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Abstract

Mixtures of probabilistic principal component analyzers model high-dimensional nonlinear data by combining local linear models.

Each mixture component is specifically designed to extract the local principal orientations in the data. An important issue with this

generative model is its sensitivity to data lying off the low-dimensional manifold. In order to address this problem, the mixtures of robust

probabilistic principal component analyzers are introduced. They take care of atypical points by means of a long tail distribution, the

Student-t. It is shown that the resulting mixture model is an extension of the mixture of Gaussians, suitable for both robust clustering and

dimensionality reduction. Finally, we briefly discuss how to construct a robust version of the closely related mixture of factor analyzers.

r 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Extracting information from high-dimensional data is
problematic due to the curse of dimensionality. It is of
practical importance to discover an implicit, low-dimen-
sional representation whenever the core of the data lies on
one or several directed manifolds. Principal component
analysis (PCA) is a well-known statistical technique for
linear dimensionality reduction [12,14]. It projects high-
dimensional data into a low-dimensional subspace by
applying a linear transformation that minimizes the mean
squared reconstruction error. PCA is used as a pre-
processing step in many applications involving data
compression or data visualization. The approach has,
however, severe limitations. Since it minimizes a mean
squared error, it is very sensitive to atypical observations,
which in turn leads to identifying principal directions
strongly biased toward them.

Recently, PCA was reformulated as a robust probabil-
istic latent variable model based on the Student-t density
e front matter r 2008 Elsevier B.V. All rights reserved.
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function [2]. Among others, the (univariate) Student-t
density arises in the problem of estimating the mean of a
Gaussian random variable when the variance is unknown
(and the sample size is small) [9]. More generally, the
multivariate Student-t is a heavy tailed generalization of
the multivariate Gaussian. Hence, adjusting the thickness
of the distribution tails reduces the sensitivity of its mean
and covariance estimates to outliers.
The robust probabilistic reformulation of PCA gener-

alizes standard PPCA [20,26]. Increasing the robustness by
replacing Gaussian densities with Student-t densities
was also proposed in the context of finite mixture
modelling [19,1]. In contrast with previous robust ap-
proaches to PCA (see for example [28,13], and the
references therein), the probabilistic formalism has a
number of important advantages. First, it only requires
to choose the dimension of the projection space, the other
parameters being set automatically by maximum likelihood
(ML). Previous attempts need in general to optimize
several additional parameters. Second, the probabilistic
approach provides a natural framework for constructing
mixture models. This enables us to model low-dimensional
nonlinear relationships in the data by aligning a collection
of local linear generative models, instead of using
neighborhood preserving dimensionality reduction techni-
ques [23,25,21,5]. Third, a probabilistic model provides
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2The multivariate Gaussian density with mean l and inverse covariance

matrix (or precision) K is defined as Nðyjl;KÞ / jKj1=2 e�ð1=2Þðy�lÞ>Kðy�lÞ.
3The gamma density is defined as Gðuja;bÞ / ua�1e�bu with a40 and

b40.
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likelihood measures for the data, which can be used to
compute posterior probabilities and eventually to construct
a Bayes classifier [4].

This article introduces mixtures of robust probabilistic
principal component analyses (PPCAs). It is based on some
earlier work [3] presented at the 15th European Symposium

on Artificial Neural Networks. The method generalizes
mixtures of standard PPCAs [27]. An interesting feature of
the approach is that it can be used for robust density
estimation and robust clustering, even in high-dimensional
spaces. The main advantage resides in the fact that the full-
rank, possibly ill-conditioned covariance matrices are
approximated by low-rank covariance matrices, where the
correlation between the (local) principal directions need
not be neglected to avoid numerical instabilities. The
number of free parameters per component depends on the
specific choice for the dimension of the latent subspace.
This procedure is more appealing than constraining the
covariance matrices of the mixture components to be
diagonal as it is often done in practice. Diagonal
covariance matrices lead to axis aligned components,
which are in general suboptimal [1].

