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a b s t r a c t

We propose an active set selection framework for Gaussian process classification for cases when the

dataset is large enough to render its inference prohibitive. Our scheme consists of a two step alternating

procedure of active set update rules and hyperparameter optimization based upon marginal likelihood

maximization. The active set update rules rely on the ability of the predictive distributions of a

Gaussian process classifier to estimate the relative contribution of a data point when being either

included or removed from the model. This means that we can use it to include points with potentially

high impact to the classifier decision process while removing those that are less relevant. We introduce

two active set rules based on different criteria, the first one prefers a model with interpretable active

set parameters whereas the second puts computational complexity first, thus a model with active

set parameters that directly control its complexity. We also provide both theoretical and empirical

support for our active set selection strategy being a good approximation of a full Gaussian process

classifier. Our extensive experiments show that our approach can compete with state-of-the-

art classification techniques with reasonable time complexity. Source code publicly available at

http://cogsys.imm.dtu.dk/passgp.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Classification with Gaussian process (GP) priors has many
attractive features, for instance it is non-parametric, exceptionally
flexible through covariance function designs, provides fully prob-
abilistic outputs and Bayesian model comparison as principled
framework for automatic hyperparameter elicitation and variable
selection. However, such a set of features comes in with a great
disadvantage since the computational cost of performing infer-
ence scales cubically with the size, N, of the training set. In
addition, the memory requirements scale quadratically also with
N. This means that applicability of Gaussian process classifiers
(GPCs) is sadly limited to problems with dataset sizes in the lower
ten thousands. The poor scaling of specially non-linear classifica-
tion methods has inspired a considerable amount of research
effort focused on sparse approximations [1–7]. See particularly
[1,2] for a detailed overview of sparse approximations in GPCs.
These methods attempt in general to decrease the computational
cost of inference in one degree w.r.t. N, i.e. OðNM2

Þ, where MoN

and M is the size of a working set consisting on a subset of the
ll rights reserved.
training data or a set of auxiliary unobserved variables. Both ways
of defining the working set basically target the same objective of
getting as close as possible to the classifier that uses the
information of the entire training set, however they approach it
from different angles. Using a subset from the entire data pool
amounts to keep those data points that better contribute to
the classification task and discard the remaining ones through
some suitable data selection/ranking procedure [6–10]. Alterna-
tively, building an auxiliary set tries to directly reduce the
difference in distribution between the classifier using N points
and the one using only M, by estimating the location of an
auxiliary set in the input space, usually called pseudo-input set
[1,4,11]. The latter approach is evidently more principled, how-
ever the number of parameters to be learnt grows with the
number and size of the auxiliary set, making it unfeasible for
datasets in the upper ten thousands and sensitive to overfitting
due to the number of free parameters in the model. From a fully
Bayesian perspective, in [12] the authors propose an efficient
MCMC based inference that is made possible by using a sparse
and approximate basis function expansion over the training
dataset. The main computational burden is therefore the same
as other sparse kernel methods possibly with a larger pre-factor
due to sampling.

Having in mind that our main goal is to obtain the best
classification performance with the least computational cost
possible, we do not attempt to estimate auxiliary sets but rather

http://cogsys.imm.dtu.dk/passgp
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to select a subset of the training data. The framework presented
here, Predictive Active Set Selection (PASS-GP) uses the predictive
distribution of a GPC in order to quantify the relative importance
of each data point and then use it to iteratively update an active
set. Recently, Kapoor et al. [6] proposed a similar criterion in the
context of active learning with Gaussian processes. We use the
term active set because it is ultimately the one used to estimate
the predictive distribution that produces the classification rule
and active set updating scheme. In a nutshell, our framework
consists of alternating between active set updates and hyperpara-
meter optimization based upon the marginal likelihood of the
active set. We provide two active set update schemes that target
different practical scenarios. The first simply called PASS-GP
builds the active set by including/removing points with small/
large predictive probability until no more or too few data points
are included in the active set. This means that the size of the
active set is not known in advance so as the expected computa-
tional complexity. The second scheme is aware that in some
applications is very important to keep the computational com-
plexity and/or memory requirements on a budget, thus being able
to specify the size of the active set beforehand is essential. In fixed
PASS-GP (fPASS-GP) we keep the size of the active set constant by
including and removing the same amount of data points in each
update to achieve the desired behavior.

