned representations:

• SVM: a support vector machine (SVM) classifier for relation recognition.6 We

adopted the following features to train SVM: Bag of Words, Cross-Argument

Word Pairs, Polarity, First-Last, First3, Production Rules and Dependency Rules.

We also used the Brown cluster pair feature [22]. When collecting bag of words,220

production rules, dependency rules, and cross-argument word pairs, we used a

frequency cutoff of 5 for filtering.

• SCNN: a shallow convolution neural network for argument representation intro-

duced by Zhang et al. [7].

5http://nlp.stanford.edu/software/corenlp.shtml
6We used the toolkit SVM-light(http://svmlight.joachims .org/) for experiments.
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Model P R F1

(R & X [21]) - - 41.00

(J & E [23]) - - 35.93

(Chen et al. [24]) - - 40.17

(L & L [25]) - - 39.86

SVM 22.79 64.47 33.68

SCNN 22.00 67.76 33.22

S-InAtt 21.80 75.00 33.78

C-InAtt 24.21 60.53 34.59

OutAtt 23.33 61.84 33.87

S-FullAtt 24.35 61.84 34.94

C-FullAtt 23.08 71.05 34.84

(a) COM vs Other

Model P R F1

(R & X [21]) - - 53.80

(J & E [23]) - - 52.78

(Chen et al. [24]) - - 54.76

(L & L [25]) - - 53.69

SVM 39.14 72.40 50.82

SCNN 39.80 75.29 52.04

S-InAtt 40.55 74.55 52.53

C-InAtt 39.27 77.42 52.11

OutAtt 39.82 80.65 53.32

S-FullAtt 42.36 74.55 54.03

C-FullAtt 41.49 77.78 54.11

(b) CON vs Other

Model P R F1

(R & X [21]) - - 69.40

(J & E [23]) - - 80.02

(Chen et al. [24]) - - 80.62

(L & L [25]) - - 69.71

SVM 65.89 58.89 62.19

SCNN 56.29 91.11 69.59

S-InAtt 55.11 97.74 70.48

C-InAtt 54.75 99.48 70.62

OutAtt 54.79 99.65 70.70

S-FullAtt 55.22 99.48 71.02

C-FullAtt 55.39 99.30 71.11

(c) EXP vs Other

Model P R F1

(R & X [21]) - - 33.30

(J & E [23]) - - 27.63

(Chen et al. [24]) - - 31.32

(L & L [25]) - - 37.61

SVM 15.10 68.24 24.73

SCNN 20.22 62.35 30.54

S-InAtt 29.29 34.12 31.52

C-InAtt 28.18 36.47 31.79

OutAtt 23.01 61.18 33.44

S-FullAtt 27.82 43.53 33.94

C-FullAtt 23.83 60.00 34.11

(d) TEM vs Other

Table 3: Recognition results of different models on implicit DRR. P=Precision, R=Recall, and F1=F1 score.
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Additionally, we also compared against the published results from six competitive sys-225

tems:

• Rutherford and Xue [21] (R & X [21] for short) convert explicit discourse

relations into implicit instances by removing explicit discourse connectives with

heuristic rules.

• Ji and Eisenstein [23] (J & E [23] for short) explore entity information to aug-230

ment distributed representations of discourses.

• Ji et al. [26] develop a neural language model over sequences of words and treat

the discourse relations as latent variables to connect the adjacent sequences.

• Wu et al. [27] incorporate synthetic data through bilingual constraint.

• Chen et al. [24] propose a deep architecture with gated relevance network for235

semantic interaction.

• Liu and Li [25] (L & L [25] for short) propose to repeatedly read the arguments

and dynamically exploit the efficient features useful for recognizing discourse

relations.

6.2. Classification Results and Analysis240

Our first experiment is for four one-against-all binary classifications. We evaluate

each model with several different metrics, including precision, recall, and F1 score.

