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a b s t r a c t 

Dealing with missing data in data analysis is inevitable. Although powerful imputation methods that 

address this problem exist, there is still much room for improvement. In this study, we examined single 

imputation based on deep autoencoders, motivated by the apparent success of deep learning to efficiently 

extract useful dataset features. We have developed a consistent framework for both training and impu- 

tation. Moreover, we benchmarked the results against state-of-the-art imputation methods on different 

data sizes and characteristics. The work was not limited to the one-type variable dataset; we also im- 

puted missing data with multi-type variables, e.g., a combination of binary, categorical, and continuous 

attributes. To evaluate the imputation methods, we randomly corrupted the complete data, with vary- 

ing degrees of corruption, and then compared the imputed and original values. In all experiments, the 

developed autoencoder obtained the smallest error for all ranges of initial data corruption. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

The presence of missing data is a practical challenge for many

esearchers working in data mining. Many techniques have been

roposed to impute (estimate) missing data [1] . The most straight-

orward approach, complete-case analysis, disregards samples with

issing values. In many cases, such as medical data, this means

 severe reduction of the data size, besides the obvious problem

f introducing biases. Simple mean substitution is a common ap-

roach but can also introduce bias and completely ignores any cor-

elation among the predictor variables. An alternative is to use

earest neighbor methods, where observations with the smaller

istance to the missing data are used in the imputation process [2] .

ere one can find weighted nearest neighbor [3] approaches with

ood performances. Both mean imputation and nearest neighbor

ethods are single imputation techniques, whereas multiple im-

utations have the advantage to create a probability distribution of

mputation values that consider uncertainty in the estimation and

re generally regarded as the best approach to missing data im-

utation [4] . However, multiple imputations may have problems in

onverging to a reasonable stationary distribution [5] . 
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Along with the developments and success of deep learning,

here has been an increasing interest in autoencoders [6] as a tool

or manifold learning and finding good representations of data.

n example of efficient usage of such autoencoder representations

an be found for the task of human pose recovery. Hong et al.

7] used an autoencoder architecture to reconstruct 3D poses from

D silhouettes. Further algorithmic developments have introduced

he denoising autoencoder [8] and the variational autoencoder [9] ,

here the latter extends the autoencoder to a generative model.

lthough the denoising method was mainly introduced to extract

ood and useful features from the input data; it naturally extends

o imputation of missing data. Different forms of autoencoders

ave been proposed in connection with the restoration of sensor

ata [10,11] . There are also methods combining autoencoder train-

ng with genetic algorithms in missing data applications [12–14] ,

ostly using shallow autoencoder architectures. Deep learning

pproaches can be found in the analysis of traffic data imputa-

ion [15] and for dealing with missing data in electronic health

ecords [16] and in genomic data [17] . Using autoencoders for

ultiple imputation has also been proposed [18] , although for a

rue generative model approach the variational autoencoder is a

ore natural choice. 

In this paper, we study the use of denoising autoencoders for

ingle imputation of missing data. We present a consistent frame-

ork aimed for general tabular datasets. The proposed architec-

ure follows a butterfly construction with mirrored decoder weighs

nd pre-training of encoder layers. To handle missing data during

https://doi.org/10.1016/j.neucom.2019.07.065
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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Fig. 1. The autoencoder network architecture as exemplified here with three hidden 

layers. The equally sized encoder and decoder part share the bottleneck layer z . Tied 

weights are used indicated by the set of weights ( W 1 , W 2 ) for the encoder and the 

transpose of these for the decoder part (W 

T 
2 , W 

T 
1 ) . Note that bias weights are not 

explicitly shown in the figure. The output layer ̃  x is the autoencoder reconstruction 

of the input x . 
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model training, the essential modification of the original denoising

autoencoder is to mask all unknown values from the loss function.

Furthermore, we allow for imputation of data with mixed variable

types using a sum of appropriate (masked) loss functions. We have

tested the framework on tabular datasets with different charac-

teristics (including image data) and compared the results against

other popular and imputation methods. For all numerical tests, us-

ing a broad range of initial missing values on each of the datasets,

the proposed autoencoder framework obtained the smallest errors.

Unlike other imputation methods, the autoencoder network can be

exported and applied on similar data after the usual model selec-

tion and training procedure. 