The remainder of the paper presents in Section 2 a concise
description of expectation propagation based inference for GPCs.
Section 3 continues with our proposed framework for active
set selection, followed by some theoretical insights based upon
a ‘representer theorem’ for the predictive mean of a GP classifier
in Section 4. Marginal likelihood approximations to the full GP
classifier are introduced in Section 5. Finally, experimental results
and discussion appear in Sections 6 and 7, respectively.
2. Gaussian processes for classification

Given a set of input random variables X¼ ½x1, . . . ,xN�
>, a

Gaussian process is defined as a joint Gaussian distribution
over function values at the input points f ¼ ½f 1, . . . ,f N�

> with mean
vector m (taken to be zero in the following) and covariance
matrix K with elements Kij ¼ kðxi,xjÞ and hyperparameters h.
For classification, assuming independently observed binary 71
labels y¼ ½y1, . . . ,yN�

> and a probit (cumulative Gaussian) like-
lihood function tðyn9f nÞ ¼Fðf nynÞ, we end up with an intractable
posterior

pðf9X,yÞ ¼ Z�1pðf9XÞ
YN

n ¼ 1

tðyn9f nÞ,

where the normalizing constant Z ¼ pðy9XÞ is the marginal like-
lihood. If we want to perform inference we must resort to
approximations. Here we use Expectation Propagation (EP) because
it is currently the most accurate deterministic approximation, see
e.g. [2,13]. In EP, the likelihood function is locally approximated by
an un-normalized Gaussian distribution to obtain

qðf9X,yÞ ¼ Z�1
EP pðf9XÞ

YN
n ¼ 1

z�1
n
~tðyn9f nÞ

¼ Z�1
EP pðf9XÞN ðf9 ~m, ~CÞ

¼N ðf9m,cÞ, ð1Þ

where qðf9X,yÞ � pðf9X,yÞ, the zn are the normalization coeffic-
ients, ~tðyn9f nÞ and N ðf9 ~m, ~CÞ conform the site Gaussian approxima-
tions to tðyn9f nÞ. In order to obtain qðf9X,yÞ, one starts from
qðf9X,yÞ ¼ pðf9X,yÞ and update the individual ~tn site approximations
sequentially. For this purpose, we delete the site approximation
~tn from the current posterior leading to the so-called cavity
distribution

q\nðf9X,y\nÞ ¼ pðf9XÞ
Y
ian

z�1
i
~tðyi9f iÞ,

from which we can obtain a cavity predictive distribution

q\nðyn9X,y\nÞ ¼

Z
tðyn9f nÞq\nðf9X,y\nÞ df ¼F

ynm\nffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þv\n

p
 !

, ð2Þ

where m\n ¼ v\nðC
�1
nn mn�

~C
�1

nn
~mnÞ and v\n ¼ ðC

�1
nn �

~C
�1

nn Þ
�1. We then

combine the cavity distribution with the exact likelihood tðyn9f nÞ, to
obtain the so-called tilted distribution qnðf9X,yÞ ¼ z�1

n tðyn9f nÞ

q\nðf9X,y\nÞ. Since we need to choose the parameters of the site
approximations we must minimize some divergence measure.
It is well known that when qðf9X,yÞ is Gaussian, minimizing
KLðpðfÞ99qðfÞÞ is equivalent to moment matching between those
two distributions including zero-th moments for the normaliz-
ing constants. The EP algorithm iterates by updating each site
approximation in turn and makes several passes over the
training data.

With the Gaussian approximation to the posterior distribution
in Eq. (1), it is possible to calculate the predictive distribution of a
new data point x% as

qðyn9X,y,x%Þ ¼

Z
tðy%9f %

Þqðf %9X,y,x%Þ df %

¼F
y%m%ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þv%

p

� �
, ð3Þ

where qðf %9X,y,x%Þ is the approximate predictive Gaussian dis-
tribution (the marginal of qðf,f %9X,y,x%Þ w.r.t. f) with mean
m% ¼ k%>

ðKþ ~CÞ�1 ~m and variance v% ¼ k%%

�k%>
ðKþ ~CÞ�1k%. In

addition, the approximation to the marginal likelihood pðy9XÞ
results in the normalization constant from Eq. (1),
i.e. qðy9XÞ ¼ ZEP. The logarithm of ZEPðh,X,yÞ and its derivatives
can be used jointly with conjugate gradient updates to perform
model selection under the evidence maximization framework. For
a detailed presentation of GP including its implementation
details, consult [2,13].
3. Predictive Active Set Selection

The EP algorithm is performed by iterative updates of each
site approximation using the whole dataset fX,yg. In the active
set scenario on the other hand, we only want to approximate
the posterior distribution in Eq. (1) using a small subset, the
active set fXA,yAg. Since exploring all possible active sets is
obviously intractable even for a fixed active set size M, the
problem is how to select an active set that delivers a performance
as good as possible within the available computing resources.
The Informative Vector Machine (IVM) [8] for instance, computes
in each iteration the differential entropy score for all data
points not already part of the active set fXI ,yIg and perform
updates by including the single point leading to a maximum
score. Despite this greedy heuristic, IVM has proved to behave
quite well in practice, giving the so far best reported GP perfor-
mance on the USPS and MNIST tasks [8,9]. We propose an
iterative approach in the same spirit with two main conceptual
changes
�
 Active set inclusion/deletion based directly upon the data point
weight in prediction. The ‘representer theorem’ for the mean
prediction, discussed in Section 4, leads directly to the weight
being expressed in terms of (a derivative of) the cavity
predictive probability. This means that we can actually use
the predictive distribution for a point in the inactive set to
predict the weight it would have if it would be included in the



R. Henao, O. Winther / Neurocomputing 80 (2012) 10–1812
active set. For classification we use the (cavity) predictive
probability to decide upon deletion and inclusion because it
is monotonically related to weight and it is a readily inter-
pretable quantity.