Table 3 summarizes the experiment results, which, overall, show that enhanced with the

proposed attention mechanism that highlight contributory discourse words, our models

achieve significant performance on all four tasks in terms of F1 score.245

We first give an analysis against SCNN, because it is the basis of our model. As

shown in Table 3, all our models outperform both SVM and SCNN. Particularly, the C-

InAtt/OutAtt/C-FullAtt model gains improvements over SCNN by 1.37%/0.65%/1.62%,

0.07%/1.28%/2.07%, 1.03%/1.11%/1.52% and 1.25%/2.9%/3.57% on COM, CON, EXP

and TEM respectively. As the neural baseline, SCNN outperforms SVM on CON, EXP250

and TEM, but fails on COM. Incorporating our attention networks, however, consis-

tently surpasses SVM and SCNN in all discourse relations. As the only difference
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between SCNN and our model lies at the proposed attention mechanism, this result

strongly demonstrates that distinguishing different words for relation recognition is

indeed helpful.255

For InAtt models, we find that C-InAtt almost always yields better results than S-

InAtt. We conjecture that the main reason for this lies in cross-argument interactions

captured by the cross-argument attention within C-InAtt, which may provide more

evidence for discourse relation recognition. Our experiment results on this resonate

with the finding of previous work, especially that of Lin et al. [6].260

For OutAtt model, we observe that the improvement of OutAtt for relation TEM

is the biggest. The gain over SVM is 8.71% and 2.9% over SCNN. As the number of

instances in relation TEM is the smallest (see Table 2), we argue that the traditional

neural network models may lack of sufficient training instances to capture the under-

lying discourse relation. However, our OutAtt enhanced with the semantic memory is265

capable of leveraging the general world knowledge induced from large-scale external

corpus to help alleviate this issue.

For FullAtt model, we find that FullAtt obtains slightly better results over both

InAtt and OutAtt on all relations. This demonstrates that the internal and external infor-

mation are complementary to each other, and incorporating them together is beneficial270

for discourse relation recognition. Additionally, similar as InAtt model, the C-FullAtt

model prefers to outperform the S-FullAtt model. This is because the C-InAtt model

provides better discourse representation, which further offers much more evidence to

extract relation-relevant information from the additional semantic memory.

Compared against InAtt models, OutAtt model tends to achieve better F1 scores.275

This is reasonable because OutAtt leverages an external semantic memory which is

trained on large-scale corpora. The semantic and syntactic attributes of words encoded

in this memory is hard be captured by InAtt. Additionally, the improvements of F1

score on COM, CON and TEM mainly result from the improvements of precision, while

on EXP it is the recall. The main reason may lie in the quantity difference of training280

data for different relations, where the training instances of EXP are largest.

For the state-of-the-art results of previous work [23, 21, 24, 25], our models achieve

comparable results, even outperforms them on the recognition of some discourse rela-
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Model COM CON EXP TEM Total

(R & X [21]) 44.9/27.6/34.2 49.3/39.6/43.9 61.4/78.8/69.1 38.5/9.1/14.7 57.1/40.5

(Wu et al. [27]) 42.1/33.1/37.1 44.2/40.7/42.4 62.6/71.8/66.8 34.5/18.2/23.8 -/42.5

(Ji et al. [26]) -/-/- -/-/- -/-/- -/-/- 59.5/42.3

S-InAtt 28.2/40.8/33.3 45.6/56.3/50.4 65.3/48.6/55.7 23.2/27.1/25.0 47.8/41.1

C-InAtt 31.8/46.7/37.9 45.2/57.0/50.4 66.9/47.6/55.6 23.4/29.4/26.0 48.4/42.5

OutAtt 28.8/39.5/33.3 51.0/45.5/48.1 67.3/57.3/61.9 21.5/36.5/27.1 50.2/42.6

S-FullAtt 33.3/40.1/36.4 48.2/58.1/52.7 69.1/47.6/56.3 22.2/45.9/29.9 49.1/43.8

C-FullAtt 39.8/28.3/33.1 45.8/57.3/51.0 65.0/58.0/61.3 26.4/37.6/31.1 52.1/44.1

Table 4: Performance on the four-way classification task formulation. We show the Precision/Recall/F1

Score for each relation, and provide the Accuracy/Macro-Average F1 score for the whole test set.

tions, e.g. the CON and TEM. This is worthy of efforts given that our models only

rely on shallow structure and do not use any manual features designed with prior hu-285

man knowledge while the previous systems either employ extremely deep and complex

network structures or incorporate the neural features together with manual features.