Section 2 contains a brief introduction to stacked denoising au-

toencoders and gives a detailed description of the proposed im-

putation method. In Sections 3 & 4 there is a description of the

datasets used and details of how the experiments were carried out.

Section 5 presents the results and a discussion and conclusion can

be found in Section 6 . 

2. Methods 

2.1. Autoencoder structure 

Autoencoders are unsupervised neural networks consisting of

an encoder and a decoder part. The encoder is trained to encode

input data to a typically lower dimensional representation (one

way to avoid identity mappings). Then the decoder is trained to

reconstruct the input data from this representation. Such networks

can capture the useful features [19] , which makes them suitable

for imputation of missing data. 

The structure of the proposed autoencoder is based on stacking

simple denoising autoencoders [8] with some adjustments detailed

in this section. The full autoencoder follows a butterfly construc-

tion with equal sized encoder and decoder parts, see Fig. 1 . Each

layer in the encoder performs a deterministic mapping from layer

input h to layer output h 

′ with parameters W and b , 

h 

′ = f (Wh + b ) , (1)

where f ( ·) is the mapping (or activation) function. The weight ma-

trix W , and the bias vector b are trainable parameters for each

layer of the encoder. The same mapping process is then applied

to the decoder part where the last layer of the decoder is the

reconstructed input to the encoder. It is important to design the

last layer of the encoder, denoted z , as a bottleneck to get a com-

pressed representation of input and avoid identity mapping. 

The proposed autoencoder is also using tied weights, where

the decoders weights are the transposed of the encoder weights.

For instance if W 

′ denotes the last weight matrix of the decoder,

L 
hen W 

′ 
L 

= W 

T 
1 
, the transposed of the first weight matrix of the

ncoder (see Fig. 1 ). This symmetric network lowers the probabil-

ty of staying in the linear conformation [20] . Also, it is compu-

ationally faster, having tied weights as compared to independent

eights for the decoder part. All hidden layers in the autoencoder

se a tanh or Rectified linear unit (ReLU) activation function [21] .

he activation function for the output layer, which depends on the

haracteristics of the dataset, can be linear, logistic, softmax, or a

ombination of those. 

.2. Training the autoencoder 

In this study, we train the autoencoders in a two-step proce-

ure. The first step consists pre-training of each layer of weights

n the encoder part. After pre-training, all layers of the encoder

re stacked and mirrored to form the decoder part (transpose of

ncoder weights), see Fig. 1 . The second step of the Training con-

ists of fine-tuning of the full autoencoder. 

The pre-training step of the encoder follows closely that of Vin-

ent et al. [20] by stacking simple (on the hidden layer) autoen-

oders trained with a denoising technique where a randomly cho-

en fraction of the inputs are set to zero for each sample (mask-

ng noise). The denoising is important to avoid identity mappings,

specially if the size of the hidden layer is larger than the num-

er of inputs. The amount of denoising used is a tunable hyper-

arameter. Furthermore, we are using tied weights, also when

raining each simple autoencoder. The Training consists of min-

mizing the error between the input and the reconstructed out-

ut. If we assume a dataset with continuous values x , we use a

ummed square loss function when training each of the simple

utoencoders, together with linear output activation functions. For

he first layer, this is given by, 

 1 = 

1 

N 

N ∑ 

n =1 

|| x n − ˆ x n || 2 , (2)

here ˆ x is the reconstructed input as given by the first simple au-

oencoder. 

ˆ  = W 

T 
1 f (W 1 x + b ) + b 

′ (3)

Pre-training of the second layer of the encoder consists of tak-

ng the first hidden layer representation of the data as input to a

econd simple autoencoder and minimizing the squared loss be-

ween the hidden representation and its reconstruction. 

 2 = 

1 

N 

N ∑ 

n =1 

|| h 

(1) 
n − ˆ h 

(1) 
n || 2 (4)

ere the ˆ h 

(1) 
n is the reconstructed first layer hidden representa-

ion given the second simple autoencoder. The remaining layers

f the encoder are pre-trained by repeatedly training simple au-

oencoders with hidden layer representations as input data. Once

ll layers of the encoder have been pre-trained the decoder is

utomatically given by the tied weights method, see Fig. 1 . Bias

eights, however, are randomly initialized in the decoder part. 