PCA and PPCA are closely related to factor analysis
(FA) [8] and ML FA [22], which can also be combined
to form mixtures [11]. The mixture of PPCAs and its
robust version assume that the likelihood of the data given
the low-dimensional representation is isotropic. When
considering a diagonal heteroscedastic noise model
instead of the homoscedastic (or isotropic) one, we obtain
the mixture of probabilistic factor analyzers (PFAs) [10].
This model is useful when it is reasonable to assume
that the noise in the features is independent and of
different amplitude. As mixtures of PPCAs, mixtures of
PFAs can be made robust to atypical observations
by formulating the probabilistic model in terms of the
Student-t distribution.

Hence, the aim of this work is to show that inherent
robustness (with respect to atypical observations) can be
achieved in the class of generative latent variable models
that provide locally linear approximations to implicit low-
dimensional data manifolds. Other important questions,
not discussed in this work, are model selection (i.e., the
optimal number of mixture components) and the auto-
matic identification of the optimal dimensionality of these
manifolds. One possibility is to use cross-validation or
bootstrap techniques [7]. However, these approaches are
computationally intensive and they are only feasible
when the number of hyperparameters is relatively small.
Alternatively, (hierarchical) Bayesian techniques can be
envisioned [4,16].

This paper is organized as follows. In Section 2 robust
PCA is introduced and in Section 3 the corresponding
mixture model is derived. ML estimates of the parameters
are computed by means of the expectation–maximization
(EM) algorithm [6]. The approach is validated in Section 4.
Note that the EM algorithm for mixtures of robust PFAs is
discussed in Appendix D.
2. Robust PPCA

PCA seeks a linear projection which maps a set of
observations fyng

N
n¼1 to a set of lower dimensional latent

(unobserved) vectors fxng
N
n¼1 such that the variance in the

projection space is maximized [14]. The latent variable
model can be formalized as follows:

yn ¼Wxn þ lþ en, (1)

where yn 2 RD and xn 2 R
d , with D4d. The matrix

W 2 RD�d is the (transposed) orthogonal projection
matrix. The data offset and the projection errors are
denoted by l and f�ng

N
n¼1, respectively. In PPCA [20,26], it

is further assumed that the error terms, as well as the prior
uncertainty, are drawn from zero mean isotropic Gaussian2

densities. Tipping and Bishop [26] showed that ML leads to
a solution that is equivalent to PCA up to a rotation in the
projection space. The columns of the ML estimate of W

span the same subspace as the d principal eigenvectors of
the sample covariance matrix and the ML estimate of the
noise variance t�1 is equal to the average lost variance
(eigenvalues) in the discarded directions. As discussed in
Appendix A, the rotational ambiguity can be ignored in the
context of mixture modelling, unless we are explicitly
interested in local principal directions.
However, PPCA (as well as its non-probabilistic counter-

part) suffers from the fact that it is based on Gaussian noise
model. As a result, it is very sensitive to atypical observations
such as outliers, and more generally, to situations where the
data are not well confined on the low-dimensional clusters.
Unfortunately, such cases occur quite often in practice which
motivates the approach proposed in the following.

2.1. Latent variable view of the Student-t distribution

Compared to the Gaussian density, the Student-t density
has an additional parameter, called the number of degrees of
freedom n. It regulates the thickness of the distribution tails
and therefore reduces the sensitivity to atypical observations.
In this work, we do not restrict n to be an integer value.
As noted in [15], the ML estimates of the parameters of

the Student-t density can be computed by an EM algorithm
by viewing the density as the following latent variable
model:

Sðyjl;K; nÞ ¼
Z 1
0

Nðyjl; uKÞG u
n
2
;
n
2

���� �
du

¼ hNðyjl; uKÞiujn; n40, (2)

where h�iu denotes the expectation with respect to the latent
(or unobserved) scale variable u, over which we marginalize
and on which a gamma3 prior is imposed. Hence, the
Student-t density can be reformulated as an infinite mixture
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Fig. 1. (a) Univariate Student-t density for n ¼ 10 (solid) and n ¼ 0:1 (dashed) and (b) the corresponding gamma prior on the latent scale variable.
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of Gaussian densities with the same mean and where the
prior on u is a gamma density with parameters depending
only on n. Examples of zero mean univariate Student-t
densities with unit variance and the corresponding gamma
prior are shown in Fig. 1.

