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a b s t r a c t 

In this paper, we present a model-based reinforcement learning system where the transition model is 

treated in a Bayesian manner. The approach naturally lends itself to exploit expert knowledge by intro- 

ducing priors to impose structure on the underlying learning task. The additional information introduced 

to the system means that we can learn from small amounts of data, recover an interpretable model and, 

importantly, provide predictions with an associated uncertainty. To show the benefits of the approach, we 

use a challenging data set where the dynamics of the underlying system exhibit both operational phase 

shifts and heteroscedastic noise. Comparing our model to NFQ and BNN+LV, we show how our approach 

yields human-interpretable insight about the underlying dynamics while also increasing data-efficiency. 

© 2020 Published by Elsevier B.V. 
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. Introduction 

Machine learning methods [1] are designed to solve tasks

here the underlying system we want to model is only partly

nown or understood. The hope when using machine learning

ethods is that we can reduce this uncertainty by exploiting sta-

istical patterns in data generated from the underlying system. 

Reinforcement learning (RL) [2] is a machine learning paradigm

esigned to learn in a dynamic environment where we can spec-

fy a goal or have a notion of what a desirable behaviour is. The

oal of RL is to learn a policy which dynamically chooses actions in

he environment in order to achieve a goal or a behaviour. Specif-

cally, an RL agent’s task is to learn a policy π which, given the

urrent state s of an environment, chooses an action a to achieve

he goal specified by a reward function r mapping system states to

umerical rewards. To learn a policy, any RL system needs to un-

erstand the underlying dynamics governing the system, how the

ransition between states is effected by the actions taken. The next

tate s ′ is determined by the latent and possibly stochastic tran-

ition function s ′ = f s , a . How the dynamical system is treated is
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ne of the main distinctions among different approaches to RL. In

odel-based RL, the dynamic model is an explicit part of the sys-

em, while in the model-free counterpart the transition dynamics

re implicit and cannot be disentangled from the system. 

Applying RL in an industrial setting often implies trying to de-

ive an alternative more efficient controller for an already existing

ystem. In a critical application it is unlikely that we will be able

o deploy an untested policy as this can lead to safety issues. This

eans that in practice we are often limited by previously collected

ata created by a different, possibly known, control mechanism in

rder to learn our model. In the literature, this scenario is referred

o as batch RL [3] , where we are presented with a set of state

ransitions D = { ( s n , a n , s 
′ 
n ) } N n =1 and are unable to interact with the

riginal system to find a policy. In order to be able to derive an ef-

cient policy in this scenario, we need to use the available data as

fficiently as possible. Data efficiency in machine learning comes

rom reducing the search space of solutions. In other words, data

fficiency arises from being able to exploit as much prior knowl-

dge of the system as possible [1] . 

To be able to use the available data as efficiently as possible we

herefore need a model which provides explicit and interpretable

andles such that we can easily introduce priors. The model-based

pproach to RL describes each component of the system in a mod-

lar fashion thereby providing an interface to incorporate prior

nowledge. The challenge is how these priors should be specified
 Bayesian decomposition of multi-modal dynamical systems for 
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and how they should be included such that the hypothesis space

can be limited in a manner coherent with our knowledge of the

system. 

Gaussian processes (GPs) are stochastic processes that can be

used to specify probability distributions over the space of func-

tions. While a GP specifies a distribution with support for all func-

tions, it efficiently concentrates its probability mass to functions

with specific characteristics. These characteristics make GPs well

suited for RL as they do not impose hard constraints while still

placing a significant structure on the space of functions. In [4] the

authors propose a model-based RL method where Gaussian pro-

cesses are used as priors for the dynamics. They provide a princi-

pled approach of taking model uncertainty into account when eval-

uating the performance of a policy, thereby reducing the impact of

model-bias. However, the approach has several restrictions, transi-

tion dynamics are modelled as standard Gaussian processes (GPs)

and policies and rewards must be of specific forms. 

In this work, we will show how we can alleviate some of the

limitations of Deisenroth and Rasmussen [4] to provide a richer

and more efficient RL model. We will show how we can introduce

additional constraints on the dynamic model allowing for multiple

transitional signatures to be active simultaneously. Incorporating

this knowledge facilitates learning by allowing us to more precisely

state what we want to learn thereby significantly reducing the data

requirements. Furthermore, decomposing the transition model into

several parts allows us to use reward shaping [2] in order to dis-

courage policies based on dynamic characteristics. 