Fine-tuning of the full autoencoder is accomplished by mini-

izing the loss function E f , 

 f = 

1 

N 

N ∑ 

n =1 

|| x n − ˜ x n || 2 . (5)

ere ˜ x n denotes the full autoencoder reconstruction of the in-

ut x n (see Fig. 1 ). The minimization of E f is accomplished using

tochastic gradient descent (with dense-matrix GPU implementa-

ion) [22] . In addition to improving the efficiency of stochastic gra-

ient descent, three different methods to control the learning rate

as available during training, Nesterov momentum, RMSProp, and
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Fig. 2. The autoencoder architecture for data with a mixture of different variable 

types. The binary, continuous, and categorical inputs are concatenated to a single 

input vector but are separated in the output layer. Each variable type has a separate 

loss function. The autoencoder is not using tied weights in the last layer of the 

decoder when having more than one variable type. 
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Table 1 

Sample sizes and number of features for all 

dataset used in the numerical experiments. 

data (samples, features) 

Synthetic, n f = 1 (1000, 200) 

Synthetic, n f = 4 (1000, 200) 

Synthetic, n f = 2 (2000, 500) 

Synthetic, n f = 4 (2000, 500) 

MNIST (70000, 784) 

Proteomic (945, 134) 

Genomic (3738, 978) 

NYC bicycle (856, 6) 

Olivetti faces (400, 4096) 
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dam [23] . We used the dropout technique to avoid overfitting

uring the fine-tuning, both on the inputs and the hidden layers.

e also allow for L 2 regularization during training, if necessary, to

urther reduce possible overfitting of the model. 

.3. Dealing with mixed data variables 

Occasionally datasets consist of a mixture of different variable

ypes, e.g., in medical data, it is widespread to have a combination

f continuous, binary, and categorical variables. Pre-processing of

inary or categorical variables often means using binary or one-

ot encoding [24] , respectively. The variable type affects the choice

f the error function and output activation function when training

he autoencoder, both in the pre-training and the fine-tuning step.

or the case of binary data, the output activation is the sigmoid,

nd we use the cross-entropy loss function, 

 b = − 1 

N 

N ∑ 

n =1 

[ x n log ̃  x n + (1 − x n ) log (1 − ˜ x n ) ] , (6) 

here now ˜ x n denotes the prediction for sample n . The change of

he reconstruction error also applies to the pre-training of the first

ayer of the encoder. All subsequent layers of the encoder use the

quared error given by Eq. (4) regardless of the input data type.

or the case of mixed continuous, binary and categorical inputs the

econstruction error is a sum of both squared and cross-entropy

oss (see Fig. 2 ), with the appropriate choice of linear, sigmoidal

nd softmax output activation functions. As illustrated in Fig. 2 the

ixed input data is concatenated to form a single input vector to

he encoder. To ease the implementation, the last layer in the de-

oder does not use the transpose of the first layer of the encoder. 

.4. Autoencoder for imputation 

To be able to use the autoencoder as a tool for imputation of

issing data, two additional steps are needed. First, the autoen-

oder must be able to train on a dataset that contains missing data.

econd, given a trained autoencoder, how can this trained autoen-

oder reconstruct an incomplete input? 

For the first step, missing data for each variable are replaced by

he average over the known ones. The loss function used during

raining is affected by missing values; therefore, all components

f the input vector x n that contain missing values are masked out

hen forming the error. For instance, in the case of continuous in-

ut data, the mean squared loss function is calculated over known

alues only. Eq. (2) , showing the loss function for the first layer, is

herefore modified according to, 

 1 = 

1 

N 

N ∑ 

n =1 

|| x 

(known) 
n − ˆ x 

(known) 
n || 2 . (7)
Masking of missing values when computing the reconstruction

rror is also used for binary and categorical input data and applies

o both pre-training and fine-tuning of the autoencoder. 

With the trained autoencoder, it is straightforward to impute

issing values of an input vector. Similar to the training step, all

issing values are replaced by mean values when entered into

he encoder. The corresponding output of the decoder then gives

he imputed values. For continuous data, we use the actual de-

oder outputs, and for binary or categorical data, the outputs can

e interpreted as class probabilities or be converted into exact

lass predictions. We denote the proposed autoencoder for impu-

ation of missing data by SDAi (Stacked Denoising Autoencoder for

mputation). 