Our second experiment is for four-way classification. For evaluation, we chose the

precision/recall/F1 score and accuracy/macro-average F1 score for each relation and

the whole test set respectively. The experiment results are shown in Table 4. As in290

our first experiment, C-InAtt outperforms S-InAtt, OutAtt outperforms InAtt in terms

of both accuracy and macro-F1 score on the whole test set. Combining the InAtt and

OutAtt into the FullAtt, our model achieves further improvements. Especially, our C-

FullAtt yields 52.1% accuracy and 44.1% F1 score on the whole test set respectively,

which is competitive against all the previous systems[21, 26, 27]. Although the accu-295

racy of our model is lower than Rutherford and Xue [21] and Ji et al. [26], our model

achieves the highest macro-F1 scores on the four-way classification task, a gain of 1.6%

in C-FullAtt. This result further demonstrates the superiority of our model.

6.3. Attention Analysis

In order to take a deep look into how the attention mechanism works in our mod-300

els and whether our models are able to distinguish word contributions, we show one
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Model Relation Example

C-InAtt
COM

people think of the steel business as an old and mundane smokestack business

they ’re dead wrong

EXP
numerous injuries were reported

some buildings collapsed , gas and water lines ruptured and fires raged

OutAtt
COM

people think of the steel business as an old and mundane smokestack business

they ’re dead wrong

EXP
numerous injuries were reported

some buildings collapsed , gas and water lines ruptured and fires raged

C-FullAtt
COM

people think of the steel business as an old and mundane smokestack business

they ’re dead wrong

EXP
numerous injuries were reported

some buildings collapsed , gas and water lines ruptured and fires raged

Table 4: Examples from the test set. For each argument, some top words with the high attention weights are high-
lighted in red color.

and Biran, 2013). With these features, Park and
Cardie (2012) performs feature set optimization for
better feature combination. Instead of directly clas-
sifying discourse relations, predicting appropriate
discourse connectives can indirectly help the rela-
tion identification (Zhou et al., 2010; Patterson and
Kehler, 2013), while Hong et al. (2012) leverage the
connective as a bridge to infer the implicit relations
from explicit ones. Very recently, Versley (2013)
explores graph models for the task, and Rutherford
and Xue (2014) employ brown cluster representa-
tions and co-reference patterns.

Most of these methods focus on developing effec-
tive hand-crafted features. However, useful features
are still likely to be neglected due to the lack of do-
main knowledge. Instead, we aim to learn these fea-
tures automatically.

6.2 Neural Network Models

Neural network models have made a great progress
in sentence representation learning. Such models
includes recursive neural networks (Socher et al.,
2011; Su et al., 2015), convolutional neural net-
works (Kalchbrenner et al., 2014) and so on. These
models are of great benefit to many downstream
NLP applications, such as sentiment classification,
question answering, information extraction and ma-

chine translation, etc.