�
 Hyperparameter optimization must be an integral part of algo-

rithm, because the weights of the examples (and thus the
active set) is conditioned on the hyperparameter values and
vice versa. We therefore alternate between active set updates
and hyperparameter optimization using several passes over the
dataset.

Next we discuss the details of our (f)PASS-GP framework
followed by a detailed comparison with the IVM. First we need
to define rules for including and deleting points of the active set.
As already mentioned, we use the predictive distribution in Eq.
(3) for inclusions since data points with small predictive prob-
ability are more likely to contribute to improve the classifier
performance and the quality of the active set. For deletions, we
use the cavity predictive distribution in Eq. (2) because when
examined carefully it can be seen as a leave-one-out estimator
[14]. This means that points with cavity probability close to one
do not contribute to the decision rule thus they can be discarded
from the active set. With the two ranking measures set, i.e.
Eqs. (2) and (3), we have essentially two possibilities. The first is
to set probability thresholds on the distributions and let the
model decide the size of the active set or we can rather specify
directly the amount of inclusions/deletions. In PASS-GP, we
include points in the active set with probability less than pinc

and remove them with probability greater than pdel. The appeal-
ing aspect of these thresholds is that they can be interpreted, for
instance if we set pinc ¼ 0:5 we will include all misclassified
observations in the current active set whereas if pinc ¼ 0:6 we
will also include points near the decision boundary. We require
two thresholds because we only want to remove points that as
for the classifier are very easy to classify, so unlike pinc, pdel must
be close enough to one. In fPASS-GP, we want to keep the
computational complexity of the classifier under control thereby
we want the size of the active set to be fixed. For this purpose we
only have to be sure that each active set update includes and
removes the same amount of points. In practice we define pexc as
the exchange proportion w.r.t. M, meaning that each update
replaces the fixed proportion of most hard to classify points in
the inactive set with those more surely classified in the current
active set. This update rule assumes that the active set is large
enough to contain points in the active set with cavity probability
close to one.

From a practical point of view, ranking every point in
the inactive set at each iteration for inclusion could become
prohibitive for large datasets. However, we still want to be
able to cover the whole dataset rather than selecting a random
subset for ranking. We then split the data into Nsub non-over-
lapping subsets and process each one of them in each iteration,
such that each batch has something between 100 and 1000 data
points.

Hyperparameter selection is a very important feature and
needs to be done jointly with the active set update procedure.
Algorithm 1 starts from a fixed randomly selected active set of
size Ninit (that is M in fPASS-GP), large enough to provide a good
initial hyperparameter set values. Next we alternate between
active set and hyperparameter optimization updates. Having
in mind that we only expect small changes of the hyperpara-
meters from one iteration to another, we reuse current values
of h as initial values for the next iteration to speed-up the learn-
ing process. The addition and deletion rules in Algorithm 1
have parameters fpinc,pdelg and pexc for PASS-GP and fPASS-GP,
respectively.
Algorithm 1. Predictive Active Set Selection.
Input: fX,yg, h and fNinit, Nsub, Npassg

Input: pinc and pdel (PASS-GP)
Input: pexc (fPASS-GP)

Output: qðfA9XA,yAÞ, hnew and A

begin
A’f1, . . . ,Ninitg

fX,ygð1Þsub, . . . fX,ygðNsubÞ

sub ’fX,yg

for i¼ 1 to Npass do

for j¼ 1 to Nsub do

hnew ¼ argmaxh log ZEPðh,XA,yAÞ

Get qðfA9XA,yAÞ and qðyn9XA,yA,x%Þ

forall fxn,yngAfXA,yAg do

if RemoveRuleðq\nðyn9XA,yA\nÞÞ

then A’A\fng

�����
end

forall fxn,yngAfX,ygðjÞsub do

if AdditionRuleðqðyn9XA,yA,x%,tÞÞ

then A’A [ fng

�����
end

��������������������������
end

�������������������������������
end

�����������������������������������������
end
3.1. Differences between (f)PASS-GP and IVM