. Datasets 

Our model for imputation of missing data (SDAi) was tested on

ix different datasets with different characteristics, including one

ataset with a mixture of both numerical and categorical input

ariables. Four of the datasets were synthetic and generated from

he same underlying formula (see below). Table 1 shows a sum-

ary of the datasets used in this study. 

.1. Synthetic data 

We generated d -dimensional data by shifting sine functions

ith known frequencies (one or four random frequencies are used

n the actual runs) and a random phase for each sample. Inde-

endent Gaussian noise is added to each feature in the samples

o make the problem more challenging. The synthetic dataset D Nd 

ith N samples and d features is generated as follows: 

D Nd = { s 1 , . . . , s N } , where s n ∈ R 

d , n = 1 , . . . , N. 

s i,n = sin ( f n x i ) + z i , x i = 2 π
i − 1 

d 
+ u n , ∀ i = 1 , . . . , d, 

here u n ∼ U(0 , 2 π) and z i ∼ N (0 , σ 2 ) . 

n the experiment, we generated two different sizes of this data,

0 0 0 and 20 0 0 samples with 200 and 500 variables respectively,

ith different random frequencies. The frequency f n for each sam-

le is randomly chosen from a predefined set of frequencies (inte-

ers) for each data set. Using more than one frequency adds more

omplexity to the data. 

.2. MNIST data 

The algorithm was also tested on an image dataset of hand-

ritten digits, the MNIST data [25] . The data contains 70,0 0 0 im-

ges, where each image is of size 28 × 28 pixels. We used 50,0 0 0

or training and 10,0 0 0 for validation and testing each. The images

ere normalized such that each pixel ∈ [0, 1]. 

A PCA analysis on the MNIST data reveals that only a handful

f directions carry most of the variation (see Fig. 3 ). The blue line
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Fig. 3. Shows sorted explained variances, which have been calculated by projecting 

the data using PCA. The horizontal blue line shows the Kaiser criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. A random selection of nine images from the Olivetti face dataset provided 

by AT&T Laboratories Cambridge. Each column shows samples from the same face. 
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shows the Kaiser criterion [26] , which separates the components

of data with eigenvalues above one from the rest. This criterion

can give a perspective of the range of the bottleneck’s size for the

network architecture. 

3.3. Gene and protein expression data 

One proteomic dataset [27] (protein profiling of breast cancer

cell lines), consisting of 134 variables (antibody expression mea-

surements) in 945 samples, was used. For this data, the Kaiser cri-

terion shows that 22 PCA components carry most of the variation. 

An additional biological dataset, gene expression measure-

ment for somatic mutations in lung cancer [27] was used. It

contains 3738 samples with gene expression of 978 transcripts.

As for the proteomic dataset, there is a large degree of linear

correlation among the 978 variables, as indicated by the PCA

analysis. 

3.4. Bicycle counts for east river bridges 

This dataset contains a mixture of continuous, binary, and cate-

gorical variables. The data has been collected during seven months

in the year 2016 on four east river bridges in New York city. 1 The

dataset originally contains 214 samples and 10 features. 

We reshaped the structure of the data to increase the number

of samples and add categorical variables. Each sample now con-

tains only one bridge and where the bridge name is added as a

categorical variable. Furthermore, the variable number of the bikes

on each bridge, was added to the data, and the precipitation vari-

able was transformed to a binary variable rain , which means any

positive precipitation is one, and the rest is zeros. Finally, the only

considered temperature features were the average of the low and

high temperature of each day. After these changes, we ended up

with 856 samples and six features: 

• Bridge name (Categorical) 

• weekday (Categorical) 

• Average Temperature (Continuous) 

• Nof bikes on each bridge (Continuous) 

• Total number of bikes on each day (Continuous) 

• Rain (Binary). 
1 NYC Open Data https://data.cityofnewyork.us/Transportation/Bicycle-Counts- 

for- East- River- Bridges/gua4- p9wg f
.5. The Olivetti faces dataset 

AT&T Laboratories Cambridge provides 400 images of faces, 2 

ach of size 64 × 64. There are in total 40 subjects in 10 differ-

nt situations, e.g., varying lighting conditions, facial expressions,

tc. Fig. 4 shows a subset of nine images, three samples for three

ifferent faces. Before using the face data in the numerical experi-

ents they were normalized such that each pixel ∈ [0, 1]. 

