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a b s t r a c t 

Graph-based clustering has shown promising performance in many tasks. A key step of graph-based 

approach is the similarity graph construction. In general, learning graph in kernel space can enhance 

clustering accuracy due to the incorporation of nonlinearity. However, most existing kernel-based graph 

learning mechanisms is not similarity-preserving, hence leads to sub-optimal performance. To overcome 

this drawback, we propose a more discriminative graph learning method which can preserve the pair- 

wise similarities between samples in an adaptive manner for the first time. Specifically, we require the 

learned graph be close to a kernel matrix, which serves as a measure of similarity in raw data. Moreover, 

the structure is adaptively tuned so that the number of connected components of the graph is exactly 

equal to the number of clusters. Finally, our method unifies clustering and graph learning which can 

directly obtain cluster indicators from the graph itself without performing further clustering step. The ef- 

fectiveness of this approach is examined on both single and multiple kernel learning scenarios in several 

datasets. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Discovering clusters in unlabeled data is one of the most fun-

amental scientific tasks, with an endless list of practical appli-

ations in data mining, pattern recognition, and machine learning

1–5] . It is well-known that labels are expensive to obtain, so clus-

ering techniques are useful tools to process data and to reveal its

nderlying structure. 

Over the past decades, a number of clustering techniques have

een developed [6–9] . One main class of clustering methods is K-

eans and its various extensions. To some extent, these techniques

re distance-based methods. K-means has been extensively inves-

igated since its introduction in 1957 by Lloyd [10] , due to its sim-

licity and effectiveness. However, it is only suitable for data points

hat are evenly spread around some centroids [11,12] . To make it

ork under general circumstances, much effort has been spent on

apping data to a certain space. One representative approach is

sing kernel method. The first Kernel K-means algorithm was pro-

osed in 1998 [13] . Although some data points cannot be separated

n the original data representation, they are linearly separable in

ernel space. 
∗ Corresponding author. 
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Recently, robust Kernel K-means (RKKM) method has been de-

eloped [14] . Different from other K-means algorithms, RKKM uses

 21 -norm to evaluate the fidelity term. Consequently, RKKM can

lleviate the adverse effects of noise and outliers considerably. It

hows that RKKM can achieve superior performance on a number

f real-world data sets. However, its performance still depends on

he choice of the kernel function. 

Graph-based algorithms, as another main category of cluster-

ng methods, have been drawing growing attention. Among them,

pectral clustering is a leading and highly popular method due to

ts ability in incorporating manifold information with good perfor-

ance [15,16] . In particular, it embeds the data into the eigenspace

f the Laplacian matrix, derived from the pairwise similarities be-

ween data points [17] . A commonly used way of similarity mea-

ure is the Gaussian kernel [18] . Nevertheless, it is challenging to

elect an appropriate scaling factor σ [19] . Kernel spectral cluster-

ng (KSC) [20] and its variants [21] have also been proposed. 

Recently, a novel approach which models graph construction

s an optimization problem has been proposed [22–26] . It works

y either performing adaptive local structure learning or repre-

enting each data point as a weighted combination of other data

oints. The second approach can capture the global structure in-

ormation and can be easily extended to kernel space [27,28] . That

s to say, one seeks to learn a high-quality graph from artificially

onstructed kernel matrix. These methods are free of similarity

https://doi.org/10.1016/j.neucom.2019.07.086
http://www.ScienceDirect.com
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metrics or kernel parameters, thus they are more appealing to

real-world applications. 

Although the above approach has shown much better perfor-

mance than traditional methods, it also causes some information

loss. In particular, it learns similarity graph from the data itself

without considering other prior information. Consequently, some

similarity information might get lost, which should be helpful for

our graph learning [29,30] . On the other hand, preserving similar-

ity information has been shown to be important for feature se-

lection [31] . In [31] , new feature vector f is obtained by maximiz-

ing f T ˆ K f, where ˆ K is the refined similarity matrix derived from

original kernel matrix K . In this paper, we propose a way to pre-

serve the similarity information between samples when we learn

the graph and cluster labels. To the best of our knowledge, this is

the first work that develops similarity preserving strategy for graph

learning. 

