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Abstract

In this paper, we propose a new classifier named kernel group sparse representa-

tion via structural and non-convex constraints (KGSRSN) for image recognition.

The new approach integrates both group sparsity and structure locality in the

kernel feature space and then penalties a non-convex function to the represen-

tation coefficients. On the one hand, by mapping the training samples into the

kernel space, the so-called norm normalization problem will be naturally alle-

viated. On the other hand, an interval for the parameter of penalty function

is provided to promote more sparsity without sacrificing the uniqueness of the

solution and robustness of convex optimization. Our method is computationally

efficient due to the utilization of the Alternating Direction Method of Multipliers

(ADMM) and Majorization-Minimization (MM). Experimental results on three

real-world benchmark datasets, i.e., AR face database, PIE face database and

MNIST handwritten digits database, demonstrate that KGSRSN can achieve

more discriminative sparse coefficients, and it outperforms many state-of-the-art

approaches for classification with respect to both recognition rates and running

time.
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trick, non-convex penalty

1. Introduction

Image Classification (IC) is a fundamental and quintessential task in pat-

tern recognition and computer vision due to its broad applications in human-

computer interaction and security monitoring. Exploration to improve upon

the accuracy and efficiency of IC approaches has been a remarkable research fo-

cus. Deep learning, as one of the popular techniques, has achieved great success

due to the facts that it is able to learn extremely powerful hierarchical non-

linear representations of the inputs [1]. However, deep learning based methods

require massive training samples, which is difficult to fulfill in many practical

applications and computational platforms. Alternatively, the methods via small

number of training samples are usually adopted in many specific scenarios.

Recently, sparse representation (SR) has become a very active topic in signal

processing and image classification community. So far, it has been successfully

applied in many practical problems such as information evaluation [2], feature

extraction [3, 4], visual tracking [5, 6], etc. Under the assumption that natural

image can be generally represented by structural primitives, SR-based classifier

(SRC) [7] aims to reconstruct a query image using a small set of elements par-

simoniously chosen out of an over-complete dictionary, and classifies the query

image into the class which results the minimal reconstruction error. In addition,

sparse constraints (l1-norm) not only lead to the unique solution of represen-

tation coefficients, but also help to study the actual signal structure. Indeed,

most signals admit decomposition over a reduced set of signals from the same

class and that will benefit the subsequent classification task. SRC has shown

its promise in IC problems and has received remarkable attention.

Some scholars inquired into the reasonability of sparse regularization for

IC [8, 9]. Zhang et al. [8] argued that it was unnecessary to enforce sparsity

constraint on linear regression problem, and asserted it was the collaboration

mechanism that makes SRC outperform nearest neighbor based algorithms,
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such as NN, INNC [10], etc. Correspondingly, they proposed a new classifi-

cation scheme, namely collaborative representation classifier (CRC). CRC has

significantly less computational cost than SRC but leads to very competitive

classification results. Both of SRC and CRC follow a reasonable assumption

that the subspaces of each objective are independent of each other. However,

this assumption is not always held in general image distribution. This may

lead to undesirable consequences that some query samples are represented by

images from other subjects. To cope with this issue and introduce the essential

structure information embedded in the dictionary, Majumdar et al. [11] pro-

posed group sparse classification (GSC) that solves the regression problem in

an group way. Under the assumption that the signals can be approximated by

a union of a few subspaces, GSC selects certain groups to represent the test

sample by using l2,1-norm regularization. Similarly, Huang et al. [12] also ap-

plied the group sparse coding to images classification, where each test sample

is represented by the minimum number of blocks. Both the theoretical analysis

and the experimental results have showed the promising performance of GSC,

outperforming both SRC and CRC. More recently, it has been verified that the

property of locality preservation is more important for a classifier [13, 14]. As a

result, many regression-based works have been proposed, such as integrating the

data locality into the constraints of l1-norm [15, 16], l2-norm [17, 18] or group

norm [19, 20], for improvement. Moreover, Tang, et al. [21] pointed out that

directly involving locality constraint in [19] may disrupt the group structure of

sparse coefficients. They further proposed a weighted group sparse representa-

tion based on classification (WGSC) by involving the influence of the similarity

between query sample and each class.

Despite the successful implementation of regression-based algorithms in IC,

there still exist the following limitations: a) As a result of the linear characteris-

tics, they obtain weak classification result with uniform distribution properties,

which is called norm normalization problem in this paper. b) The rising chal-

lenge is to seek for feasible convex regularizations. However, it is well known

that non-convex approaches may yield more compact solutions with a fixed
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residual energy. To deal with the first limitation, many attempts are to intro-

duce different metric representations to fit the underlying structure of samples.

Yang et al. [22] proposed a nuclear norm based matrix regression (NMR) for IC,

which holds more structural information and performs better in the scenarios

of block-corrupted samples. However, it still suffers from the norm normaliza-

tion problem [23]. Some other works resort to kernel trick to convert linear

algorithms into nonlinear forms, such as Kernel SRC (KSRC) [24, 25], Kernel

CRC (KCRC) [17] and Kernel GSC (KGSC) [13, 26, 27]. These approaches

map the original data into a high-dimensional feature space by using a nonlin-

ear kernel function, and then perform linear optimization in the feature space

with the inner products. It has been proved that kernel trick can capture more

nonlinear structure of the original data and its performance is better than the

linear methods. For the second limitation, non-convex penalty functions are

employed, such as the lp or l2,p pseudo-norm with p <1 [28, 29, 30].