. Numerical experiments procedure 

The datasets were used to test the proposed SDAi imputation

ethod. For comparison, four other popular methods were also

ested on the same datasets. The first one was an improved K-

earest neighbor (K-NN) imputation method by Tutz et al. [3] .

e also used the well known multiple imputation technique

ICE [4] as the second external method in the experiments. As

he third method we considered a random forest imputation (RF)

odel [28] based on regression and classification trees. They rep-

esent an ensemble learning method that can handle continuous

nd categorical data. Finally, as a baseline method we used mean

mputation. 

.1. Hyper-parameters 

The following hyper-parameters for the SDAi model were opti-

ized during model selection: 

• Number of hidden layers 

• Hidden layer sizes 

• Regularization parameters 

• Dropout probabilities 

• Mini-batch size 

• Activation function 

• Learning rates 

• Number of epochs 

For the Olivetti faces dataset we have used autoencoder with

onvolutional layers [29] to allow for a more efficient architecture.
2 The Database of Faces https://www.cl.cam.ac.uk/research/dtg/attarchive/ 

acedatabase.html 

https://data.cityofnewyork.us/Transportation/Bicycle-Counts-for-East-River-Bridges/gua4-p9wg
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Fig. 5. The training and test process used when evaluating the SDAi method. Two 

loops were used, the outermost loop was for estimation of test performance and 

the innermost loop for model selection, given a specific training dataset. The whole 

procedure was repeated for different fractions of initial corruption. 

Table 2 

The table shows a set of hyper-parameters for the SDAi method obtained 

during model selection for 30% of manually corrupted data. Network size 

refers to the encoder part of the model (layer sizes), where the last num- 

ber corresponds to the size of the latent space. For the regularization, λ

refers to the parameter controlling the scale of L 2 and dropout being the 

probability of removing nodes during training. 

Dataset Network size Dropout λ ( L 2) 

Synth (1000,200) n f = 1 [100, 8] [0.3, 0.1] 10 −4 

Synth (1000,200) n f = 4 [100, 50, 12] [0.3, 0.1, 0] 10 −3 

Synth (2000,500) n f = 1 [160, 50, 15] [0.4, 0.2, 0.1] 10 −4 

Synth (2000,500) n f = 4 [250, 100, 15] [0.3, 0.2, 0.1] 10 −4 

MNIST [209, 111, 55] [0.2, 0.1, 0] 10 −5 

Proteomic data [100, 30] [0.3, 0.1] 10 −3 

Genomic data [300, 50] [0.3, 0.2] 10 −4 

NYC bicycle data [29, 5] [0.1, 0] 10 −2 

Table 3 

The selected convolutional hyper-parameters for Olivetti face data. Only one 

convolutional layer for the encoder was found to be optimal. 

Dataset Filter size Kernel size Latent dimension Strides 

Olivetti dataset [77] [10] 90 2 

5

5

 

a  

d  

a  

fi  

t  

d  

o

5

 

v  

T  
ere the structure did not follow a butterfly form, and for the de-

oder only one deconvolutional layer was used. Additional hyper-

arameters for the convolutional layers were: 

• Number of output filters 

• Kernel size 

• Strides 

• Padding 

Because of the high dimension of hyper-parameter space, ran-

om search [30] was used to select the optimized model, although

ome heuristics were used to find initial values of some of the pa-

ameters. On each parameter, an interval of possibilities was de-

ned, which varied with the datasets. For instance, the possible

ange for the bottleneck was guided by a PCA analysis. After se-

ection of the initial hyper-parameter sets, a random search among

ll of the shuffled series was performed. The error for each model

as estimated using 5-fold cross-validation (see next section), and

he random search was terminated after a fixed number of trails

fter which the best performing model was selected. 

As for K-NN [3] and MICE [4] , they both use different hyper-

arameters. In this study, we tuned two hyper-parameters present

n MICE, the number of multiple imputations and the number of

terations in each imputation. Both of these parameters were deter-

ined based on a convergence criterion of the model parameters.

or the NYC bicycle data, the data with both numerical and cate-

orical variables, we used Bayesian linear regression for numeric,

ogistic regression for binary and multinomial logistic regression

or multiclass variables. In the K-NN model selection, the distance

eight regularization parameter, λ [3] , and the number of neigh-

ors (K) were tuned. For the RF imputation method we only tuned

he number of iterations of the imputation process and the num-

er of trees used in the ensemble. 