It is necessary to point out that the key point of this paper

is the similarity preserving concept. Though there are many sim-

ilarity learning methods in the literature, they often ignore to ex-

plicitly retain structure information of original data. Concretely, we

expect our learned similarity matrix Z approximates pre-defined

kernel matrix K to some extent. The quality of similarity matrix

is crucial to many tasks, such as graph embedding [32] , where

the low-dimensional representation is expected to respect the

neighborhood relation characterized by Z . 

In addition, most existing graph-based clustering methods

perform clustering in two separate steps [15,24,25,33] . Specifically,

they first construct a graph. Then, the obtained graph is inputed

to the spectral clustering algorithm. In this approach, the quality

of the graph is not guaranteed, which might not be suitable

for subsequent clustering [22,34] . In this paper, the structure

information of the graph is explicitly considered in our model, so

that the component number in the learned graph is equal to the

number of clusters. Then, we can directly obtain cluster indicators

from the graph itself without performing further graph cut or

K-means clustering steps. Extensive experimental results validate

the effectiveness of our proposed method. 

The contributions of this paper are two-fold: 

1. Our proposed model has the capability of similarity preserv-

ing. This is the first attempt to preserve the sample’s sim-

ilarity information when we construct the similarity graph.

Consequently, the quality of the learned graph would be

enhanced. 

2. Cluster structure is seamlessly incorporated into our objective

function. As a result, the component number in the learned

graph is equal to the number of clusters, such that the ver-

tices in each connected component of the graph are partitioned

into one cluster. Therefore, we directly obtain cluster indicators

from the graph itself without performing further graph cut or

K-means clustering steps. 

Notations. Given a data matrix X ∈ R 

m ×n with m features and

n samples, we denote its ( i, j )th element and i th column as x ij and

X i , respectively. The � 2 -norm of vector x is represented by ‖ x ‖ =√ 

x T · x , where x T is the transpose of x . The squared Frobenius norm

is defined as ‖ X‖ 2 
F 

= 

∑ 

i j x 
2 
i j 

. I represents the identity matrix with

the proper size. Z ≥ 0 means all the elements of Z are nonnegative.

< · , · > denotes the inner product of two matrices. 

2. Preliminaries 

In this section, we give a brief overview of two popular similar-

ity learning techniques which have been developed recently. 
.1. Adaptive local structure learning 

For each data point X i , it can be connected to data point X j with

robability z ij . Closer points should have a larger probability, thus

 ij characterizes the similarity between X i and X j [22,35] . Since z ij 
as the negative correlation with the distance between X i and X j ,

he determination of z ij can be achieved by optimizing the follow-

ng problem: 

min 

Z i 

n ∑ 

j=1 

(‖ X i − X j ‖ 

2 z i j + γ z 2 i j ) , 

s.t. Z T i 1 = 1 , 0 ≤ z i j ≤ 1 , (1)

here γ is the trade-off parameter. Here, Z is adaptively learned

rom the data. This idea has recently been applied in a number of

roblems. Nonnegative matrix factorization [36,37] , feature selec-

ion [38] , multi-view learning [39] , just to name a few. One limi-

ation of this method is that it can only capture the local structure

nformation and thus the performance might be deteriorated. 

.2. Adaptive global structure learning 

To explore the global structure information, methods based on

elf-expression, have become increasingly popular in recent years

23,40] . The basic idea is to encode each datum as a weighted

ombination of other samples, i.e., its direct neighbors and reach-

ble indirect neighbors. If X j is quite similar to X i , coefficient z ij ,

hich denotes the contribution from X j to X i , should be large. From

his point of view, z ij can be viewed as the similarity between

he data points. The corresponding optimization problem can be

ormulated as: 

in 

Z 

1 

2 

‖ X − X Z‖ 

2 
F + γ ‖ Z‖ 

2 
F s.t. Z ≥ 0 (2)

his has drawn significant attention and achieved impressive per-

ormance in a number of applications, including face recognition

41] , motion segmentation [24,25] , semi-supervised learning [42] . 