2.2. Robust reformulation of PPCA

As shown in [2], PPCA can be made robust by using a
Student-t model for the prior and the likelihood instead of
a Gaussian one:

pðxnÞ ¼ hNðxnj0; unIdÞiunjn ¼ Sðxnj0; Id ; nÞ, (3)

pðynjxnÞ ¼ hNðyjWxn þ l; untIDÞiunjn

¼SðynjWxn þ l; tID; nÞ, (4)

where t is the inverse residual variance, that is t�1 accounts
for the variance not captured by the low-dimensional latent
vectors. Note that the scaled (inverse) covariance is data
dependent; a different scale variable un is assigned to each
data point yn. Furthermore, the gamma prior on the scale
variables is shared by the latent vectors and the observa-
tions, such that the robustness in the latent space and the
measurement space is determined by a single n. Thus, when
a data point is considered to be an outlier in the high-
dimensional space, it does not contribute to the identifica-
tion of the principal subspace as it is also considered to be
an outlier in the projection space.

3. Mixtures of robust PPCAs

A mixture of M robust probabilistic principal compo-
nent analyzers is defined as follows:

pðyÞ ¼
XM
m¼1

pmpðyjhmÞ, (5)

where fhmg
M
m¼1 is the set of component parameters and

fpmg
M
m¼1 is the set of mixture proportions, with

P
m pm ¼ 1

and pmX0 for all m. The marginal likelihood pðynjhmÞ

associated to the observation yn is defined as a single robust
PPCA according to (3) and (4):

pðynjhmÞ ¼

Z þ1
0

Z þ1
�1

NðynjWmxnm þ lm; untmIDÞ

�Nðxnmj0; unIdÞG un

nm

2
;
nm

2

���� �
dxnm dun

¼Sðynjlm;Am; nmÞ, (6)

where A�1m �WmW
>
m þ t�1m ID. A set of low-dimensional

latent variables fxnmg
N
n¼1 and a set of latent scale variables

funmg
N
n¼1 are associated to the mth robust PPCA model. For

each observation yn, we also introduce the binary latent
variable zn indicating by which component yn was
generated. The resulting complete probabilistic model is
defined as follows:

PðznÞ ¼
Y

m

pznm
m , (7)

pðunjznÞ ¼
Y

m

G unm

nm

2
;
nm

2

���� �znm

, (8)

pðvnjun; znÞ ¼
Y

m

Nðxnmj0; unmIdÞ
znm , (9)

pðynjvn; un; znÞ ¼
Y

m

NðynjWmxnm þ lm; unmtmIDÞ
znm , (10)

where zn ¼ ðzn1; . . . ; znM Þ
>, un ¼ ðun1; . . . ; unM Þ

> and
vn ¼ ðxn1; . . . ; xnM Þ

>. This probabilistic model can be
represented by the graphical model shown in Fig. 2. Latent
variables, indicated by unshaded nodes, are integrated out.
Mathematically, this leads to (5) as desired.

3.1. Training algorithm

We seekML estimates for the parameters h ¼ fpm; hmg
M
m¼1,

with hm � flm;Wm; tm; nmg for all m. Unfortunately, the
probabilistic formulation (7)–(10) of a mixture of robust
principal component analyzers does not permit a direct
maximization of the log-likelihood function lnL ¼P

n ln pðynjhÞ as this quantity is intractable. Therefore, we
adopt an EM approach [6], which finds ML parameters



ARTICLE IN PRESS

Fig. 2. Graphical model for the robust mixture of probabilistic principal

component analyzers. A shaded node indicates that the random variable is

observed, an arrow denotes a conditional dependency between the

variables and a plate corresponds to a repetition.
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estimates iteratively. First (E step), the posterior distribution
of the latent variables is estimated for fixed parameters.
Second (M step), the following quantity is maximized with
respect to the parameters (see Appendix B for the explicit
form):X

n

hln pðyn; vn; un; znjhÞivn ;un ;zn
. (11)

The expectation is taken with respect to the joint posterior
distribution of the latent variables, which is tractable (see
Appendix C). The E step boils down to computing the
expectations required in the M step:

r̄nm � hznmi ¼
pmSðynjlm;Am; nmÞP

k pkSðynjlk;Ak; nkÞ
, (12)