Introducing constraints on the dynamic model based on ab-

stract knowledge is an inherently problem-dependent process. This

work explores this process for the heteroscedastic and bimodal

Wet-Chicken benchmark [5,6] which is both easy to understand

and challenging to model. A central challenge in this benchmark

is how to formulate a model which can represent bimodalities.

One approach is presented in [7] , where multimodal regression

tasks are interpreted as a density estimation problem. A high num-

ber of candidate distributions is reweighed to match the observed

data without modeling the underlying generative process. Refor-

mulated in a Bayesian framework using latent variables, this ap-

proach has been applied to the Wet-Chicken benchmark in [8,9] .

However, such models are hard to interpret as they do not yield

explicit models for the different modalities or their relative impor-

tance. In this work, we are interested in formulating a dynamics

model which yields new interpretable insights about the under-

lying system. We formulate a probabilistic model which contains

such explicit models by interpreting the Wet-Chicken benchmark

as a data association problem [10,11] . While many probabilistic in-

terpretations of this problem assume that the relative importance

of different modes is constant [12,13] , we base our formulation on

the DAGP model [14] which learns a non-parametric model of each

mode and where the associations between the modes themselves

is further controlled by a non-stationary stochastic process. 

The paper is outlined as follows. After introducing the Wet-

Chicken benchmark, we show how high-level knowledge about this

system can be used to impose Bayesian structure. We derive an

efficient inference scheme for both the dynamics model and for

probabilistic policy search based on variational inference. We show

that this approach yields interpretable models and policies and

is significantly more data-efficient than less interpretable alterna-

tives. 

2. The Wet-Chicken benchmark 

In the Wet-Chicken problem [5,6] , a canoeist is paddling in a

two-dimensional river. The canoeist’s position at time t is given

by s t = (x t , y t ) ∈ R 

2 , where x t denotes the position along the river

and y t the position across it. The river is bounded by its length
Please cite this article as: M. Kaiser, C. Otte and T.A. Runkler et al.,
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 = 5 and width w = 5 . There is a waterfall at the end of the river

t x = l. The canoeist wants to get close to the waterfall to maxi-

ize the reward r s t = r t = x t . However, if the canoeist falls down

he waterfall, he has to start over at the initial position (0, 0). 

The river’s flow consists of a deterministic velocity v t = y t · 3 
w 

nd stochastic turbulence b t = 3 . 5 − v t , both of which depend on

he position on the y -axis. The higher y t is, the faster the river

ows but also the less turbulent it becomes. The canoeist chooses

is paddle direction and intensity via an action a t = (a t,x , a t,y ) ∈
 −1 , 1] 2 . The transition function f : ( s t , a t ) �→ s t+1 = (x t+1 , y t+1 ) is

iven by 

 t+1 = 

{ 

0 if ˆ x t+1 > l 
0 if ˆ x t+1 < 0 

ˆ x t+1 otherwise 
y t+1 = 

{ 

0 if ˆ x t+1 > l or ˆ y t+1 < 0 

w if ˆ y t+1 > w 

ˆ y t+1 otherwise 

(1)

here 

ˆ x t+1 = x t + (1 . 5 · a t,x − 0 . 5) + v t + b t · τt , 

ˆ 
 t+1 = y t + a t,y , (2)

nd τt ∼ U −1 , 1 is a uniform random variable that represents the

urbulence. 

There is almost no turbulence at y = w, but the velocity is too

igh to paddle back. Similarly, the velocity is zero at y = 0 , but

he canoeist can fall down the waterfall unpredictably due to the

igh turbulence. A successful canoeist must find a balance between

andling the stochasticity and velocities within the capabilities of

he canoeist to get as close to the waterfall as possible. However,

s the canoeist moves closer to the waterfall, the distribution over

he next states become increasingly more bi-modal as the prob-

bility of falling down increases. Together with the heteroscedas-

icity introduced by the turbulence dependent on the current po-

ition, these properties make the Wet-Chicken problem especially

ifficult for model-based reinforcement learning problems. 