Since IVM is the closest relative of our active set selection
method, we briefly discuss the main differences between the two:
(i) the active set and thus the computational complexity is usually
fixed beforehand in IVM. PASS-GP works with inclusion and
deletion thresholds instead. (ii) IVM does not allow for deletions
from the active set which is a clear disadvantage as points often
become irrelevant at a later stage, when more points have been
included. In (f)PASS-GP we can make an (almost) unbiased
common ranking of all training points active as well as inactive,
using a quantity that is meaningful and directly related to the
weight of the training point in predictions. Using both inclusions/
deletions and several passes over the training set makes (f)PASS-
GP quite insensitive to the initial choice of active set. (iii) When
the dataset is considerably large, IVM randomly selects a subset of
points to be ranked from the inactive set, meaning that is likely
that some points of the dataset are never considered for inclusion
in the active set. (iv) The hyperparameter optimization is a part of
the algorithm in (f)PASS-GP working on subsets of data between
updates and iterating over the dataset several times. IVM makes a
single inclusion per step and in principle stops when the limit
for the active set is reached. (iv) In terms of complexity time
per iteration IVM is faster than (f)PASS-GP, OðNMÞ against
OðM2

ð2þN=NsubÞÞ where M is the size of A, however storage
requirements are considerably lower, OðM2

Þ compared to OðNMÞ.

4. Representer for mean prediction

The ‘representer theorem’ for the posterior mean of f [14],
connects the predictive probability and the weight of a data point.
Using that pðf9XÞ ¼�Kð@=@fÞpðf9XÞ, we get the exact relation for
the posterior mean /fS¼Ka with the weight of element n being

an ¼
1

pðy9XÞ

Z
pðf9XÞ

@

@f n

pðy9fÞ df

¼
/p0ðyn9f nÞS\n

/pðyn9f nÞS\n

¼
@

@h
log /pðyn9f nþhÞS\n

����
h ¼ 0

,
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where / �S\n ¼m\n denotes an average over a posterior without
the n-th data point and p0ðyn9f nÞ ¼ @pðyn9f nÞ=@f n. The final expres-
sion implies that the weight is nothing but the log derivative of

the cavity predictive probability /pðyn9f nÞS\n ¼ pðyn9X,y\nÞ. For

regression, pðyn9f nÞ ¼N ðyn9f n,s2Þ and an ¼ ðyn�/f nS\nÞðs2þv\nÞ
�1

with v\n ¼/f 2
nS\n�/f nS

2
\n. The element an will therefore be small

when the cavity mean has a small deviation from the target
relative to the variance. For a new data point pair fx%,y%g, we can
calculate the weight of this point exactly, replacing the cavity
average with the full average in the expression above. We can
therefore predict without any EP rerunning, how much weight
this new point will have. For classification we
can calculate the weight using the current EP approximation.

When zn ¼ yn/f nS\n=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þv\n

p
is above � 4, the cavity probabi-

lity equation (2) approaches one and an � yn expð�z2
n=2Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1þv\nÞ
p

. This fast decay indicates that GPC in many cases

will be effectively sparse even though a strictly does not
contain zeros.

In the inclusion/deletion steps we rank data points according
to their weights. For classification we can indeed use the pre-
dictive probability directly, since it is a monotonic function of the
weight. Including a new data point will of course affect the value
of all other weights as well leading to a rearrangement of their
rank. Including multiple data points will also invalidate the
predicted value of the weights (e.g. think of the extreme of two
new data points being identical). We therefore have to recalculate
the weights by retraining with EP for classification or simply
updating the posterior for regression before going to the next
step. If we have already an active set covering the decision regions
well enough, this rearrangement step will amount to minor
adjustments and the approximation will work well.

In this work we have only used the representer theorem for
active set selection. It is also possible, but not tested here, to use
all training points for prediction while only calculating the
posterior on the active set. The inactive set weights are then
simply set to the predicted values from the active set posterior. To
get the full predictive probability one also has to calculate the
contribution to the predictive variances which can be obtained by
a similar theorem but for the predictive variance, see [14].
5. Marginal likelihood approximations

In this section we decompose the marginal likelihood in their
active and inactive set contributions. We will argue that the
contribution from the active set will dominate, justifying why we
can limit ourselves to optimizing the hyperparameters over this
set. In the following section we will investigate this assumption
empirically. The marginal likelihood can be decomposed via the
chain rule as

pðy9XÞ ¼ pðyI9yA,XA,XIÞpðyA9XAÞ, ð4Þ

where we have used the marginalization property of GPs,

pðyA9XÞ ¼
Z

pðyA9fAÞpðfA9XAÞdfA ¼ pðyA9XAÞ,

that we approximate as qðyA9XAÞ ¼ ZEP,A and we identify it as the
marginal likelihood for the active set A. The conditional marginal
likelihood term can be written as

pðyI9yA,XA,XIÞ ¼

Z
pðyI9fIÞpðfI9XI ,XA,fAÞpðfA9XA,yAÞ dfA dfI , ð5Þ

where we used pðf9XÞ ¼ pðfI9XI ,XA,fAÞpðfA9XA,yAÞ. We can make an
EP approximation here just like in Eq. (1) by replacing the posterior
pðfA9XA,yAÞ by the multivariate Gaussian qðfA9XA,yAÞ ¼
N ðfA9mA,CAAÞ where active set specific means and variances are
found by EP. Marginalizing over fA in Eq. (5) makes it now tractable

qðyI9yA,XA,XIÞ �

Z
pðyI9fIÞN ðfI9mI9A,CII9AÞ dfI

with parameters

mI9A ¼KIAðKAAþ
~CAAÞ

�1 ~mA,

CII9A ¼KII�KIAðKAAþ
~CAAÞ

�1KAI ,

where the tilted moments are as defined in Section 2. When the
inactive set consists of a single example, we obtain the EP predictive
distribution in Eq. (3), otherwise we have to solve for a new marginal
likelihood. Denoting the marginal likelihood for a set fX,yg with a
non-zero mean GP prior by