ūnm � hunmi ¼
Dþ nm

ðyn � lnÞ
>Amðyn � lmÞ þ nm

, (13)

ln ~unm � hln unmi ¼ c
Dþ nm

2

� �

� ln
ðyn � lmÞ

>Amðyn � lmÞ þ nm

2

� �
, (14)

x̄nm � hxnmi ¼ tmB
�1
m W>mðyn � lmÞ, (15)

S̄nm � hznmunmxnmx
>
nmi ¼ r̄nmB

�1
m þ ōnmx̄nmx̄

>
nm, (16)

where ōnm � r̄nmūnm, Bm � tmW
>
mWm þ Id and cð�Þ �

G0ð�Þ=Gð�Þ is the digamma function.
Maximizing (11) leads then to the following M step for

the parameters:

pm  
1

N

X
n

r̄nm, (17)

lm  

P
n ōnmðyn �Wmx̄nmÞP

n ōnm

, (18)

Wm  
X

n

ōnmðyn � lmÞx̄
>
nm

 ! X
n

S̄nm

 !�1
, (19)
t�1m  
X

n

ōnm

DNpm

ðkyn � lmk
2 � 2ðyn � lmÞ

>Wmx̄nmÞ

þ
1

DNpm

X
n

trfWmS̄nmW
>
mg, (20)

for all m. The contribution of each data point is weighted
according to ōnm, which accounts for both the effect of the
responsibilities r̄nm and the expected latent scale variables
ūnm. The latter ensures robustness as its value is small for yn

lying far from lm.
For the parameters fnmg

M
m¼1 there is no closed form ML

estimate. Nevertheless, an ML solution can be computed at
each EM iteration by solving the following expression by a
line search algorithm (see for example [18]):

1þ ln
nm

2

� �
� c

nm

2

� �
þ

1

Npm

X
n

r̄nmfln ~unm � ūnmg ¼ 0, (21)

for all m. Alternatively, a heuristic was proposed by
Shoham [24] in the context of mixture modelling. This
heuristic is also applicable here.
Since a line search is computationally inexpensive, the

computational complexity of each EM step is OðMNDdÞ.
Hence, the overall complexity for mixtures of robust
PPCAs is the same as for mixtures of ordinary PPCAs [27].

3.2. Low-rank approximation of the component covariances

Using a (latent) low-dimensional representation of the
data has a clear advantage over a standard mixture of
Gaussians (or Student-t’s) when considering a clustering
problem or when estimating a density. Indeed, the number
of parameters to estimate the covariance of each compo-
nent is equal to Ddm þ 1� dmðdm � 1Þ=2 (where the last
term takes the rotational invariance into account) in the
case of robust PPCAs and it is equal to DðDþ 1Þ=2 in the
case of a standard mixture. The interesting feature of our
approach is that the correlations between the principal
directions are not neglected since Wm contains the local dm

principal directions in the data. By contrast, it is common
practice to force the covariance matrices to be diagonal
(and thus axis aligned) in order to avoid numerical
instabilities. This heuristic is clearly suboptimal.

3.3. Mixtures of robust PFAs

As mentioned earlier, PPCA is closely related to PFA
[22]. If we assume in (10) that the covariance of the noise
model is a diagonal matrix, we obtain a mixture of robust
PFAs. The columns of the matrix Wm are called the
local factor loadings, and the components pðynjhmÞ are now
given by

pðynjhmÞ ¼Sðynjlm;Am; nmÞ, (22)

where A�1m �WmW
>
m þW�1m . The diagonal matrix Wm

contains the inverse variances (or inverse uniquenesses) of
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Fig. 3. Noisy paraboloid data set (black dots). Each two-dimensional

shaded region is associated with a different local linear model (or

component). They represent the dominant component membership of the

points lying above it. The outliers are indicated by squares. (a) Projection

by mixture of PPCAs. (b) Projection by mixture of robust PPCAs.
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the (local) factors and it corresponds to the precision of the
conditional marginal SðynjWmxnm þ lm;Wm; nmÞ. The fac-
tors are thus independent given the latent variables. The
EM algorithm for ML training is discussed in Appendix D.

4. Experiments

In this section, two types of experiments are considered.
First, we illustrate how a low-dimensional nonlinear
manifold spoiled by noisy data can still be recovered when
using a robust approach. Second, the robust mixture
modelling of high-dimensional data is demonstrated on
two different data sets.