. Probabilistic policy search 

We are interested in finding a policy specified by the pa-

ameters θπ which maximizes the discounted return J π ( θπ ) =
 T 
t=0 γ

t r s t = 

∑ T 
t=0 γ

t r t with a constant discount factor γ ∈ [0, 1].

tarting from an initial state s 0 we generate a trajectory of states

 0 , . . . , s T obtained by applying the action a t = πs t at every time

tep t . The next state is generated using the (latent) transition

unction f , yielding s t+1 = f s t , a t . 

Many environments have stochastic elements, such as the ran-

om drift in the Wet-Chicken benchmark from Section 2 . We take

his stochasticity into account by interpreting the problem from a

ayesian perspective where the discounted return specifies a gen-

rative model whose graphical model is shown in Fig. 1 . Because

f the Markov property assumed in RL, conditional independences

etween the states yield a recursive definition of the state proba-

ilities given by 

( s t+1 

∣∣ f, θπ ) = 

∫ 
( f s t , a t 

∣∣s t , a t )( a t 

∣∣s t , θπ )( s t ) d a t d s t , 

(r t 
∣∣θπ ) = 

∫ 
(r s t 

∣∣s t )( s t ∣∣θπ ) d s t . (3)

ith stochasticity or an uncertain transition model, the discounted

eturn becomes uncertain and the goal can be reformulated to op-

imize the expected return 

 [ J πθπ ] = 

T ∑ 

t=0 

γ t 
E 

( s t 

∣∣θπ ) 
[ r t ] . (4)

A model-based policy search method consists of two key

arts [4] . First, a dynamics model is learned from state transition
 Bayesian decomposition of multi-modal dynamical systems for 
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Fig. 1. The generative process for the return J π , where violet nodes are observed 

and parameters are shown in yellow. It shows how starting from s 0 , a trajectory of 

length T is generated with the policy parameterized by θπ . The return is generated 

by the rewards which depend on their respective states only. 
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Fig. 2. The graphical model for the DAGP-based transition model, where violet 

nodes are observed and variational parameters are blue. This model separates the 

flow-behaviour of the river f t , the heteroscedastic noise process σt and the possibil- 

ity of falling down λt . Latent variables l t represent the belief that the t th data point 

is a drop event. 
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ata. Second, this dynamics model is used to learn the parameters

π of the policy π which maximize the expected return E [ J πθπ ] .

e discuss both steps in the following. 

.1. An interpretable transition model 

We formulate a probabilistic transition model-based on high-

evel knowledge about the Wet-Chicken benchmark. Importantly,

e do not formulate a specific parametric dynamics model as

ould be required to derive a controller. Instead, we make as-

umptions on a level typically available from domain experts. 

We encode that given a pair of current state and action ˆ s t =
( s t , a t ) , the next state s t+1 is generated via the combination of

hree things: the deterministic flow-behaviour of the river f t , some

eteroscedastic noise process σt and the possibility of falling down

t . This prior imposes structure which allows us to explicitly state

hat we want to learn from the data and where we do not as-

ume prior knowledge: How does the river flow? What kind of

urbulences exist? When does the canoeist fall down? How do the

ctions influence the system? 

Each question is explicitly answered by one of the model’s com-

onents. In Section 4 we will visualize these components and dis-

uss how they can be used by experts to gain new insights about

he system. Additionally, interpretable transition models help to

uild trust in derived policies: Since experts can assess the plau-

ibility of the transition model, successful policies are unlikely to

ehave unexpectedly on the true system. 

We formulate a graphical model in Fig. 2 using the data associ-

tion with GPs (DAGP) model [14] , which allows us to handle the

ulti-modality introduced by falling down the waterfall. We spec-

fy this separation via the marginal likelihood 

( s t+1 

∣∣ˆ s t ) = 

∫ 
p( s t+1 

∣∣σt , f t , l t )p( l t 
∣∣ˆ s t )p( σt 

∣∣ˆ s t )p( f t 
∣∣ˆ s t ) d σt d l t d f t , 

(5) 

here f t = 

(
f (1) 

t , . . . , f (K) 
t 

)
. The marginal likelihood consists of

he two GPs p( σt 

∣∣ˆ s t ) and p( f t 
∣∣ˆ s t ) and the two likelihoods 

( s t+1 

∣∣σt , f t , l t ) = 

K ∏ 

k =1 

N 

(
s t+1 

∣∣ f 
(k ) 
t , 

(
σ(k ) 

t 

)
2 
)
, I l 

(k ) 
t =1 
Please cite this article as: M. Kaiser, C. Otte and T.A. Runkler et al.,
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( l t 
∣∣ˆ s t ) = 

∫ 
M 

(
l t 
∣∣softmax λt 

)
p( λt 

∣∣ˆ s t ) d λt (6) 

here M denotes a multinomial distribution. These likelihood de-

cribe the regression and classification tasks implied by the prob-

em respectively: In our case, we use K = 2 modes, one for staying

n the river and one for falling down the waterfall. For every data

oint we infer a posterior belief ( l t ) about which mode the data

oint belongs to, as we assume this separation can not be prede-

ermined using expert knowledge. 