Zðh,X,y,mÞ ¼

Z
pðy9fÞN ðf9m,KÞ df,

and its EP approximation by ZEPðh,X,y,mÞ, we can write the approx-
imation to the marginal likelihood in Eq. (4) as

ZACC � ZEPðh,X,yI ,mI9AÞZEPðh,X,yA,0Þ:

Using this approximate decomposition reduces the complexity of EP
from OðN3NpassÞ to Oðð9I93

þM3
ÞNpassÞ, where 9I9 is the size of the

inactive set. Unfortunately this is still too costly for large N. A final
low complexity approximation to the marginal likelihood, that we
denote by ZAPP, is to replace pðyI9yA,XÞ with the product of marginalsQ

iA Ipðyi9yA,XA,xiÞ. Empirically—see Fig. 3, this approximation turns
out to be lower than the actual marginal likelihood, i.e. the joint
distribution enforces the labels relative to the product of the
marginals.
6. Experiments

The results presented in this section consist of several classi-
fication tasks performed on three well known datasets, namely
USPS, MNIST and IJCNN. The first two correspond to handwritten
digit databases while the third is a physical system inspired
dataset assembled for the IJCNN 2001 neural network competi-
tion. We compare the two approaches introduced in Section 3
against the IVM and reduced complexity SVM (RSVM) [3]. We
consider as performance measures not only classification errors,
but also the error-cost trade-off and prediction uncertainty. We
also present results for the approximation to the marginal like-
lihood of the full GP presented in Section 5. All experiments were
performed on a 2.0 GHz desktop machine with 2 GB RAM.

6.1. USPS

The USPS digits database contains 9289 grayscale images of
size 16�16 pixels, scaled and translated to fall within the range
from �1 to 1. Here we adopt the traditional data splitting, i.e.
7291 observations for training and the remaining 2007 for testing.
For each binary one-against-rest classifier we use the same model
setup consisting of a squared exponential covariance matrix plus
additive jitter

kðxi,xjÞ ¼ y1 exp �
Jxi�xjJ

2

2y2

 !
þy3dij, ð6Þ

where dij ¼ 1 if i¼ j and zero otherwise. We have three hyper-
parameters in h, namely, signal variance, characteristic length
scale and jitter coefficient. Provided that the four active set
methods being considered may depend upon random initializa-
tion we repeated all tasks 10 times. Individual settings for each
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method are
�
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ba
PASS-GP: Ninit ¼ 300, Nsub ¼ 10, Npass ¼ 2, pinc ¼ 0:6 and
pdel ¼ 0:99.

�
 fPASS-GP: Ninit ¼ 300, Nsub ¼ 10, Npass ¼ 4, pexc ¼ 0:02. We allow

fPASS-GP to perform more passes through the data because
fPASS-GP progresses slower due to pexc being small.

�
 RVM: M¼500, h¼ ½1 1=16 0�, C¼10 and k¼ 10. More precisely,

h and the regularization parameter, C, were obtained by grid
search cross-validation, while k was set to the value suggested
by the authors of [3].

�
 IVM: M¼300 and Npass ¼ 8. In the publicly available version of

IVM, hyperparameter selection is done by alternating between
full active set selection and hyperparameter optimization.
Since IVM starts from an empty active set, it can be very
sensitive to the initial values of h. We experienced however
that by adding a linear term, y4x>i xj, in the covariance matrix in
Eq. (6) makes IVM quite insensitive to initialization. The results
reported here include such a linear term because we found that
using Eq. (6) alone makes the IVM to perform very poorly.

Fig. 1(a) shows mean test errors for every one-against-rest task
using PASS-GP, fPASS-GP, RSVM, IVM and the full GPC with
hyperparameter optimization. Besides, Fig. 1(b) shows the active
set sizes for each digit using PASS-GP. From the figure, it can be
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. 1. Error rates and active set sizes for USPS data. (a) Mean classification errors

each digit using PASS-GP, fPASS-GP, RSVM, IVM and the full GPC with

perparameter optimization. (b) Active set sizes for PASS-GP. Note that fPASS-

and IVM use M¼300, whereas RSVM uses M¼500 for the results in (a). Error

rs are standard deviations over 10 repetitions.
seen that Gaussian process based active set methods perform
similarly still slightly better than the RVM. The full GPC was only
ran once due to its computational requirements, which explains
the lack of error bars in Fig. 1(a). Furthermore, compared to
fPASS-GP, IVM (M¼300) and RSVM (M¼500), PASS-GP seems to
require smaller active sets to achieve similar classification per-
formance. It is important to mention that we also tried larger
values of M for the fixed active set algorithms but without any
significant improvement in performance.