.2. The general setup 

All datasets used in the experiments were complete, i.e., they

ontained no missing values. A random part of the data was there-

ore removed (corrupted) and used as the gold standard when

valuating the different methods to impute the removed portion.

or all non-image datasets we used the root mean squared er-

or (RMSE) between the imputed data and the gold standard to

valuate the performance of the different methods. Since the NYC

icycle data contains a mixture of numerical and categorical, we

sed the sum of the RMSE (for the continuous part) and the cross-

ntropy (for the categorical part) for the evaluation of the methods.

ifferent amounts of corruption were tested, ranging from 10% to

0% for almost all datasets. For the MNIST data up to 90% corrup-

ion was tested, however for the Olivetti faces only a single in-

tance of local masking was used, resulted in approximately 65%

orruption. The corruption process was done before the splitting

f data into training and test, meaning that the same amount of

issing data was also used during the training of the SDAi method.

or the K-NN, MICE and RF, the hyper-parameter selection and im-

utation were accomplished using the entire data. This procedure

as repeated for each fraction of corruption. 

For SDAi, to avoid biases from possible overfitting, a two-loop

esting and model selection strategy was employed (see Fig. 5 ). The

nnermost loop is for model selection, where hyper-parameters are

etermined given a training dataset. The resulting optimal model

as then tested on data from the outer test loop, not part of any

raining or model selection. Due to long computational times, we

sed a single fixed validation and test set for the MNIST data. 

All five imputation methods were evaluated on precisely the

ame test sets, as defined by the outer cross-validation loop. 
. Results 

.1. SDAi hyper-parameters 

The optimal set of hyper-parameters for the SDAi method, for

 given problem, varies with the amount of corruption of the

atasets. Typical values for 30% corruption for all datasets that are

chieved with the random search are shown in Tables 2 & 3 . The

rst four rows show the values for different realizations of the syn-

hetic dataset. A general trend can be found regarding the use of

ropout training, layers close to the bottleneck generally have no

r little dropout (small probability of removing nodes). 

.2. Synthetic data 

We used four different realizations of the synthetic dataset with

arying sizes and degree of complexity, as detailed in Section 3.1 .

wo datasets with 10 0 0 samples and 20 0 features, and two larger
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M

Fig. 6. Root mean squared (RMSE) imputation error for the test data as a function of the amount of corruption during training. Top left: Synthetic data with 10 0 0 samples, 

200 features, and one frequency component. Top right: The same size as the top left, but with four frequency components (more complexity). Down left: Larger data 

size with 20 0 0 samples and 50 0 features (one frequency). Downright: The same size as down left, but with four frequency components (more complexity). The standard 

deviations (error bars) across the different test sets are small and hardly visible. A zoom-in is shown for 20% corruption where the size of the error bars can be seen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. The first column from the left shows seven samples of the original test data. 

In the third column, 60% of the data has been corrupted by lines in the second 

column. The last five column shows the imputed images using Mean, K-NN, MICE, 

RF, and SDAi, respectively. 
datasets with 20 0 0 samples and 50 0 features where generated.

In each case, the two datasets were different corresponding to

the number of frequencies ( n f ) used. We used n f = 1 and n f = 4

where the latter represents a dataset with more complexity as

compared to the former. Fig. 6 shows the root mean squared error

(RMSE) for the imputed test data as a function of the degree of

initial random corruption of the data. Imputation using simple

mean values consistently resulted in the largest RMSE. For all four

synthetic datasets, SDAi method was found to give the lowest

RSME for all ranges of corruption. After comparing the size of

selected autoencoder architectures by random search, larger and

more complex datasets require more extensive and more layers of

the SDAi model. 