4.1. Robust reconstruction of low-dimensional manifolds

The following three-dimensional data set is considered:

y3n ¼ y2
1n þ y2

2n � 1þ �n. (23)

The data fyin : i 2 f1; 2ggNn¼1 are drawn from a uniform
distribution in the ½�1; 1� interval and the error terms
f�ng

N
n¼1 are distributed according to Nð�nj0; t�Þ, with

t�1� ¼ 0:01. The data are located along a two-dimensional
paraboloid; 500 training data were generated. The number
of mixture components was fixed to 5 and dm was set to 2
(the true dimension of the manifold) for all m. Fig. 3 shows
the results for a mixture of standard PPCAs and robust
PPCAs in presence of 10% of outliers. These are drawn
from a uniform distribution on the interval ½�1; 1� in each
direction. The shaded surfaces at the bottom of each plot
indicate the regions associated to each component (or local
linear model) after projection onto this two-dimensional
surface. Each shaded region corresponds to a different
component. The regions (data) are assigned to the
component with highest responsibility. When the local
models are nicely aligned with the manifold, the two-
dimensional regions do not split. However, as shown in
Fig. 3, only the mixture of robust PPCAs provides a
satisfactory solution. Indeed, one of the components of the
mixture of standard PPCAs is ‘‘lost’’ as it is used to model
the outliers (and thus crosses the paraboloid).

4.2. Analysis of high-dimensional clustering

First, we consider a three-dimensional synthetic exam-
ple. Next, we discuss results on the high-dimensional USPS
handwritten digit database.4

4.2.1. Toy example

The data are grouped into three clusters (see Fig. 4).
Each cluster corresponds to a three-dimensional Gaussian
component with a diagonal covariance matrix equal to
diagf5; 1; 0:2g before rotation around the second coordinate
4The USPS data were gathered at the Center of Excellence in Document

Analysis and Recognition (CEDAR) at SUNY Buffalo during a project

sponsored by the US Postal Service.
axis. The two outer clusters are arranged at an angle of
�30� with respect to the middle one, which is horizontally
aligned, and are, respectively, shifted by �5 units along the
axis of rotation. Hence, the data clusters lie essentially on a
distorted two-dimensional plane.
The training data consist of 300 data points, of which

100 are drawn from each Gaussian component, and 5% of
outliers. These are drawn from the uniform distribution in
the hypercube centered on 0 and of side length equal to 20.
The validation data consist of 900 data points (300 per
cluster). The performance measure that we use to assess the
mixture models (the standard mixture of Gaussians, the
mixture of PPCAs and the mixture of robust PPCAs) is
the log-likelihood of the validation data. Table 1 shows the
results for 30 models trained on different training sets for
M ¼ 3 and 4. The dimension of the latent vectors is set to
the same value for all components.
The overall best generalization on unseen data is

obtained for the mixture of three robust PPCAs, with dm ¼

2 for all m. The average validation log-likelihood is the
highest and the standard deviation the smallest. Mixtures
of standard PPCAs always perform poorer than their



ARTICLE IN PRESS

30°

-5

-5

-10

-10-10

10

0

0

0

5

5

10

10

y n
3

yn2
yn1

Fig. 4. Synthetic example for clustering with robust linear subspace models. (a) Vertical view of the mixture of Gaussians. (b) Example of a single training

data set, with the outliers indicated by squares.

Table 1

Average log-likelihood of the validation data and the corresponding

standard deviation

M ¼ 3 M ¼ 4

d ¼ 1 Mixt. of PPCAs �11.9672.01 �10.5971.53

Mixt. of robust PPCAs �10.2670.68 �10.4270.41

d ¼ 2 Mixt. of PPCAs �13.0271.61 �10.3271.62

Mixt. of robust PPCAs �9.3470.26 �9.5370.32

d ¼ 3 Mixt. of Gaussians �13.2771.86 �10.3371.88

All numbers need to be multiplied by 1000. The training/validation

process is repeated 30 times with different data sets.