As a matter of fact, Eq. (2) is related to some dimension reduc-

ion methods. For example, in Locally Linear Embedding (LLE), k -

earest neighbors are first identified for each data point [43] . Then

ach data point is reconstructed by a linear combination of its k

earest neighbors. By contrast, Eq. (2) uses all data points and de-

ermines the neighbors automatically according to the optimiza-

ion result. Thus, it is supposed to capture the global structure in-

ormation. Eq. (2) is different from Locality Preserving Projections

LPP), which tries to preserve the neighborhood structure during

he dimension reduction process [44] . LPP uses a predefined simi-

arity matrix to characterize the neighbor relations, while Eq. (2) is

rying to learn this similarity matrix automatically from data. For

aplacian Eigenmaps (LE), a similarity graph matrix is also prede-

ned [45] . On the other hand, Principal Component Analysis (PCA)

ims to find a projection so that the variance is maximized in low-

imensional space, which is less relevant to the similarity learning

ethods. 

To capture the nonlinear structure information of data,

q. (2) can be easily extended to kernel space, which gives 

in 

Z 

1 

2 

T r(K − 2 KZ + Z T KZ) + γ ‖ Z‖ 

2 
F s.t. Z ≥ 0 , (3)

here Tr ( ·) is the trace operator and K is the kernel matrix of X .

his model recovers the linear relations among the data in the

ew representation, and thus the nonlinear relations in the original

pace. Eq. (3) is more general than Eq. (2) and reduces to Eq. (2) if

 linear kernel function is applied. 
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Algorithm 1 Similarity Preserving Clustering (SPC). 

Input: Kernel matrix K, parameters α > 1 , β > 0 , γ > 0 . 

Initialize: Random matrix Z. 

REPEAT 

1: Update F by solving (8). 

2: For each i , update the i th column of Z according to Eq. (10). 

3: Project Z by Z = max (Z, 0) . 

UNTIL stopping criterion is met. 
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. Similarity preserving clustering 

The aforementioned two learning mechanisms lead to much

etter performance than traditional similarity measure based tech-

iques in many real-world applications. However, they ignore some

mportant information. Specifically, as they operate on the data it-

elf, some data relation information might get lost [29] . Since we

eek to learn a high-quality similarity graph, data relation informa-

ion would be crucial to our task. In this paper, we aim to retain

his information. 

Because the kernel matrix K itself contains similarity informa-

ion of data points, we expect Z to be close to K . To this end, we

ptimize the following objective function 

ax 
Z 

< K, Z > ⇔ max 
Z 

T r(KZ) ⇔ min 

Z 
−T r(KZ) . (4)

lthough we claim similarity preserving, Eq. (4) also keeps dissim-

larity information. For example, if points i and j are from differ-

nt clusters, K i j = K ji = 0 , then Z i j = Z ji = 0 would hold. Note that

e already have −T r(KZ) term in Eq. (3) . Hence we can combine

q. (4) and Eq. (3) by introducing a coefficient α > 1, we have 

in 

Z 

1 

2 

T r(K + Z T KZ) − αT r(KZ) + γ ‖ Z‖ 

2 
F s.t. Z ≥ 0 . (5)

lthough we just make a small modification to Eq. (3) , it makes

 lot of sense in practice. By tuning parameter α, we can control

ow much relation information we want to keep from the origi-

al kernel matrix. In particular, α can avoid the conflicts between

he pre-computed similarity K and the learned similarity Z . If K is

ot suitable to reveal the underlying relationships among samples,

e just set α = 1 , which means that there is no similarity preserv-

ng effect. The influence of selecting parameter α is elaborated in

ection 5.2.4 . 