5.3. MNIST 

For the MNIST image dataset, we used a single validation and

test dataset of 10,0 0 0 images each which left 50,0 0 0 images for

the training. To challenge the imputation methods, and because of

the high correlation of the image data, the corruption process of

the images acted on lines of the images rather than on individual

pixels. For example, an approximately 50% corrupted image means

that a random selection (without replacement) of 25% of the hor-

izontal and 25% of the vertical lines were missing. Fig. 7 shows a



N. Abiri, B. Linse and P. Edén et al. / Neurocomputing 365 (2019) 137–146 143 

Fig. 8. SSIM for the MNIST test data as a function of the amount for corruption 

during training. To have a similar appearance as for previous plots, the y-axis is 

reversed, starting from SSIM = 1 . 0 and decreasing. 
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Fig. 10. The sum of all the errors for the different type of variables are presented 

as total error in the y-axis. SDAi shows better results in all different portions of 

corruption. 
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election of seven images from the test set with the original, mask,

orrupted, and the results of imputation methods images. The 60%

orrupted version is the input to the different imputation methods,

nd the resulting imputed images are shown in the next columns.

isually the SDAi methods were able to recover the original images

n a better way compared to MICE, RF, K-NN, and Mean imputation.

o analyze the outcomes to the original images instead of using

MSE, we used the structural similarity index (SSIM) [31] . With

MSE, the cost is calculated on the distance between the pixels,

hat does not necessary shows the loss of quality in images (im-

ges with equal RMSE might not contain the same noises), whereas

SIM depends on structural features which are extracted from the

mage. 

Fig. 8 shows the SSIM for a varying degree of corruptions

smudged random horizontal and vertical lines), up to as much

s 90%. Again the SDAi method obtains the smallest SSIM over all

anges of corruption. 
ig. 9. Root mean squared (RMSE) imputation error for the test data as a function of the a

DAi shows an improvement of estimation compare to MICE, RF, and K-NN. Right: (genom
.4. Gene and protein expression data 

Due to the small size of the proteomic data, a 4-fold cross val-

dation was used. Fig. 9 shows the RMSE for varying degrees of

orruption. We can conclude that for the proteomic dataset, K-NN,

ICE, RF and SDAi showed similar results. For the genomic dataset,

he SDAi method obtained the best imputation results. 

The relatively small bottleneck size for the proteomic data is

robably due to the high correlation of the variables. The genomic

ata on the other hand, required a larger bottleneck size indicating

ess correlation among the input variables. 

.5. New York bicycle counts data 

For bicycle data, which contains a mixture of different vari-

bles, again SDAi improved the imputation results compared to the

ther methods. The error in Fig. 10 is the sum over logistic loss
mount of corruption during training. Left: (proteomic data) After 40% of corruption, 

ic data) SDAi shows lower RMSE compare to the other methods. 
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Fig. 11. The first column from the left shows four randomly selected faces from the original test data. In the third column, approximately 65% of the data has been corrupted 

by Ising-like mask in the second column. The last five columns show the imputed images using Mean, K-NN, RF, MICE, and SDAi, respectively. The last row shows averaged 

SSIM with standard deviation for all imputed images in the test data. 

Table 4 

Estimates of computational times (in seconds) at 30% corruption for all datasets, except for 

Olivetti faces which used at a fixed percentage of corruption. For the SDAi method, the times 

include both training and test procedures. 

data \ method Mean K-NN Mice RF SDAi (CPU) SDAi (GPU) 

Synth (1000,200) 1 6 210 250 5 2 

Synth (2000,500) 1 14 670 840 5 2 

MNIST 1 360 32,800 28,900 95 39 

Proteomic 1 1 170 250 23 6 

Genomic 1 110 1960 9100 38 20 

NYC bicycle 1 – 180 3 6 7 

Olivetti faces 1 10 420 9700 470 22 
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and RMSE for all the variables presented in the data. For the MICE

method, we used Bayesian linear regression, logistic regression,

and multinomial logistic regression models for numeric, binary,

and categorical variables, respectively. The categorical variables

in this data have no natural orders; therefore, we encode them

to one-hot vectors to have a suitable numeric form of variables

for statistical processing. Since K-NN by definition uses Euclidean

distance, it is possible to use it on all variables. However, the

results show that since the one-hot encoded vectors have the

same length, K-NN does not find the higher correlation in this

data. As the K-NN imputation error was more elevated than Mean

imputation error, we omitted K-NN in Fig. 10 . 