Fig. 5. Mixture of two component PPCAs with one-dimensional latent

space to cluster USPS digit 2 and 3, and outliers digit 0. Top: robust

PPCA. Bottom: standard PPCA.
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robust counterpart. However, the former favor a one-
dimensional latent space when M ¼ 3, while the latter
favors a two-dimensional one. Interestingly, unconstrained
mixtures of Gaussians perform well when the number of
components is equal to 4. The reason for this is that the 4th
component accounts for the outliers. This was also
observed in [19]. Still, mixtures of robust PPCAs perform
better. In fact, the two outer components are approxi-
mately Gaussian as n is in the range of 10 for both of them.
The remaining two components are centered on the origin,
one being approximately Gaussian (n 	 20) and the other
being heavy tailed (n 	 1). By contrast, when the number
of components is set to 3, the middle component is
approximately Gaussian (n 	 10) and the two outer
components are heavy tailed (n 	 2).

Finally, it should be noted that the quality of the model
provided by the mixtures of robust PPCAs is not affected
by asymmetric noise. For example, when considering
outliers only in the hypercube of side 10 and centered on
ð2:5; 2:5; 2:5Þ>, we obtain an average validation log-like-
lihood which is not significantly different (�9:14� 103�
0:24� 103).

4.2.2. USPS handwritten digit data

In this experiment, the well-known USPS handwritten
digit data are considered. The data are grayscale 16� 16-
pixels images of digits (0–9). To simplify the illustration, we
kept only the images of digit 2 and digit 3 (respectively, 731
and 658 images), as well as 100 (randomly chosen) images
of digit 0. In this setting, these are outliers as they stand
outside the two main clusters of digit 2 and 3. We
compared the mixture of PPCAs and the mixture of robust
PPCAs in their ability to find the two main clusters
assuming a one-dimensional latent space. The result is
shown in Fig. 5. Each row represents images generated
along the principal directions. The mixture of robust
PPCAs completely ignores the outliers. The first compo-
nent concentrates on the digits 3 and the second on the
digits 2. Interestingly, the model is able to discover that
the main variability of digits 3 is along their width, while
the main variability of digits 2 is along their height.
On the other hand, the mixture of PPCAs is very
sensitive to the outliers as its first component makes the
transition between digits 3 and outliers digits 0. This is
undesirable in general as we prefer each component to stick
to a single cluster. Of course, one could argue that three
components would be a better choice in this case. However,
we think that this example exploits a very common
property of high-dimensional data, namely that the major
mass of the density is confined in a low-dimensional
subspace (or clusters of them), but not entirely. This
experiment shows that the mixture of robust PPCAs is
able to model such noisy manifolds, which are common
in practice.
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5. Conclusion

PCA and factor analysis are elementary and funda-
mental tools for exploratory data mining and data
visualization. When tackling real-life problems, such as
digit recognition, it is essential to take a robust approach.
Here, the term ‘‘robust’’ is used to indicate that the
performance of the methods is not spoiled by non-
Gaussian noise (e.g., outliers). This property is obtained
by exploiting the adaptive distribution tails of the Student-
t. In this paper, mixtures of robust probabilistic principal
component/factor analyzers were introduced. They provide
a practical approach for discovering nonlinear relation-
ships in the data by combining robust local linear models.
More generally, they are suitable for robust clustering,
while performing dimensionality reduction at the same
time, and for the visualization of noisy high-dimensional
data.
Appendix A. On the rotational ambiguity of the projection

matrix

The ML estimate of the PPCA projection matrix has the
following form [26]:

WML ¼ UdðPd � t�1IdÞ
1=2R, (A.1)

where the columns of Ud 2 R
D�d are the eigenvectors of the

sample covariance matrix corresponding to the d largest
eigenvectors, Pd 2 Rd�d is the diagonal matrix of these
eigenvectors and R 2 Rd�d is an orthogonal matrix.

From (A.1) it is clear that WML 2 R
D�d spans the same

subspace as PCA and that the (scaled) principal directions
are found up to a rotation R. As noted in [26], this
rotational ambiguity can easily be removed by a post-
processing step. However, this step can be ignored in the
context of mixture modelling since the mixture components
are the marginals fpðyjhmÞg

M
m¼1. These densities depend on

the inverse covariance matrices fAmg
M
m¼1 (see (6)), which are

independent of fRmg
M
m¼1 since RmR

>
m ¼ Id for all m.
Appendix B. Variational lower bound to the log-likelihood

When computing ML estimates of the parameters by the
EM algorithm, the log-likelihood is maximized iteratively
by maximizing a lower bound, which is the variational
negative free energy [17]:

�Fðq; hÞ ¼
X

n

hln pðyn; vn; un; znjhÞi þH½q�, (B.1)

with

lnL ¼ �Fðq; hÞ þKL½qkp�X�Fðq; yÞ. (B.2)

The variational distribution q approximates the posterior
of the latent variables given the parameters h. At each
iteration, the bound decreases monotonically, which
provides a sanity check for the training algorithm.
For model (7)–(10) and the exact posteriors (see
Appendix C), the negative free energy is given by

�Fðq; hÞ ¼
X

n

X
m

r̄nm ln pm þ
nm

2
ln
nm

2

n

� lnG
nm

2

� �
þ
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2
� 1

� �
ln ~unm
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�
X

n

X
m

ōnmnm

2
�
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2
ln 2p

þ
X

n

X
m

r̄nmD

2
ln ~unm �

X
n

X
m

1

2
trfS̄nmg

þ
X

n

X
m

r̄nmD

2
ln tm

�
X

n

X
m

ōnmtm

2
kyn � lmk

2

þ
X

n

X
m

ōnmtmðyn � lmÞ
>Wmx̄nm

�
X

n

X
m

tm trfWmS̄nmW
>
mg

�
X

n

X
m

r̄nmfln r̄nm þ am ln bnm � lnGðamÞ

þ ðam � 1Þ ln ~unmg þ
X

n

X
m

ōnmbnm

þ
X

m

Ndm

2
�
X

n

X
m

r̄nm

2
ln jBmj, (B.3)

where am � ðDþ nmÞ=2, bnm � ððyn � lmÞ
>Amðyn � lmÞ þ

nmÞ=2 and ōnm ¼ r̄nmūnm. The special quantities r̄nm, ūnm,
~unm, x̄nm and S̄nm are, respectively, defined in (12)–(16).
Appendix C. Posterior distributions of the latent variables

The posterior distributions of the latent variables are
computed by applying the Bayes rule. Here, they are all
tractable.
The posterior probabilities of the indicator variables are

given by

Pðznm ¼ 1jynÞ ¼
pmSðynjlm;Am; nmÞP
n pmSðynjlm;Am; nmÞ

, (C.1)

for all n and m. This quantity is called the responsibility. It
is the posterior probability that the observation yn was
generated by the component m.
The gamma distribution is conjugate to the Gaussian

distribution. Therefore, the posteriors of the scale variables
are again gamma distributions:

pðunmjyn; znm ¼ 1Þ

/Nðynjlm; unmAmÞG unm
nm

2
;
nm

2

���� �

¼ G unm

Dþ nm

2
;
ðyn � lmÞ

>Amðyn � lmÞ þ nm

2

����
� �

, (C.2)

for all n and m.
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The posterior distributions of the low-dimensional latent
vectors are given by

pðxnmjyn; unm; znm ¼ 1Þ

/NðynjWmxnm þ lm; unmtmIDÞNðxnmj0; unmIdÞ

¼NðxnmjtmB
�1
m W>mðyn � lmÞ; unmBmÞ, (C.3)

for all n and all m. The inverse covariance is defined as
Bm ¼ tmW

>
mWm þ Id .

Finally, the joint posterior of the latent variables is given
byY

n

pðvn; un; znjynÞ ¼
Y

n

Y
m

pðxnmjunm; znm; ynÞ

�pðunmjznm; ynÞpðznmjynÞ. (C.4)

Appendix D. EM algorithm for robust mixtures of factor

analyzers

ML estimates for the parameters of mixtures of PFAs
can be computed by the EM algorithm. For the E step,
(12)–(14), (16) still hold, but the updates for xnm and Bm are
given by

x̄nm ¼ B�1m W>mWmðyn � lmÞ, (D.1)

Bm ¼W>mWmWm þ Id , (D.2)

for all n and m.
The M step is identical to robust PPCAs, except for the

update of the diagonal precisions (inverse uniquenesses):

W�1m  diag
1

Npm

X
n

ðōnmðyn � lmÞðyn � lmÞ
>

(

�WmS̄nmW
>
mÞ

)
, (D.3)

where diagf�g sets all the off-diagonal elements to zero.
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2002 to 2007, respectively. He is now a professor
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