Eq. (5) provides a framework to learn graph matrix Z with sim-

larity preservation. Further clustering is achieved by using spec-

ral clustering and K-means clustering on the learned graph. These

eparate steps often lead to suboptimal solutions [22] and K-means

s sensitive to the initialization of cluster centers. To this end, we

ropose to unify clustering with graph learning, so that two tasks

an be simultaneously achieved. Specifically, if there are c clusters

n the data, we hope to learn a graph with exactly c number of

onnected components. Obviously, Eq. (5) can hardly satisfy such a

onstraint. To this end, we leverage the following theorem: 

heorem 1 [46] . The number of connected components c is equal to

he multiplicity of zero as an eigenvalue of its Laplacian matrix L. 

Since L is positive semi-definite, it has n non-negative eigen-

alues λn ≥ ���λ2 ≥λ1 ≥ 0. Theorem 1 indicates that if 
∑ c 

i =1 λi = 0

s satisfied, the graph Z would be ideal and the data points are al-

eady clustered into c clusters. According to Fan’s theorem [47] , we

btain 

c 
 

i =1 

λi = min 

F ∈R 

n ×c ,F T F = I 
T r(F T LF ) , (6)

here Laplacian matrix L = D − Z, D is a diagonal matrix and its

lements are the column sums of Z . Combining Eq. (6) with Eq. (5) ,

ur proposed Similarity Preserving Clustering (SPC) is formulated

s 

in 

Z,F 

1 

2 

T r(K + Z T KZ) −αT r(KZ) + βT r(F T LF ) + γ ‖ Z‖ 

2 
F 

s.t. F T F = I, Z ≥ 0 . (7) 

y solving Eq. (7) , we can obtain a structured graph Z , which

as exactly c connected components. By running Matlab built-in
unction graphconncomp , we can obtain which component each

ample belongs to. 

.1. Optimization 

The problem (7) can be easily solved with an alternating opti-

ization approach. When Z is fixed, Eq. (7) becomes 

in 

F 
T r(F T LF ) s.t. F T F = I. (8)

t is quite standard to achieve F which is formed by the c eigen-

ectors of L corresponding to the c smallest eigenvalues. 

When F is fixed, Eq. (7) can be written column-wisely 

in 

Z i 

1 

2 

Z T i KZ i − αK i, : Z i + 

β

2 

d T i Z i + γ Z T i Z i , (9)

here d i = 

∑ n 
j=1 ‖ F i − F j ‖ 2 and we have used equality 

∑ 

i, j 
1 
2 ‖ F i −

 j ‖ 2 z i j = T r(F T LF ) . It is easy to achieve the closed-form solution 

 i = (K + 2 γ I) −1 

(
αK i, : −

βd i 
2 

)
(10)

nce parameter γ is given, (K + 2 γ I) becomes a constant. There-

ore, we only perform the matrix inversion once. We summarize

he steps in Algorithm 1 . Our algorithm stops if the maximum it-

ration number 200 is reached or the relative change of Z is less

han 10 −5 . 

. Multiple kernel learning 

Different kernels correspond to different notions of similarity

nd lead to different results. This makes it not be reliable for prac-

ical applications. Multiple Kernel Learning (MKL) offers a princi-

al way to encode complementary information and automatically

earning an optimal combination of distinct kernels [4 8,4 9] . Instead

f heuristic kernel selection, a principled method is developed to

utomatically learn a good combination of multiple kernels. 

Specifically, suppose there are in total r kernels, we introduce

ernel weight for each kernel, e.g., w i for kernel K 

i . We denote

he combined kernel as H = 

∑ r 
i =1 w i K 

i , and the weight distribu-

ion satisfies 
∑ r 

i =1 

√ 

w i = 1 [50] . Finally, our multiple kernel learn-

ng based similarity preserving clustering (mSPC) method can be

ormulated as 

min 

Z,F,w 

1 

2 

T r(H + Z T HZ) −αT r(HZ) + βT r(F T LF ) 

+ γ ‖ Z‖ 

2 
F s.t. F T F = I, Z ≥ 0 . 

 = 

r ∑ 

i =1 

w i K 

i , 

r ∑ 

i =1 

√ 

w i = 1 , w i ≥ 0 . (11) 

he problem (11) can be solved in a similar way as (7) . In specific,

e repeat the following steps. 