We place independent GP priors on the f ( k ) , σ( k ) and λ( k ) . Given

he data a fixed set of assignments L , our modelling assumptions

mply independence between the K modes. However, this indepen-

ence is lost if the assignments are unknown and a discrete opti-

ization problem has to be solved when doing joint inference over

he different modes and the association problem. We approximate

he exact posterior via a factorized variational distribution 

 ( f , λ, σ, U ) = 

K ∏ 

k =1 

T ∏ 

t=1 

q ( f 
(k ) 
t , u 

(k ) ) q ( λ(k ) 
t , u λ

(k ) ) q ( σ(k ) 
t , u σ

(k ) ) (7) 

hich introduces variational inducing inputs and outputs U as de-

cribed in [14–16] . These inducing inputs independently character-

ze the respective model parts and enable us to do inference via

tochastic optimization. 

The variational parameters are optimized by minimizing a

ower bound to the marginal likelihood which can be efficiently

omputed via sampling and enables stochastic optimization. 

 DAGP = E q ( F , λ, σ, U ) 

[ 
log 

p( S ′ , F , λ, σ, U 

∣∣ ˆ S ) 

q ( F , λ, σ, U ) 

] 

= 

T ∑ 

t=1 

E q ( f t ) 

[
log p( s ′ t 

∣∣ f t , λt , σt ) 
]

+ 

T ∑ 

t=1 

E q ( λt ) 

[
log p( l t 

∣∣λt ) 
]

−
K ∑ 

k =1 

KL ( q ( u 

(k ) , u λ
(k ) , u σ

(k ) ) ‖ p( u 

(k ) , u λ
(k ) , u σ

(k ) ) ) (8) 

o gain informative gradients with respect to the assignments l

nd assignment process λ, we use a continuous relaxation based

n Concrete random variables [17] . We represent the belief about

 t as a K -dimensional discrete distribution q( l t ). Instead of draw-

ng discrete samples from q( l t ) when calculating L DAGP , we draw

amples ˆ l t from a concrete random variable. Based on a tempera-

ure parameter, concrete random variables yield samples which are
 Bayesian decomposition of multi-modal dynamical systems for 
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Fig. 3. The separation of different aspects of the Wet-Chicken in DAGP-based tran- 

sition models benchmark yields new and interpretable information about the un- 

derlying dynamics. The different parts of the model explicitly show flow speeds (a), 

turbulence (b), drop behaviour (c) and drop probabilities (d) with respect to the 

current position in the river and action a = 0 . The model has learned that the river 

is turbulent on the left and fast on the right, leading to consistent medium drop 

probabilities on the left due to stochasticity and a sharp boundary on the right, 

where the flow speed dominates. Note that a drop resets the position to the initial 

state irrespective of the current state. It is therefore correctly learned to be repre- 

sented by the constant zero function (c). 
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almost discrete but which still yield informative gradients. For de-

tails we refer to Kaiser et al. [14] . 

We obtain an explicit representation of the GP posteriors dur-

ing variational inference which allows us to efficiently propagate

samples through the model to simulate trajectories used for pol-

icy search. Predictions for an unknown state ˆ s ∗ are mixtures of K

independent Gaussians given by, 

q ( s ′ ∗
∣∣ˆ s ∗) 

= 

∫ K ∑ 

k =1 

q (l (k ) 
∗

∣∣ˆ s ∗) q ( s ′ (k ) 
∗

∣∣ˆ s ∗) d l ∗

= 

∫ K ∑ 

k =1 

q (l (k ) 
∗

∣∣ˆ s ∗) q ( s ′ (k ) 
∗

∣∣ f 
(k ) 
∗ σ(k ) 

∗ ) q ( f (k ) 
∗ , σ(k ) 

∗
∣∣ˆ s ∗) d l ∗ d f ∗ d σ∗

≈
K ∑ 

k =1 

˜ l (k ) 
∗ ˜ s 

′ (k ) 
∗ . (9)

We sample from the assignment process l ∗ and heteroscedastic

noise process σ∗ . The K predictive posteriors q ( s ′ (k ) 
∗

∣∣ f (k ) 
∗ σ(k ) 

∗ ) are

then given by K independent shallow GPs and can be computed

analytically. 