Fig. 2 shows classification errors for digits 2 and 4 against the
others in top and bottom panels, respectively, as a function both
of the active set size and running time. For fPASS-GP, RSVM and
IVM we used M¼ f200, . . . ,600g and for PASS-GP we used
pinc ¼ f0:2:0:3, . . . ,0:9g. We included also the classification error
obtained by the full GPC with hyperparameter optimization
depicted as an horizontal dashed line. See [7] for a more detailed
comparison between PASS-GP and full GPCs. Several features
from Fig. 2 worth to be highlighted. (i) Gaussian process based
methods approach the full GP for large values of M, as expected.
(ii) Similar to Fig. 1(a), PASS-GP seems to consistently outperform
fPASS-GP for similar sizes of M. (iii) For small values of M, RSVM
and IVM perform better than our active set methods, however
further increasing M does not considerably improves their per-
formance. When M is small enough, it is very likely that our
approaches are not able to obtain plausible estimates of the
hyperparameters of the covariance function, thus its poor perfor-
mance compared to RSVM that uses fixed values. Provided that
the full GPC takes 8:6e5 s to run, PASS-GP and fPASS-GP are
approximately three orders of magnitude faster than the full GPC
with hyperparameter optimization, see [7]. From Fig. 2(b) and (d),
we see that for similar active set sizes, PASS-GP and fPASS-GP
have comparable computational costs as one may expect. Simi-
larly, RSVM and IVM scale better than our active set selection
methods. In terms of error-cost trade-off, RVM has a clear edge
while the Gaussian process based methods can be regarded as
comparable. It is important to note that for RVM, the difference in
computational costs as seen in Fig. 2(b) and (d) should not be
considered as significant since we are not counting the time used
to obtain the parameters used by the RSVM, that unfortunately
need to be selected by expensive grid search with cross-valida-
tion. The IVM turned out to be time-wise comparable to our
active set methods not because its selection procedure but due to
the hyperparameter optimization scheme used.

The results obtained on USPS suggest that (f)PASS-GP is
performing slightly better than the full GPC. This could be due
to numerical instability produced by the size of the problem, by
the iterative nature of the EP algorithm and/or not enough
iterations for the hyperparameter selection procedure. However,
it could also mean that optimizing on the active set achieves a
better ‘‘local’’ fit around the decision boundary region. A priori,
one cannot expect that a single set of hyperparameters is able to
describe all regions in input space, thus every possible active set.
The same kind of local improvement observed here was also
reported by [15,4] using GPC auxiliary set methods.

Combining the ten binary tasks into a one-against-rest multi-
class classifier, PASS-GP obtained 4:5170:17% which is compar-
able or better1 than 4.6170.11% by fPASS-GP, 4.8870.12% by
RSVM and 4.3870.11% by IVM. Baselines are, 5.13% by GPC with
hyperparameter optimization, 4.78% by GPC with fixed h and
9.7570.40% by GPC with random active set selection. Other
relevant results found in the literature include 5.15% by online
GP [16] and 4.98% by IVM with randomized greedy selection [9].
1 Assuming independent errors, the standard deviation on the performance isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eð1�EÞ=Ntest

p
giving approximately 0.4% for USPS and 0.1% for MNIST.
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Fig. 2. Results for selected individual digits of USPS data. (a) and (c) show mean classification errors as a function of the active set size for digits 2 and 4 vs the rest,

respectively. (b) and (c) show mean classification errors as a function of the running time, matching panels (a) and (c). The horizontal dashed line in all plots is the

performance of the full GPC with hyperparameter selection. In both cases, the full GPC took approximately 8.6e5 s [7]. Values represent averages over ten independent

repetitions with error bars omitted for clarity.
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All three Gaussian process based methods are comparable with
state-of-the-art techniques such as SVM, see [17]. It is worth
pointing out that the best result we could obtain from IVM using
the covariance matrix in Eq. (6) was 6.2770.21% for M¼1500
which is substantially worse than the performance of the full GPC.
As reference, it has been shown that the human error rate is
approximately 2.5%.