1) Updating Z and F when w is fixed: we can directly obtain H ,

and the optimization problem (11) is identical to Eq. (7) . We

implement Algorithm 1 with H as the input kernel matrix. 

2) Updating w when Z and F are fixed: solving Eq. (11) with

respect to w can be reformulated as 
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Table 1 

Description of the data sets. 

# instances # features # classes 

YALE 165 1024 15 

JAFFE 213 676 10 

ORL 400 1024 40 

YEAST 1484 1470 10 

USPS 1854 256 20 

TR11 414 6429 9 

TR41 878 7454 10 

TR45 690 8261 10 
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min 

w 

r ∑ 

i =1 

w i h i s.t. 

r ∑ 

i =1 

√ 

w i = 1 , w i ≥ 0 , (12)

where 

h i = T r(K 

i − 2 αK 

i Z + Z T K 

i Z) . (13)

The Lagrange function of Eq. (12) is 

J (w ) = w 

T h + η

( 

1 −
r ∑ 

i =1 

√ 

w i 

) 

. (14)

By utilizing the Karush–Kuhn–Tucker (KKT) condition with
∂J (w ) 
∂w i 

= 0 and the constraint 
∑ r 

i =1 

√ 

w i = 1 , we have w as follows:

w i = 

( 

h i 

r ∑ 

j=1 

1 

h j 

) −2 

. (15)

The complete procedure is summarized in Algorithm 2 . 

Algorithm 2 The algorithm of mSPC. 

Input: A set of kernel matrices { K 

i } r 
i =1 

, parameters α > 1 , β > 0 ,

γ > 0 . 

Initialize: Random matrix Z, w i = 1 /r. 

REPEAT 

1: Calculate H. 

2: Update F by performing singular value decomposition on L =
D − Z and finding the c smallest eigenvectors. 

3: Update Z column-wisely according to (10). 

4: Update � h by (13). 

5: Calculate �
 w according to (15). 

UNTIL stopping criterion is met. 

5. Experiment 

In this section, we perform extensive experiments to demon-

strate the effectiveness of our proposed models. 

5.1. Experiment on synthetic data 

We generate a synthetic data set with 300 points. The data

points distribute in the pattern of two moons. Each moon is con-

sidered as a cluster. In Fig. 1 , we present the clustering results

of our proposed SPC and standard k-means. Gaussian kernel with

 = 10 is used in our SPC model. We can observe that our method

performs much better than k-means. We quantitatively assess the

clustering performance in terms of accuracy (Acc), normalized mu-

tual information (NMI), and Purity. For SPC, Acc, NMI, and Pu-

rity are 93%, 63.49%, 93%, respectively. Correspondingly, k-means

produces 73.67%, 16.87%, and 73.67%. 

5.2. Experiment on real data 

5.2.1. Data sets 

We conduct our experiments with eight benchmark data sets,

which are widely used in clustering experiments. We show the

statistics of these data sets in Table 1 . 

These data sets are from different fields. Specifically, YALE 1 ,

JAFFE 2 , ORL 3 are three face databases. Each image represents dif-

ferent facial expressions or configurations due to times, illumi-

nation conditions, and glasses/no glasses. Fig. 2 (a) and (b) shows
1 http://vision.ucsd.edu/content/yale- face- database . 
2 http://www.kasrl.org/jaffe.html . 
3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html . 
ome example images from JAFFE and YALE database, respectively.

EAST is a microarray data set. USPS data set 4 is obtained from the

canning of handwritten digits from envelopes by the U.S. Postal

ervice. Some sample digits are shown in Fig. 2 (c). The last three

ata sets in Table 1 are text data 5 . 

We manually construct 12 kernels. They consist of seven Gaus-

ian kernels K(x, y ) = exp(−‖ x − y ‖ 2 
2 
/ (td 2 max )) with t ∈ {0.01, 0.05,

.1, 1, 10, 50, 100} and d max denotes the maximal distance be-

ween data points; four polynomial kernels K(x, y ) = (a + x T y ) b of

he form with a ∈ {0, 1} and b ∈ {2, 4}; a linear kernel K(x, y ) = x T y .

urthermore, all kernel matrices are normalized to [0,1] range to

void numerical inconsistence. 