In the context of implicit DRR, Braud and De-
nis (2015) investigates the usefulness of unsuper-
vised word representations. Ji and Eisenstein (2015)
leverage the entity information to enhance the syn-
tactic tree representation, while Zhang et al. (2015)
exploit a shallow yet effective convolutional neural
network with only one hidden layer for argument
representation. Following the neural direction, Qin
et al. (2016) exploit stacked convolutional yet gated
neural networks. Ji et al. (2016) treat the discourse
relation as a latent variable and use neural models
to infer it. Chen et al. (2016) develop deep neural
architecture with a novel gated relevance network
to capture semantic interactions between arguments.
Liu and Li (2016) models the recognition process
via repeated reading based on multi-level attention,
which, compared with our model, only focus on in-
ner attention. Since we do not focus on the linguistic
knowledge, in this work, we follow the research of
Zhang et al. (2015). They perform convolution op-
erations on word embeddings. Unfortunately, they
equally treat each word in an argument, which, how-
ever, might attenuate the effects of relation-sensitive
words on the classification of relations. We extend
their model and enhance it with a special attention
mechanism.

Table 5: Examples from the test set. For each argument, some top words with the high attention weights are

highlighted in red color.

example for relation COM and EXP from the test set in Table 5, where words assigned

with the high attention weights are highlighted in red color.7

We find that the attention model indeed learns something that are relevant to the

discourse relation recognition task. Our model succeeds in detecting cross-argument305

phrases that strongly indicate the corresponding relations, e.g., “think, old, mundane

vs. wrong” (COM) and “injuries vs. collapsed, ruptured, raged” (EXP). However, dif-

ferent models exhibit different capabilities and preferences. Let’s consider the example

for COM. C-InAtt can recognize that something is “wrong”. Without external world

knowledge, however, C-InAtt can only extract the words “think, business” which is310

hard to answer what is wrong. In this respect, OutAtt succeeds in realizing the “mun-

dane smokestack”, but fails in detecting this understanding is “wrong”. Combining

their advantages, our C-FullAtt retrieves the words “think, old, mundane, smokestack,

dead, wrong”, which roughly reflects the discourse meaning that think old mundane

smokestack, dead wrong. Obviously, these words are crucial for discourse comprehen-315

7We mainly show instances for C-InAtt, OutAtt and C-FullAtt because of their good performance.
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sion. All these make the argument representation learned in our model more relation-

relevant, and thus boosts the recognition performance.

Additionally, different from manual features First-Last, First3 defined on fixed po-

sitions, our model is able to detect important words on different positions, not limited

to the beginning and ending positions. For example, words “collapsed”, “ruptured”320

with high attentions are almost position-independent, but relation-dependent.

We also notice that not all attentional words are relation-relevant. For example,

the word “and” (EXP) and the word “’re” (TEM) in C-InAtt are rather general. This

suggests that the highlighted words here are not necessarily linguistically oriented,

since we do not use any linguistic signals for attention training. Instead, our model325

chooses these words roughly because they are able to benefit the relation recognition.

7. Related Work

Our work is related to previous studies on implicit DRR. It is also in the same line

with recent efforts on neural attention mechanisms.

7.1. Implicit Discourse Relation Recognition330

The implicit DRR mainly starts from the release of PDTB corpus, a large-scale

annotated discourse corpus [13]. Based on this corpus, Pilter et al. [14] perform implicit

relation classification using several linguistically informed features. Furthermore, Lin

et al. [6] incorporate the context of the two arguments, word pair information, as well as

the internal constituent and dependency parses of arguments into their classifier. After335

that, several more powerful features have been exploited: entities [28], tree kernels [29]

and aggregated word pairs [15]. With these features, Park and Cardie [30] performs

feature set optimization for better feature combination. Instead of directly classifying

discourse relations, predicting appropriate discourse connectives can indirectly help

the relation identification [18, 31], while Hong et al. [32] leverage the connective as340

a bridge to infer the implicit relations from explicit ones. Very recently, Versley [33]

explores graph models for the task, and Rutherford and Xue [22] employ brown cluster

representations and co-reference patterns.
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Most of these methods focus on developing effective hand-crafted features. How-

ever, useful features are still likely to be neglected due to the lack of domain knowledge.345

Instead, we aim to learn these features automatically.

7.2. Neural Network Models

Neural network models have made a great progress in sentence representation

learning. Such models include recursive neural networks [34, 35, 36], convolutional

neural networks [37] and so on. These models are of great benefit to many downstream350

NLP applications, such as sentiment classification, question answering, information

extraction and machine translation, etc.