Next we want to evaluate the two approximations to the marginal
likelihood proposed in Section 5. We proceed by computing the
accurate but expensive approximation ZACC, the less accurate but
affordable ZAPP and the marginal likelihood of the full GPC and the
active set, simply denoted as ZEP and ZEP,A, respectively. In order to
show how the approximations depend on the size of the active set,
we compute them for pinc ¼ f0:5,0:6, . . . ,0:9,0:99,1g, with pinc ¼ 1
being the full GPC. Fig. 3 shows that the three approximations
approach the marginal likelihood of the full GPC as the inclusion
threshold and so the active set size increases. As expected, ZACC is the
best approximation, however the computational effort needed to
compute it is roughly two orders of magnitude larger compared to
the cost of computing ZAPP and ZEP,A. It is very interesting that even
with large values of pinc ¼ 0:99 the size of the active set remains
below 10% of the training data and the contribution to the log-
marginal likelihood from the inactive ZEPðh,X,yI ,mI9AÞ set basically
vanishes, since ZAPP and ZEP,A are essentially the same.
Finally, we want to assess the uncertainty of the predictions
made by the Gaussian process based methods by means of
comparing the predictive probabilities with the true outcomes.
Fig. 4 shows estimated log predictive densities for PASS-GP,
fPASS-GP, IVM and the full GPC, using all USPS predictions made
on the test separated into correct and incorrect predictions.
Assuming no labeling errors, the true density consists of two
point mass densities at {0,1} provided our one-against-rest set-
ting. As one might expect, the full GPC achieves the best
approximation, followed by fPASS-GP and PASS-GP. IVM suggests
more predictive uncertainty because of the two ‘‘spurious’’ modes
in Fig. 4(a). Another way to assess the predictive uncertainty is to
compute Brier scores, that measures the average of square
deviations between estimated and true predictive probabilities.
For the USPS dataset we obtained: 0.5370.03, 0.2770.01,
0.7170.02 and 0.1470.00 for PASS-GP, fPASS-GP, IVM and full
GPC, respectively. Note that the Brier scores are in agreement to
what we observe in Fig. 4.

6.2. MNIST

The MNIST digits database has 60 000 and 10 000 as training
and testing examples, respectively. Each example is a gray-scale
image of 28�28 pixels. The estimated human test error is around
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0:2%. The settings used for the algorithm are nearly the same as
those for USPS with only two differences. Nsub is set 100 since the
training set in MNIST is almost ten times larger than USPS and we
are not updating the hyperparameter in each iteration but every
10-th, in order to make the training process faster. We also ran
our algorithm with hyperparameter updates every single iteration
without any noticeable improvement in performance (results not
shown). Fig. 5 shows test error rates, active set sizes, multi-class
errors and running times for each binary classifier based on PASS-
GP, fPASS-GP and RSVM using a 9-th degree polynomial covar-
iance function

Kðxi,xjÞ ¼ y1ðxi � xjþ1Þ9:

We use this covariance matrix instead for the standard squared
exponential from Eq. (6), because a polynomial covariance is well
known for providing optimal results for the MNIST dataset [18].
Results for the squared exponential covariance function can be
found in [7] and confirm that the polynomial covariance behave
slightly better for this dataset. For IVM we could not make the
polynomial covariance to work properly, thus we decided to use
Eq. (6) plus a linear term like in the USPS experiment.

From Fig. 5(b) it can be seen that in every case the size of the
active set is less than 4% of the training set. The results for fPASS-
GP and RSVM were obtained using M¼2000. We did try for larger
values of M but the reduction in error was not significant
compared to the overhead in computational cost. Fig. 5(a)
shows the classification error for each digit. The performance of
the three approaches considered is comparable but letting PASS-
GP with an edge over the other two, both in terms of error and
variances. Fig. 5(c) shows the results of combining the ten binary
classifiers. Again, PASS-GP behaves slightly better than the others,
however when looking at the run times in Fig. 5(d) we can see
that RSVM is computationally more affordable than our
approaches, even more considering that it uses M¼2000. Com-
paring PASS-GP to fPASS-GP, the former has a smaller mean run
time but with larger variance compared to the more expensive
fPASS-GP. fPASS-GP is more stable time-wise, but takes more time
because it uses a fixed M¼2000. As far as the authors know these
are the first GP based results on MNIST using the whole database.
IVM [8] with sub-sampled images of size 13�13 has been tried to
produce a test error rate of 1.5470.04%. Seeger [9] made addi-
tional tests on some digits (5, 8 and 9) on the full size images
without any further improvement. On the other hand, PASS-GP is
again comparable with state-of-the-art techniques not including
preprocessing stages and/or data augmentation, for instance SVM
is 1.4% and 1.22% using RBF and a 9-th degree polynomial kernel,
respectively. The reported sizes of support vector sets are
approximately two times larger than our active sets [18].