.2.2. Comparison methods 

To fully investigate the performance of our method on clus-

ering, we choose a good set of methods to compare. In general,

hey can be classified into two categories: graph-based and kernel-

ased clustering methods. 

• Spectral Clustering (SC) [15] . We use kernel matrix as its graph

input. For our SPC, we learn graph from kernels. 

• Robust Kernel K-means (RKKM) 6 [14] . As an extension to the

classical K-means clustering method, RKKM has the capabil-

ity of dealing with nonlinear structures, noise, and outliers in

the data. We also compare with its multiple kernel learning

version: RMKKM. 

• Simplex Sparse Representation (SSR) [51] . Based on self-

expression, SSR achieves satisfying performance in numerous

data sets. 

• Clustering with Adaptive Neighbor (CAN) [22] . Based on adaptive

local structure learning, CAN constructs the similarity graph by

Eq. (1) . 

• Kernel Spectral Clustering (KSC) [20] . Based on a weighted ker-

nel principal component analysis strategy, KSC performs mul-

tiway spectral clustering. Moreover, Balanced Line Fit (BLF) is

proposed to obtain model parameters. 

• Our proposed SPC and mSPC 

7 . Our proposed single kernel and

multiple kernel learning based similarity preserving clustering

methods. 

• SPC1 and mSPC1 . To observe the effect of similarity preserving,

we let α = 1 in SPC and name this method as SPC1. Similarly,

we have mSPC1. They are equivalent to the methods in [34] . 

• Multiple Kernel K-means (MKKM) 8 [52] . The MKKM extends K-

means in a multiple kernel setting. It imposes a different con-

straint on the kernel weight distribution. 
4 http://www-stat.stanford.edu/ ∼tibs/ElemStatLearn/data.html . 
5 http://www-users.cs.umn.edu/ ∼han/data/tmdata.tar.gz . 
6 https://github.com/csliangdu/RMKKM . 
7 https://github.com/sckangz/SPC . 
8 http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/mkfc/code . 

http://vision.ucsd.edu/content/yale-face-database
http://www.kasrl.org/jaffe.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html
http://www-users.cs.umn.edu/~han/data/tmdata.tar.gz
https://github.com/csliangdu/RMKKM
https://github.com/sckangz/SPC
http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/mkfc/code
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Fig. 1. The clustering results on synthetic data. 

Table 2 

Clustering results measured on benchmark data sets. The average performance on those 12 kernels are put in parenthesis. For KSC, we run 10 times and report the best 

performance and their mean value. The best results for single and multiple kernel methods are highlighted in boldface. 

Data SC RKKM SSR CAN SPC1 SPC KSC MKKM AASC RMKKM mSPC1 mSPC 

(a) Accuracy(%) 

YALE 49.42(40.52) 48.09(39.71) 54.55 58.79 55.29(45.07) 60.60 (46.95) 36.36(29.76) 45.70 40.64 52.18 56.97 63.03 

JAFFE 74.88(54.03) 75.61(67.98) 87.32 98.12 97.18(86.55) 98.03 (86.20) 72.77(66.48) 74.55 30.35 87.07 97.18 98.12 

ORL 57.96(46.65) 54.96(46.88) 69.00 61.50 62.47(50.64) 75.75 (52.48) 37.00(32.70) 47.51 27.20 55.60 65.25 75.43 

YEAST 35.55(30.89) 34.04(31.52) 29.99 34.62 35.72(30.55) 37.85 (31.65) 31.19(28.36) 13.04 35.38 31.63 36.08 39.15 

USPS 35.18(26.90) 65.16(55.72) 64.83 62.84 65.94(56.38) 67.25 (56.94) 61.49(47.87) 63.72 37.36 65.47 65.32 68.74 

TR11 50.98(43.32) 53.03(45.04) 41.06 38.89 70.88(54.25) 78.26 (56.37) 50.73(41.86) 50.13 47.15 57.71 73.43 79.63 

TR41 63.52(44.80) 56.76(46.80) 63.78 62.87 67.28(52.75) 72.89 (49.40) 53.42(45.11) 56.10 45.90 62.65 67.31 80.41 

TR45 57.39(45.96) 58.13(45.69) 71.45 56.96 73.59(53.06) 75.07 (57.26) 53.48(44.99) 58.46 52.64 64.00 74.35 75.64 

(b) NMI(%) 