3.2. Policy learning 

After training a transition model, we use the variational poste-

rior q ( s t+1 

∣∣ˆ s t ) to train a policy by sampling roll-outs and optimiz-

ing policy parameters via stochastic gradient descent on the ex-

pected return E 

[
J πθπ

]
. The expected return is approximated using

the variational posterior given by 

E 

[
J πθπ

]
= 

T ∑ 

t=0 

γ t 
E 

( s t 

∣∣θπ ) 
[ r t ] ≈

T ∑ 

t=0 

γ t 
E 

q ( s t 

∣∣θπ ) 
[ r t ] 

= 

∫ T ∑ 

t=0 

[
γ t 

E 

q ( s t 

∣∣θπ ) 
[ r t ] 

]
( s 0 ) 

T −1 ∏ 

t=0 

q ( s t+1 

∣∣s t , θπ ) d s 0 . . . d s T 

≈ 1 

P 

P ∑ 

p=1 

T ∑ 

t=0 

γ t r p t . (10)

We expand the expectation to explicitly show the marginalization

of the states in the trajectory. Due to the Markovian property of

the transition dynamics, the integral factorizes along t . The integral

is approximated by averaging over P samples propagated through

the model starting from a known distribution of initial states ( s 0 ).

State transitions can be efficiently sampled from the variational

posterior of the dynamics model by repeatedly taking independent

samples of the different GPs. 

The expected return in (10) can be optimized using stochastic

gradient descent via the gradients 

∇ θπ
J π ( θπ ) ≈ 1 

P 

P ∑ 

p=1 

T ∑ 

t=0 

γ t ∇ θπ
r p t (11)

of the Monte Carlo approximation as they are an unbiased esti-

mator of the true gradient. The gradients of the samples can be

obtained using automatic differentiation tools such as TensorFlow

[18] . The P roll-outs can be trivially parallelized. Importantly, we

only need a small number of Monte Carlo samples at every itera-

tion, since we use the gradients of the samples directly. 

4. Results 

To solve the Wet-Chicken problem, we first train the dynamics

model on batch data sampled from the true dynamics and then op-

timize neural policies with respect to this dynamics model. As the
Please cite this article as: M. Kaiser, C. Otte and T.A. Runkler et al.,

reinforcement learning, Neurocomputing, https://doi.org/10.1016/j.neuc
AGP-based dynamics model is designed to be interpretable, we

rst discuss how, additionally to a joint posterior, the independent

osteriors of its components yield insights about the Wet-Chicken

roblem. We then show how successful policies can be found with

ess data compared to the model-free NFQ [19] and model-based

ayesian Neural Networks with latent variables (BNN + LV) [8] , two

pproaches which do not makes use of high-level expert knowl-

dge. Thirdly, we show how the human-interpretable components

f the dynamics models can be used for reward shaping, allowing

s to easily formulate a requirement for conservative policies. 

.1. Dynamics model 

The benchmark has two-dimensional state and action spaces

rom which we sample uniform random transitions with varying

 in the range 100 to 50 0 0. For N ≥ 250, our model is able to

dentify the underlying dynamics. In Fig. 4 we show the joint pre-

ictive posterior of a DAGP-based transition model. The different

lots show linear cuts through the Wet-Chicken system with re-

pect to the action a t = 0 and y t ∈ {0, 1, 2.5, 4, 5}. The transi-

ion model has successfully identified the two modes introduced

hrough flow and drop behaviours and their relative importance.

hese cuts require additional examination to recover new knowl-

dge about the system’s behaviour. In contrast, the separation of

he learning problem in the DAGP-based dynamics model gives us

xplicit and separate posteriors about the different system com-

onents via the independent GP posteriors shown in Fig. 3 . This

elief can directly be reasoned about with experts to evaluate the

nvironment in which policies will be trained, raising confidence

n their correctness. 