6.3. Incorporating invariances

It has been shown that a good way to improve the overall
performance of a classifier is to incorporate additional prior
knowledge in the training procedure particularly by means of
externally handling invariances of the data. In [18], it is shown
that instead of just dealing with the invariances by augmenting
the original dataset—which turns out to be infeasible in many
cases, it is better to augment only the support vector set of a SVM.
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Table 1
Results for USPS and MNIST using PASS-GP and active set invariances. Figures are aver

Digit 0 1 2 3 4

USPS (%) 0.63 0.38 1.01 0.69 0.9

Active set 870 442 1251 1316 1654

MNIST (%) 0.14 0.14 0.24 0.24 0.2

Active set 6505 4372 11 401 12 988 9776
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We therefore try the same procedure as suggested in [18]
consisting of four 1-pixel translations (left, up, right and down
directions) on each element of the active set for USPS and eight
1-pixel translations (including diagonals as well) for MNIST,
resulting in new training sets of size 5�M and 9�M, accordingly.
In this case we have used the same settings as in the previous
experiments with only two differences. First, the hyperparameters
have been set to those found using the original dataset. Second, we
made the important observation that in order to get a performance
improvement a large active set was needed. For training on the
augmented dataset we increased pinc from 0.6 to 0.99 for USPS and
0.9 for MNIST. We conjecture that we can get even better
performance—at the expense of a substantial increase in complex-
ity, by increasing pinc in the initial run to get a larger initial active
set to work with.

Results in Table 1 show that performance-wise, PASS-GP
reached 3.3570.03% for USPS and 0.8670.02% for MINST on the
multi-class task, what is comparable to state-of-the-art techniques.
For instance SVM obtained 3.2% on USPS and 0.68% on MNIST with
an equivalent procedure. The difference in performance is probably
due to our active set not being large enough, since support set sizes
reported for SVMs are typically twice as large [18].

6.4. IJCNN

As final experiment, we want to compare fPASS-GP, RSVM and
IVM on a common ground. For this purpose we use the IJCNN dataset
which is widely used by the SVM research community. It consists of
49 990 training examples, 91 701 test examples and each observation
counts with 22 features. We consider M¼ f100;200, . . . ,1000g with
squared covariance function and fixed hyperparameters, the latter
using the values suggested in [3], that is h¼ ½1 1=8 1=16� for fPASS-
GP and IVM, and h¼ ½1 1=8 0�, C¼16 for RSVM. For IVM we include a
linear term as in the previous experiments with y4 ¼ 1. Besides, each
setting was repeated 10 times to collect statistics. Fig. 6 summarizes
the results obtained. More specifically, Fig. 6(a) shows the mean
classification error as a function of the active set. We can see that
fPASS-GP is slightly better than RSVM and IVM in the entire range of
M, besides the former seems to be particularly good for small values
of M. When we plot mean errors as a function of running times—as a
proxy for the computational cost, we see that there exist two regimes,
one for small values of M where fPASS-GP outperforms RSVM and
IVM, and the other where the cubic complexity of the GPCs start
hurting fPASS-GP, thus letting RVM and IVM with a better error-cost
trade-off.
7. Discussion

We have proposed a framework for active set selection in GPC.
The core of our active set update rule is that the predictive
distribution of a GPC can be used to quantify the relative weight
of points in the active set that can be marked for deletion or new
points from the active set with low predictive probabilities, that
ages over 10 and 5 repetitions, respectively.

5 6 7 8 9

3 1.16 0.51 0.37 0.59 0.65

1425 1242 987 1532 1281

9 0.22 0.17 0.35 0.29 0.35

11 960 7360 9872 15 194 14 790
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make them ideal for inclusion. The algorithmic skeleton of our
framework consists on two alternating steps, namely active set
updates and hyperparameter optimization. We designed two
active set update criteria that target two different practical
scenarios. The first we called PASS-GP focuses on interpretability
of the parameters of the update rule by thresholding the pre-
dictive distributions of GPC. The second acknowledges that in
some applications having a fixed computational cost is key, thus
fPASS-GP keeps the size of the active set fixed so the overall cost
and memory requirements can be known beforehand.

We presented theoretical and practical support that our active
set selection strategy is efficient while still retaining the most
appealing benefits of GPC: prediction uncertainty, model selec-
tion, prior knowledge leverage and state-of-the-art performance.
Compared to other approximative methods, although slower than
IVM [8] and RSVM [3], PASS-GP provides better results. We did
not consider any auxiliary set method like FITC [4] because for
task of the size like for example MNIST or IJCNN, it is prohibitive.
Additionally, we have noticed in practice that our approximation
is quite insensitive to the initial active set selection and also that
more than two or three passes through the data do not yield
improved performance nor large active set sizes. The code used in
this work is based on the Matlab toolbox provided with [2] and is
publicly available at http://cogsys.imm.dtu.dk/passgp.

The not so satisfying feature of active set approximations is
that we are ignoring some of the training data. Although some of
our findings on the USPS dataset actually suggest that this can be
beneficial for performance, it is of interest to make a modified
version where the inactive set is used approximately in a cost
efficient way. The representer theorem for the mean prediction
and the approximations for marginal likelihood discussed in this
paper might give inspiration for such methods. In conclusion,
efficient methods for GPs are still much in need when the data is
abundant such as in ordinal regression for collaborative filtering.
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