YALE 52.92(44.79) 52.29(42.87) 57.26 57.67 56.37(45.00) 61.32 (45.62) 44.84(35.47) 50.06 46.83 55.58 56.52 61.36 

JAFFE 82.08(59.35) 83.47(74.01) 92.93 97.31 96.35(84.67) 98.62 (83.30) 73.67(68.39) 79.79 27.22 89.37 95.61 97.36 

ORL 75.16(66.74) 74.23(63.91) 84.23 76.59 79.36(63.98) 86.06 (66.56) 56.78(54.21) 68.86 43.77 74.83 80.04 85.93 

YEAST 21.38 (6.18) 17.27(9.31) 15.85 20.06 15.37(9.62) 16.44(10.25) 13.87(13.83) 10.29 21.19 20.71 15.89 16.23 

USPS 29.71(21.33) 63.94(52.90) 72.68 76.13 74.85(55.28) 78.54 (58.93) 48.45(40.27) 62.25 29.81 63.60 75.29 79.88 

TR11 43.11(31.39) 49.69(33.48) 27.60 19.17 58.14(37.42) 63.10 (35.94) 46.22(36.51) 44.56 39.39 56.08 60.15 63.90 

TR41 61.33(36.60) 60.77(40.86) 59.56 51.13 65.90(43.28) 71.22 (38.54) 44.21(39.19) 57.75 43.05 63.47 65.11 70.50 

TR45 48.03(33.22) 57.86(38.96) 67.82 49.31 74.21(44.29) 75.94 (46.28) 43.41(42.95) 56.17 41.94 62.73 74.97 74.57 

(c) Purity(%) 

YALE 51.61(43.06) 49.79(41.74) 58.18 59.39 56.79(55.25) 60.53 (56.28) 44.85(34.67) 47.52 42.33 53.64 60.00 66.67 

JAFFE 76.83(56.56) 79.58(71.82) 96.24 98.12 97.85(96.03) 98.25 (97.02) 77.00(72.30) 76.83 33.08 88.90 97.18 98.12 

ORL 61.45(51.20) 59.60(51.46) 76.50 68.5 73.28(70.02) 82.08 (76.56) 41.00(36.73) 52.85 31.56 60.23 77.00 82.69 

YEAST 53.05(35.37) 45.39(38.18) 44.29 58.97 57.38(40.83) 65.72 (44.75) 32.21(31.14) 32.58 52.71 33.21 60.27 66.51 

USPS 37.48(33.27) 72.49(62.49) 75.84 71.89 76.90(63.78) 77.54 (64.82) 62.84(51.48) 70.77 42.40 73.45 77.03 79.25 

TR11 58.79(50.23) 67.93(56.40) 85.02 44.20 81.79(80.12) 90.10 (83.86) 52.90(46.76) 65.48 54.67 72.93 87.44 93.04 

TR41 73.68(56.45) 74.99(60.21) 75.40 67.54 73.05(71.13) 80.67 (74.79) 53.42(47.92) 72.83 62.05 77.57 73.69 82.45 

TR45 61.25(50.02) 68.18(53.75) 83.62 60.87 78.74(77.82) 86.32 (80.03) 55.51(49.29) 69.14 57.49 75.20 78.26 87.59 

Fig. 2. Sample images of USPS, JAFFE, and YALE. 
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• Affinity Aggregation for Spectral Clustering (AASC) 9 [53] . The AASC

is an extension of spectral clustering to the situation when

multiple affinities exist. 