In the context of implicit DRR, Braud and Denis [38] investigates the usefulness

of unsupervised word representations. Ji and Eisenstein [23] leverage the entity in-

formation to enhance the syntactic tree representation, while Zhang et al. [7] exploit355

a shallow yet effective convolutional neural network with only one hidden layer for

argument representation. Following the neural direction, Qin et al. [39] exploit stacked

convolutional yet gated neural networks. Ji et al. [26] treat the discourse relation as a

latent variable and use neural models to infer it. Chen et al. [24] develop deep neural

architecture with a novel gated relevance network to capture semantic interactions be-360

tween arguments. Liu and Li [25] models the recognition process via repeated reading

based on multi-level attention, which, compared with our model, only focus on inner

attention. Since we do not focus on the linguistic knowledge, in this work, we follow

the research of Zhang et al. [7]. They perform convolution operations on word embed-

dings. Unfortunately, they equally treat each word in an argument, which, however,365

might attenuate the effects of relation-sensitive words on the classification of relations.

We extend their model and enhance it with a special attention mechanism.

The concerned “attention” have recently gained popularity mainly in multimodal

networks, where learning alignments between different modalities is a key interest.

For example, Mnih et al. [40] learn image objects and agent actions in the dynamic370

control problem, and Xu et al. [41] exploit the attention mechanism in the image cap-

tion generation task. With respect to neural machine translation, Bahdanau et al. [8]

succeed in jointly learning to translate and align words, and Luong et al. [10] further
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evaluate different attention architectures on translation. Inspired by these works, we

adapt the attention technique to the case of single modal network, and apply it to the375

implicit DRR.

Additionally, the exploration of semantic memory for implicit DRR is inspired by

recent developments in cognitive neuroscience. Yee et al. [17] show how this memory

is organized and retrieved in brain. In order to explore semantic memory in neural

networks, we borrow ideas from recently introduced memory networks [9, 11, 42, 43]380

to organize semantic memory as a distributed matrix and use an attention model to

retrieve this distributed memory. The adaptation and utilization of semantic memory

into implicit DRR, to the best of our knowledge, has never been investigated before.

8. Conclusion and Future Work

In this paper, we have presented two attention-based neural networks for implicit385

DRR. Instead of assigning each word uniform weights, our model automatically learns

attention weights for different words so as to distinguish word contributions to dis-

course relations. These learned weights can reflect the degrees of importance of cor-

responding words to discourse relations. Experiment results show that our models are

competitive against several strong baselines.390

In the future, we would like to exploit different neural network architectures, e.g.,

deep convolutional neural networks, long-short term memory networks and so on. We

are also interested in adapting our model to other similar classification tasks, such as

sentiment classification and movie review classification.
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[3] F. Guzmán, S. Joty, L. Màrquez, P. Nakov, Using discourse structure improves410

machine translation evaluation, in: Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), Associ-

ation for Computational Linguistics, Baltimore, Maryland, 2014, pp. 687–698.

[4] E. Miltsakaki, N. Dinesh, R. Prasad, A. Joshi, B. Webber, Experiments on sense

annotations and sense disambiguation of discourse connectives, in: Proceed-415

ings of the Fourth Workshop on Treebanks and Linguistic Theories (TLT2005),

Barcelona, Spain, December, 2005.

[5] E. Pitler, M. Raghupathy, H. Mehta, A. Nenkova, A. Lee, A. Joshi, Easily identi-

fiable discourse relations (2008) 87–90.

[6] Z. Lin, M.-Y. Kan, H. T. Ng, Recognizing implicit discourse relations in the Penn420

Discourse Treebank, in: Proceedings of the 2009 Conference on Empirical Meth-

ods in Natural Language Processing, Association for Computational Linguistics,

Singapore, 2009, pp. 343–351.