While drops can be modelled using a constant noiseless

unction, the flow speed and heteroscedastic turbulence varies

hroughout the system. For low y the river flows slowly but is very

urbulent while for high y the river flows fast but deterministically.

n the turbulent regime, falling down is possible but not certain
 Bayesian decomposition of multi-modal dynamical systems for 
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Fig. 4. Linear cuts through the DAGP-based transition model with the waterfall on 

the right at x t = 5 . The plots show the dependency between x t and x t+1 with re- 

spect to the action a t = 0 and, from top to bottom, y t ∈ {0, 1, 2.5, 4, 5}. The DAGP- 

based transition model successfully separates the two modes introduced through 

flow (blue) and drop (green) behaviours and predicts the probability of being as- 

signed to the drop mode (violet). While drops can be modelled using a constant 

noiseless function, the flow speed (gradient and bias) and heteroscedastic noise 

(variance) varies in the different cuts. For low y t , the river flows slowly but is very 

turbulent, while for high y t , the river flows fast but deterministically. 
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Fig. 5. Using interpretable DAGP-based transition models with structurally infor- 

mative priors, successful policies can be learned based on 250 observations. In con- 

trast, about 2500 observations are needed to find a policy using the model-free 

NFQ. As GP based transition models are not capable of representing bimodal dy- 

namics, training does not yield successful policies. The chosen optimal movement 

direction of a successful policy (right) is denoted by both the arrows and back- 

ground color. 
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or most x , while in the flow dominated regime, a drop becomes

ighly probable under a certain distance from the waterfall. Note

hat even though the turbulence as defined in Section 2 is inde-

endent of x , the heteroscedastic noise process has uncovered the

mplicit dependency for high x as most possible turbulence values

ead to falling down and thus assignment to the other mode. Sim-

larly, the flow speed shown in Fig. 3 (a) is negative in the top left

orner. This is due to the fact that the flow mode models the po-

ition after one step under the condition of not falling. As most

urbulence into the direction of the waterfall leads to a drop, the

osterior mean is further away from the waterfall as the turbu-

ence dominates the low flow speed on the left side of the river. 

.2. Policy learning 

Given a posteriory for the dynamics model, we now train a

eural policy using probabilistic model rollouts. We sample ini-

ial states from the training data, use a horizon of T = 5 steps

nd average over P = 20 samples with γ = 0 . 9 . We use a two-

ayer neural network with 20 ReLU-activated units each as our pol-

cy parametrization. For every state transition, we sample indepen-

ently from the different model components to generate a sample

or the next state using ( 9 ). This incorporates both the stochas-

icity in the system introduced via heteroscedastic noise and the

ayesian uncertainty about the correct model in the policy search.
Please cite this article as: M. Kaiser, C. Otte and T.A. Runkler et al.,

reinforcement learning, Neurocomputing, https://doi.org/10.1016/j.neuc
uring training, the policy thus implicitly learns to consider the

tochasticity of the Wet-Chicken benchmark as different sample-

rajectories generate gradients with respect to different realizations

f the stochasticity of the Wet-Chicken benchmark. Fig. 5 (b) shows

ow a successful policy has found a trade-off between the unpre-

ictability on the left and the uncontrollable speed on the right. 

In Table 5 a, we compare policy search based on the DAGP-based

ynamics model with a standard GP dynamics model and NFQ. We

resent expected returns for training runs with different amounts

f data averaged over 10 experiments together with standard er-

ors. A policy applying uniformly random actions yields a return of

bout 1.5 and a return above 2.2 indicates that a successful policy

as been found. We ran NFQ for 20 full model learning and sam-

ling iterations using a neural network with one 10-unit hidden

ayer with sigmoid activations. 

A standard GP cannot model heteroscedastic noise or multi-

odality. For any point in the input space, the GP can therefore

nly predict that the agent will always fall down, never fall down

r, via very high uncertainties, that any state in system is possible.

one of these possibilities represent the dynamics well enough to

llow the policy search to derive a policy, illustrating our need for

 more structured model. For N ≥ 250, the DAGP-based dynamics

odel identifies the underlying dynamics well and policies can be

ound reliably. 