For a fair comparison, we either use the recommended param-

ter settings in their respective papers or tune each method to ob-

ain the best performance. In fact, the optimal performance for SC,

KKM, MKKM, AASC, and RMKKM methods can be easily obtained

hrough implementing the package given in [14] . SC, SSR, and

AN are parameter-free models. KSC selects parameters based on

alanced Line Fit principle. 
9 http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/aasc/code . 

http://imp.iis.sinica.edu.tw/IVCLab/research/Sean/aasc/code
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Fig. 3. The visualization of similarity preserving effect. 
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Fig. 4. The influence of parameters on YALE data set. 
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5.2.3. Results 

All results are summarized in Table 2 . We can see that our

methods SPC and mSPC outperform others in most cases. In par-

ticular, we have the following observations: (1) the improvement

of SPC over SPC1 is considerable. Noted that the only difference

between SPC and SPC1 is that SPC explicitly considers the sim-

ilarity preserving effect. In other words, SPC adds the proposed

term Eq. (4) , which aims to keep the learned graph matrix Z close

to the kernel matrix K , so that the similarity information carried
y the kernel matrix will transfer to the learned graph matrix.

ence this demonstrates the significance of similarity preserving

n graph learning; (2) for multiple kernel methods, mSPC also per-

orms better than mSPC1 in most experiments. This once again

onfirms the importance of similarity preserving; (3) compared to

elf-expression based method SSR, our advantage is also obvious.

or example, in TR11, SPC enhances the accuracy from 41.06% to

8.26%. Note that our basic objective function Eq. (3) is also de-

ived from self-expression idea. However, our method is kernel
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ethod; (4) with respect to traditional spectral clustering, kernel

pectral clustering, the recently proposed robust kernel K-means

ethod, adaptive local structure graph learning method, the im-

rovement is very promising; (5) in terms of multiple kernel learn-

ng approach, mSPC also achieves much better performance than

ther state-of-the-art techniques. 

To better illustrate the effect of similarity preserving, we visual-

ze the results of YALE data in Fig. 3 . In specific, Fig. 3 plots the his-

ogram of H − Z, i.e., the difference between the learned kernel in

q. (11) and similarity matrix. We can see that they are quite close

or most elements and the difference is the refinement brought by

ur learning algorithm. The manually constructed kernel matrix of-

en fails to reflect the underlying relationships among samples due

o the inherent noise or the inappropriate use of a metric func-

ion. This is validated by the experimental results. Note that for SC

ethod, we directly treat kernel matrix as similarity matrix, while

or our proposed SPC method, we use the learned similarity matrix

 to perform clustering. It can be seen that the results of SPC are

uch better than that of SC. 

Fig. 3 displays the difference between the original data X and

he reconstructed data XZ . Good reconstruction means that Z rep-

esents the similarity pretty well. The reconstruction error ac-

ounts for noise or outliers in the original data. As shown by Fig. 3 ,

ur learned Z reconstructs the original data with a small error.

herefore, our proposed approach can achieve a high-quality simi-

arity matrix. 

.2.4. Parameter analysis 

As shown in Eq. (11) , there are three parameters in our model.

s we mentioned previously, α is bigger than one. Take YALE data

et as an example, we demonstrate the sensitivity of our model

SPC in Fig. 4 . We can see that it works well over a wide range

f values. Note that α = 1 case has been discussed by SPC1 and

SPC1 methods in Table 2 . When α = 1 , Eqs. (7) and (11) do not

ossess similarity preserving capability. 

. Conclusion 

In this paper, we propose a clustering algorithm which can ex-

loit similarity information of raw data. Furthermore, the structure

nformation of a graph is also considered in our objective function.

omprehensive experimental results on real data sets well demon-

trate the superiority of the proposed method on the clustering

ask. It has been shown that the performance of the proposed

ethod is largely determined by the choice of the kernel function.

o this end, we develop a multiple kernel learning method, which

s capable of automatically learning an appropriate kernel from

 pool of candidate kernels. In the future, we will examine the

ffectiveness of our framework on the semi-supervised learning

ask. 
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