[7] B. Zhang, J. Su, D. Xiong, Y. Lu, H. Duan, J. Yao, Shallow convolutional neural

network for implicit discourse relation recognition, in: Proceedings of the 2015425

Conference on Empirical Methods in Natural Language Processing, Association

for Computational Linguistics, Lisbon, Portugal, 2015, pp. 2230–2235.

23



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[8] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning

to align and translate.

[9] J. Weston, S. Chopra, A. Bordes, Memory networks, CoRR abs/1410.3916.430

[10] T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based neu-

ral machine translation (2015) 1412–1421.

[11] S. Sukhbaatar, a. szlam, J. Weston, R. Fergus, End-to-end memory networks, in:

C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances

in Neural Information Processing Systems 28, Curran Associates, Inc., 2015, pp.435

2440–2448.

[12] A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong,

R. Paulus, R. Socher, Ask me anything: Dynamic memory networks for natural

language processing, in: M. F. Balcan, K. Q. Weinberger (Eds.), Proceedings of

The 33rd International Conference on Machine Learning, Vol. 48 of Proceedings440

of Machine Learning Research, PMLR, New York, New York, USA, 2016, pp.

1378–1387.

[13] R. Prasad, N. Dinesh, A. Lee, E. Miltsakaki, L. Robaldo, A. Joshi, B. Web-

ber, The penn discourse treebank 2.0., in: Proceedings of the Sixth International

Conference on Language Resources and Evaluation (LREC-08), European Lan-445

guage Resources Association (ELRA), Marrakech, Morocco, 2008, aCL Anthol-

ogy Identifier: L08-1093.

[14] E. Pitler, A. Louis, A. Nenkova, Automatic sense prediction for implicit discourse

relations in text, in: Proceedings of the Joint Conference of the 47th Annual Meet-

ing of the ACL and the 4th International Joint Conference on Natural Language450

Processing of the AFNLP, Association for Computational Linguistics, Suntec,

Singapore, 2009, pp. 683–691.

[15] O. Biran, K. McKeown, Aggregated word pair features for implicit discourse

relation disambiguation, in: Proceedings of the 51st Annual Meeting of the Asso-

24



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ciation for Computational Linguistics (Volume 2: Short Papers), Association for455

Computational Linguistics, Sofia, Bulgaria, 2013, pp. 69–73.

[16] E. Tulving, Episodic and semantic memory, in: E. Tulving, W. Donaldson (Eds.),

Organization of Memory, Academic Press, New York, 1972, pp. 381–403.

[17] E. Yee, E. G. Chrysikou, S. L. Thompson-Schill, The cognitive neuroscience of

semantic memory (2014).460

[18] Z.-M. Zhou, Y. Xu, Z.-Y. Niu, M. Lan, J. Su, C. L. Tan, Predicting discourse

connectives for implicit discourse relation recognition, in: Coling 2010: Posters,

Coling 2010 Organizing Committee, Beijing, China, 2010, pp. 1507–1514.

[19] M. Lan, Y. Xu, Z. Niu, Leveraging synthetic discourse data via multi-task learn-

ing for implicit discourse relation recognition, in: Proceedings of the 51st An-465

nual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers), Association for Computational Linguistics, Sofia, Bulgaria, 2013, pp.

476–485.

[20] B. Zhang, D. Xiong, j. su, Q. Liu, R. Ji, H. Duan, M. Zhang, Variational neural

discourse relation recognizer, in: Proceedings of the 2016 Conference on Em-470

pirical Methods in Natural Language Processing, Association for Computational

Linguistics, Austin, Texas, 2016, pp. 382–391.

[21] A. Rutherford, N. Xue, Improving the inference of implicit discourse relations

via classifying explicit discourse connectives, in: Proceedings of the 2015 Con-

ference of the North American Chapter of the Association for Computational475

Linguistics: Human Language Technologies, Association for Computational Lin-

guistics, Denver, Colorado, 2015, pp. 799–808.