BNN + LV is a more expressive model that can represent both

eteroscedasticity and multi-modality. Due to the model’s struc-

ure however, it is hard to incorporate high-level expert knowl-

dge and therefore, more structure has to be learned from the

ata. BNN + LV reliably finds good policies for N ≥ 10 0 0 and some-

imes finds good policies for N = 500 . As this approach is model-

ased and formulates a reasonable general-purpose prior on the

eights for the dynamics, the results fall between the more in-

ormed DAGP, which is successful with less data, and NFQ, which

s more uninformed. 

NFQ is a model-free approach. Instead of learning a dynam-

cs model and using rollouts in that model to find a good policy,

FQ directly models the optimal Q-function and thus the optimal

olicy. A Q-function represents the expected return after taking
 Bayesian decomposition of multi-modal dynamical systems for 
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Table 1 

Comparison of expected returns for different settings of K . 

DAGP 

N K = 1 K = 2 K = 3 K = 4 K = 5 

250 1.41 ± 0.01 2.33 ± 0.01 1.64 ± 0.38 1.31 ± 0.25 1.65 ± 0.08 

500 1.54 ± 0.01 2.25 ± 0.01 1.97 ± 0.23 1.48 ± 0.21 2.14 ± 0.10 

1000 2.13 ± 0.01 2.32 ± 0.01 1.99 ± 0.17 2.09 ± 0.12 2.16 ± 0.09 

2500 1.91 ± 0.01 2.28 ± 0.01 2.15 ± 0.03 2.06 ± 0.12 2.17 ± 0.03 

5000 1.91 ± 0.01 2.28 ± 0.01 2.19 ± 0.06 1.95 ± 0.16 2.08 ± 0.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. As the different components of a DAGP-based transition model are easily 

interpretable, they can be used for reward shaping. We formulate a conservative 

reward function r cons which penalizes drops and can easily be evaluated in the tran- 

sition model. A resulting policy (right) has worse return with respect to the original 

reward function r orig but effectively reduces the risk of falling. 
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a specified action in a specified state. Since the expected return

already takes into account both the heteroscedasticity and multi-

modality of the system, the Q-function itself can be modeled with

a standard function approximator such as a neural network. Thus,

no special modelling is needed when applying NFQ to the Wet-

Chicken benchmark and given enough data, NFQ is able to find

successful policies. However, at the same time, not modelling the

dynamics explicitly also prevents us from utilising the high-level

expert knowledge we have about the system, thus increasing the

required amount of data: using DAGP-based dynamics models, a

successful policy can be found with about an order of magnitude

less data. 

4.3. Reward shaping 

We have shown how a dynamics model informed by high-level

expert knowledge increases data efficiency. A further advantage of

the decomposition of the dynamics model in interpretable com-

ponents is that the predictions of these components can be used

to influence the policy search. In this example, we want to find a

more conservative policy which, when compared to Fig. 5 (b), sac-

rifices some return in order to avoid falling down the waterfall. 

Any successful agent has the implicit incentive to avoid drops as

they move the canoeist away from the waterfall. However, a suc-

cessful policy still accepts that it will fall down sometimes due to

turbulence. To encourage more conservative behaviour, we use a

conservative reward 

r cons ( s ) = r orig ( s ) ·
(
1 − p( drop 

∣∣s ) ) − 5 · p( drop 

∣∣s ) (12)

which includes the original Wet-Chicken reward function

r orig (x, y ) = x . For every state, the DAGP-based dynamics model

yields an explicit drop-probability which can easily be evalu-

ated. The conservative reward punishes a high drop probability

reweighed with the maximum original reward max s r orig ( s ) = 5 . 

Fig. 6 shows a resulting conservative policy. Such a policy avoids

both the turbulent states on the left and the fast flowing states

on the right. It tries to reach a sweet spot, which, compared to

Fig. 5 (b), is further away from the waterfall and therefore safer.

We compare 10 runs with N = 10 0 0 observations using the orig-

inal reward and the conservative reward. The resulting conserva-

tive policies yield lower return than the more aggressive default

policies but reliably reduce drop probabilities as well. The inter-

pretable nature of the dynamics models have allowed us to easily

influence policy behaviours. 