5.6. The Olivetti face dataset 

Due to the high local correlation in the face data, the line cor-

ruption used for the MNIST data is not challenging enough. Instead,

we used a Square-lattice Ising-like [32] corruption mask, 64 × 64

in dimension, resulting in approximately 65% of the pixels corrup-

tion, i.e., replaced by NaN. The first three columns in Fig. 11 shows

original faces, the mask, and the corrupted face after applying the

mask, respectively. The remaining columns shows the imputed im-

ages using the different methods. Except for the mean imputation

method they all, visually, appear to give similar imputed images.

However there is an advantage for the SDAi method when com-

paring SSIM values (last row in Fig. 11 ). In fact a Wilcoxon signed-
ank test showed a significant improvement for the SDAi method

 p < 0.001) against MICE. 

.7. Computational times 

Computational requirements for the different methods were es-

imated at 30% corruption level for all datasets except for the

livetti face data that used a fixed corruption at 65%. The running

imes (in seconds) are presented in Table 4 . For the SDAi method,

he running times included both training and test requirements

nd was measured using both the CPUs and a GPU implementa-

ion. The model selection procedure for all methods are not in-

luded in the timing report. The time for all methods have been

easured on four logical CPUs, and for the GPU version of SDAi

e used one NVIDIA card (GeForce GTX 1080 Ti). 

. Discussion and conclusions 

In this study, we have compared a general and flexible method

or imputation of missing data, based on stacked denoising au-

oencoders, with some well-known techniques. The explorations

howed consistently smaller imputation error for our proposed

DAi method compared to the other techniques (MICE, K-NN, and

F) across all tested datasets. All experiments were carried out us-

ng a two-loop testing and validation procedure to avoid overfit-

ing and to obtain reliable test results. Furthermore, all compar-
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sons were made with the assumption that complete data was not

vailable during the training of the methods. 

To entirely make use of data with a significant fraction of miss-

ng values, it is essential to impute the missing data reliably. Often

ata can be expensive and difficult to obtain, so discarding cases

ith missing data can result in too small sample sizes and may

ntroduce biases. It is therefore essential to use a valid and accu-

ate imputation method. We believe that the autoencoder, here im-

lemented as imputation method (SDAi), is such a method. In all

f the numerical experiments, we used the same amount of initial

issing data for both training and testing to simulate a possible

ealistic scenario. As expected, the Mean imputation method gave

he most substantial error. We also found MICE (using the aver-

ge of many multiple imputations) and RF to be better than the K-

N method. However, for all ranges of the initial fraction of miss-

ng data, we found the autoencoder (SDAi) to consistently impute

issing data with the smallest error, especially for datasets with a

arge amount of initial missing data. 

The SDAi method is based on the pre-training of each layer of

he encoder. While pre-training is known to prevent overfitting

33] and combat the vanishing gradient problem, it can mostly be

eplaced by efficient regularization techniques and the use of the

ectifier activation function. Nevertheless, we found pre-training

lways to be advantageous (smaller imputation error). This find-

ng was based on the comparison (results not shown) where

re-training was replaced by standard random initialization of all

ncoder weights, followed by the fine-tuning session. We found

or the small datasets that pre-training can reduce optimization

ime and more easily prevent overfitting. For big datasets, the

ifference between with and without pre-training estimations was

ess visible. 

One of the datasets in this study, NYC bicycle data count, con-

ains a mixture of continuous, binary, and categorical variables.

here are two categorical (nominal) variables that have no intrin-

ic ordering. The typical approach is to encode these variables to

ne-hot vectors. With the separated input and output of the au-

oencoder, we were able to calculate the performance separately

n each type of data. The results showed that SDAi could make a

etter imputation compared to MICE and RF. 

A challenge for the SDAi method and neural networks is model

election. There are more hyper-parameters to consider compared

o e.g. MICE, RF and K-NN. Here we found random search [30] to

e effective. We tested many combinations of hyper-parameters,

nd mostly after a few runs, it was possible to narrow down the

ange of promising hyper-parameter values. To initialize the scale

f these sets, we used unsupervised techniques such as PCA. Fur-

hermore, to overcome the optimization of the SDAi model, we

sed GPU computation as much as possible. However, the purpose

f this study was not to reduce computation time, and no system-

tic effort was made to accomplish this. 

In conclusion, we have found the proposed autoencoder frame-

ork to be very useful in missing data imputation, even in situa-

ions where there is a large degree of initial missing data. A nat-

ral next step is to extend the SDAi method to allow for multiple

mputation using variational autoencoders. 
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