[22] A. Rutherford, N. Xue, Discovering implicit discourse relations through brown

cluster pair representation and coreference patterns, in: Proceedings of the 14th

Conference of the European Chapter of the Association for Computational Lin-480

guistics, Association for Computational Linguistics, Gothenburg, Sweden, 2014,

pp. 645–654.

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[23] Y. Ji, J. Eisenstein, One vector is not enough: Entity-augmented distributed se-

mantics for discourse relations, Transactions of the Association for Computa-

tional Linguistics 3 (2015) 329–344.485

[24] J. Chen, Q. Zhang, P. Liu, X. Qiu, X. Huang, Implicit discourse relation detection

via a deep architecture with gated relevance network, in: Proceedings of the 54th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), Association for Computational Linguistics, Berlin, Germany, 2016,

pp. 1726–1735.490

[25] Y. Liu, S. Li, Recognizing implicit discourse relations via repeated reading: Neu-

ral networks with multi-level attention, in: Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, Association for Compu-

tational Linguistics, Austin, Texas, 2016, pp. 1224–1233.

[26] Y. Ji, G. Haffari, J. Eisenstein, A latent variable recurrent neural network for495

discourse-driven language models, in: Proceedings of the 2016 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Association for Computational Linguistics, San

Diego, California, 2016, pp. 332–342.

[27] C. Wu, x. shi, Y. Chen, Y. Huang, j. su, Bilingually-constrained synthetic data for500

implicit discourse relation recognition, in: Proceedings of the 2016 Conference

on Empirical Methods in Natural Language Processing, Association for Compu-

tational Linguistics, Austin, Texas, 2016, pp. 2306–2312.

[28] A. Louis, A. Joshi, R. Prasad, A. Nenkova, Using entity features to classify im-

plicit discourse relations, in: Proceedings of the SIGDIAL 2010 Conference, As-505

sociation for Computational Linguistics, Tokyo, Japan, 2010, pp. 59–62.

[29] W. Wang, J. Su, C. L. Tan, Kernel based discourse relation recognition with tem-

poral ordering information, in: Proceedings of the 48th Annual Meeting of the

Association for Computational Linguistics, Association for Computational Lin-

guistics, Uppsala, Sweden, 2010, pp. 710–719.510

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[30] J. Park, C. Cardie, Improving implicit discourse relation recognition through fea-

ture set optimization, in: Proceedings of the 13th Annual Meeting of the Special

Interest Group on Discourse and Dialogue, Association for Computational Lin-

guistics, Seoul, South Korea, 2012, pp. 108–112.

[31] G. Patterson, A. Kehler, Predicting the presence of discourse connectives, in: Pro-515

ceedings of the 2013 Conference on Empirical Methods in Natural Language Pro-

cessing, Association for Computational Linguistics, Seattle, Washington, USA,

2013, pp. 914–923.

[32] Y. Hong, X. Zhou, T. Che, J. Yao, Q. Zhu, G. Zhou, Cross-argument inference

for implicit discourse relation recognition, in: Proceedings of the 21st ACM In-520

ternational Conference on Information and Knowledge Management, CIKM ’12,

ACM, New York, NY, USA, 2012, pp. 295–304. doi:10.1145/2396761.

2396801.

[33] Y. Versley, Subgraph-based classification of explicit and implicit discourse re-

lations, in: Proceedings of the 10th International Conference on Computational525

Semantics (IWCS 2013) – Long Papers, Association for Computational Linguis-

tics, Potsdam, Germany, 2013, pp. 264–275.

[34] R. Socher, C. C.-Y. Lin, A. Y. Ng, C. D. Manning, Parsing natural scenes and

natural language with recursive neural networks., in: Proceedings of the 28th

international conference on machine learning (ICML-11), 2011, pp. 129–136.530

[35] J. Su, D. Xiong, B. Zhang, Y. Liu, J. Yao, M. Zhang, Bilingual correspondence

recursive autoencoder for statistical machine translation, in: Proceedings of the

2015 Conference on Empirical Methods in Natural Language Processing, Asso-

ciation for Computational Linguistics, Lisbon, Portugal, 2015, pp. 1248–1258.