4.4. Effects of model misspecification 

In Section 3 we have formulated a dynamics model informed by

high-level expert knowledge. One important insight we assumed

is the bimodal nature of the Wet-Chicken problem introduced by

the waterfall. In Section 4.2 , we compared our model to standard

GPs and showed that modelling multi-modality is critical to solve

Wet-Chicken. We extend this comparison in this experiment and

discuss the effects of model misspecification on our model’s per-

formance. Specifically, we investigate the case where additional
Please cite this article as: M. Kaiser, C. Otte and T.A. Runkler et al.,

reinforcement learning, Neurocomputing, https://doi.org/10.1016/j.neuc
odes are available to dynamics model to solve the underlying

ata association problem. 

Table 1 shows results for K ∈ { 1 , . . . , 5 } , where K = 1 is equiv-

lent to standard GPs. All models have been trained for the same

umber of iterations and, for K > 1, all models have comparable

arginal likelihoods. While 250 data points are enough with K = 2

o reliably solve the Wet-Chicken problem, more data is needed

ntil working policies can be found with K > 2 (e.g. for K = 5 ,

ouble the data was needed until one of the runs found a work-

ng policy). Most notably, performance fluctuates significantly with

isspecified models for different repetitions of the same experi-

ent and good policies can not be found reliably. 

Using the additional modes available, the model can now find

epresentations of the systems where multiple modes jointly

epresent the river’s flow. This showcases how data association

roblems are inherently ill-posed in general [10,11] . The additional

epresentative power for K > 2 introduces symmetries in the

ptimization landscape which both significantly complicate train-

ng [12,20] and lead to undesired generalization behaviour which

s not driven by knowledge about the underlying system. 

An example for undesired generalization is shown in Fig. 7

hich compares two models trained with K = 4 and N = 2500 .

hile both models explain the overall training data well, the cuts

hrough the system at y t = 5 give an intuition why the first model

eads to a successful policy, while the second model does not. Both

odels represent drops via one of the modes and share the re-

aining three modes to jointly explain the flow behaviour. In the

rst model, two alternating modes have learned essentially equiv-

lent models and a third more uninformed mode is almost irrel-

vant. The second model is similar, but the uninformed mode’s
 Bayesian decomposition of multi-modal dynamical systems for 
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Fig. 7. Comparison of linear cuts through two DAGP-based transition models with 

K = 4 at y t = 5 and a t = 0 . The respective upper plots show the predictive poste- 

rior of the different modes while the lower plots show assignment probabilities to 

the different modes. For both models, one mode (green, dotted) model drops and 

two modes (blue and yellow, dashed) represent flow behaviour. A third more unin- 

formed mode (violet) is almost irrelevant in the first model but explains some data 

through a high noise variance in the second model. A significant amount of predic- 

tions from the second model are uninformed, leading to the failure of the policy 

search. 
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odel is closer to the RBF prior and more relevant. Note that due

o the high noise variance, this choice of model still explains the

ata only slightly worse. Still, the second model does not gener-

lize according to the underlying system. A significant amount of

redictions from the second model are uninformed, leading to the

ailure of the policy search. 

Significantly longer training or specialized optimization

chemes may lead to robust inference for K > 2. However,

his experiment shows the significance of encoding available

bstract prior knowledge to avoid pathologic model behaviours.

odels for K = 2 both reliably identify the system using standard

ptimization methods and yield immediately interpretable results. 

. Conclusion and discussion 

In this paper we have presented a Bayesian reinforcement

earning model-based on non-parametric Gaussian process priors.

he model is motivated by the observation that in real world

cenarios high-level prior knowledge of the system dynamics is

ften available. We believe that many tasks are characterised by

ynamics that can be decomposed into several attributes. For
Please cite this article as: M. Kaiser, C. Otte and T.A. Runkler et al.,

reinforcement learning, Neurocomputing, https://doi.org/10.1016/j.neuc
xample, when a physical structure is excited by a force oscillating

t its natural frequency its response will change drastically. The

pproach we have presented is based on learning a modular dy-

amic model which decomposes this type of transitional behaviour

nto separate components. The model learns both the individual

omponents and the underlying structure of how the components

nteract within the system. The use of Gaussian process priors to

uantify the uncertainty within components allows us to perform

robabilistic policy search. 

The interpretable structure of our model facilitates data efficient

earning by easily incorporating prior knowledge. We showed ex-

erimentally how this significantly reduces the data requirements

ompared to a model free approach. Furthermore, the same knowl-

dge can be used as a means for directing the policy search by

iscouraging solutions which exhibit a specific dynamic, such as

voiding falling down the waterfall in the Wet-Chicken benchmark.
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