[36] B. Zhang, D. Xiong, J. Su, Battrae: Bidimensional attention-based recursive au-535

toencoders for learning bilingual phrase embeddings., in: Proceedings of the

Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), 2017, pp.

3372–3378.

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[37] N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network

for modelling sentences (2014) 655–665.540

[38] C. Braud, P. Denis, Comparing word representations for implicit discourse rela-

tion classification, in: Proceedings of the 2015 Conference on Empirical Methods

in Natural Language Processing, Association for Computational Linguistics, Lis-

bon, Portugal, 2015, pp. 2201–2211.

[39] L. Qin, Z. Zhang, H. Zhao, A stacking gated neural architecture for implicit dis-545

course relation classification, in: Proceedings of the 2016 Conference on Em-

pirical Methods in Natural Language Processing, Association for Computational

Linguistics, Austin, Texas, 2016, pp. 2263–2270.

[40] V. Mnih, N. Heess, A. Graves, k. kavukcuoglu, Recurrent models of visual atten-

tion, in: Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Wein-550

berger (Eds.), Advances in Neural Information Processing Systems 27, Curran

Associates, Inc., 2014, pp. 2204–2212.

[41] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, Y. Ben-

gio, Show, attend and tell: Neural image caption generation with visual attention,

in: International Conference on Machine Learning, 2015, pp. 2048–2057.555

[42] C. Yan, Y. Zhang, J. Xu, F. Dai, J. Zhang, Q. Dai, F. Wu, Efficient parallel frame-

work for hevc motion estimation on many-core processors, IEEE Transactions on

Circuits and Systems for Video Technology 24 (12) (2014) 2077–2089.

[43] C. Yan, Y. Zhang, J. Xu, F. Dai, L. Li, Q. Dai, F. Wu, A highly parallel framework

for hevc coding unit partitioning tree decision on many-core processors, IEEE560

Signal Processing Letters 21 (5) (2014) 573–576.

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Biao Zhang received his Bachelor degree in Software Engineering

from Xiamen University, and is a graduate student in the School

of Software at Xiamen University now. He is supervised by Prof.

Hong Duan and Prof. Jinsong Su. His major research interests are

natural language processing and deep learning.

Deyi Xiong is a Professor at Soochow University. Previously, he

was a Research Scientist at the Institute for Infocomm Research of

Singapore from 2007–2013. He completed his Ph.D. in computer

science at the Institute of Computing Technology of the Chinese

Academy of Sciences in 2007. His research interests are in the area

of natural language processing, including parsing and statistical

machine translation.

Jinsong Su was born in 1982, he received the Ph.D. degree in Chi-

nese Academy of Sciences. He is now an associate professor of

Software School in Xiamen University. His research interests in-

clude natural language processing and statistical machine transla-

tion.

Min Zhang received his bachelor degree and Ph.D. degree in com-

puter science from Harbin Institute of Technology in 1991 and 1997,

respectively. He joined Soochow University in 2013 and is currently

a Distinguished Professor with the university. From 1997 to 1999,

he was a Postdoctoral Research Fellow with the Korean Advanced

Institute of Science and Technology in South Korea. He began his academic and indus-

trial career as a Researcher at Lernout & Hauspie Asia Pacific (Singapore) in 1999. He

joined Infotalk Technology (Singapore) as a Researcher in 2001 and became a Senior

Research Manager in 2002. He joined the Institute for Infocomm Research (Singapore)

in 2003. His current research interests include machine translation, natural language

29



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

processing, information extraction, large-scale text processing, and machine learning.

He has authored 150 papers in leading journals and conferences. He is the vice pres-

ident of COLIPS, a steering committee member of PACLIC, an executive member of

AFNLP and a member of ACL and IEEE.

30