In this paper, group sparsity with data locality, kernel trick, and the non-

convex regularization are further explored, and a joint regression-based ap-

proach, named kernel group sparse representation via structural and non-convex

constraint (KGSRSN) is proposed. The advantage of integrating all these prop-

erties is that more structural information embedded in the dictionary can be

captured and then a more discriminative representation can be achieved. Com-

pared to the related works, this paper

(1) investigates the role of norm normalization step, illuminates the reason for

better performance with unit l2-norm data, and solves this problem by the aid

of kernel trick;

(2) presents a formulation of the group sparse coding as a convex optimization

problem though defined in terms of non-convex constraint;

(3) derives an efficient iterative approach, using the alternating direction method

of multipliers (ADMM) and majorization-minimization (MM), which monoton-

ically decreases the cost function.

The rest of this paper is organized as follows. The previous works are in-

troduced in Section 2. Section 3 explains the reasons why the kernel trick can
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improve classification performance and then presents our KGSRSN method.

Section 4 reports the experiment results on two popular face datasets and the

MNIST handwritten dataset. Our conclusions are given in Section 5.

2. Related works

Suppose that we have c classes of subjects, and let X=[X 1, X 2,..., X c]∈
Rm×n be the set of training samples, where X i=[x i1, x i2,...,x ini ]∈Rm×ni is

the subset of the training samples from subject i, x ij represents the j th train-

ing sample from the ith class, ni is the number of training samples in class i,

n =
c∑
i=1

ni is the total sample size and y∈Rm represents a test sample.

All representation type algorithms have similar principle, i.e. they are

premised on over-complete dictionary, all the training samples are distributed

in certain subspace. In other words, the test sample y can be represented as a

linear combination of X

y = X 1θ1 + X 2θ2 + ...+ X cθc

= x11θ11 + x12θ12 + ...+ x cnc
θcnc

= Xθ

(1)

where θ=[θ11,θ12,...,θcnc
]∈Rn is a coefficient vector corresponding to X. There-

fore, the sparse solution of Eq. (1) can be recovered as

min
θ
||ψ −Zθ||22 + λf(||η � θ||p) (2)

where � means element-wise multiplication, η∈Rn is the locality weights, ψ

and Z are the transformation of the test sample and the training samples re-

spectively, f(||θ||p) leads to the penalty function with a lp-norm constrained

variable, and λ>0 is a trade-off parameter. Empirically, a larger λ leads to a

sparser solution. According to the variation of Z , η and p, (2) can be turned into

different sparse representation algorithms. When (2) is minimized, we obtain

the resulting coefficient vector θ∗. Let δi(θ
∗) be a vector whose only nonzero

entries are associated with class i. Then the class label of y can be decided as
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k that gives the minimum reconstruction error, i.e.,

k = arg min
i
||ψ − Z δi(θ

∗)||2 (3)

2.1. Linear representation classification

The classical SR-based approaches are developed with different setting of

penalty functions f and norm constraints p, by utilizing ψ=y, Z=X directly

and having no consideration of weights constraint (η=1n).

For f being the absolute function and p=1, (2) turns to the classical SRC [7].

Its coding coefficients θ is sparse under l1-norm constraint and over-complete

dictionary. Suppose the test sample y belongs to the ith subject, then all the

coding coefficients will shrink to be zero except θi.

For f being the square function and p=2, then (2) becomes the classical CRC

[8]. While the importance of sparsity is much emphasized in SRC, Zhang et,

al. [8] argued that the success of SRC is attributed to collaborative mechanism

rather than sparsity. Furthermore, CRC has significantly less complexity than

SRC by using l2-minimization. It is noteworthy that CRC is not sparse since

its coding coefficient will not tend to absolute zero.

SRC and CRC are all unsupervised learning algorithms, they ignore the label

information during model establishment. GSC selects a few groups to represent

the query sample by using l2,1-norm regularizer. Setting p=2, 1 and still with

the absolute function f, it uses l1-norm in inter-class samples while using l2-

norm in intra-class samples. Previous studies indicate that the recognition rate

of GSC is superior to that of SRC and CRC [12], but its efficiency is inferior to

the closed solution of CRC.

2.2. Weighted representation classification

As described above, SRC, CRC and GSC construct the classification model

respectively by sparsity, collaboration and supervision. They ignore the locality

structure of the training samples. Recently, scholars have proposed many local-

ity preserving methods. Similar to the classical ones, weighted representation
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approaches involve the considerations of η while keeping other terms consis-

tently. η measures the Euclidean distance between the test samples and the

training samples as

ηij = exp(‖ x ij − y ‖22 /σ2) (4)

where ηij denotes the j th weights from the ith class, and σ is a scalar parameter.

The weighted extensions of SRC, CRC and GSC are weighted SRC (WSRC)

[15, 16], weighted CRC (WCRC) [17, 18], and locality group sparse represen-

tation (LGSR) [19], respectively. These approaches make the coding coefficient

of remote samples shrink to zero while neighbor samples obtain larger coding

coefficient, which means that they have the properties of locality and noise-

resistance. In addition, WGSC [21] turns the regularization term of (2) to be
∑c

i=1 ri||ηi � θi||2, which further include the weight factor ri for better holding

the group structure.

2.3. Kernel representation classification

Kernel-based methods adopt the kernel trick to map the original data into a

high-dimensional feature space by using an implicit nonlinear mapping function,

and then perform linear processing in this high-dimensional space with inner

products. Particularly, as for SRC, CRC, and GSC, their kernel versions hold

the same regularization term but with y and X be implicitly mapped.

In the kernel space, ψ and Z are expressed as φ(y) and Φ(X ) respectively,

where φ(·) denotes the mapping function and Φ represents its matrix form.

Thus, (2) can be rewritten as

min
θ
‖ φ(y)− Φ(X)θ ‖22 +λf(‖ θ ‖p) (5)

where the weight constraint is temporarily ignored, i.e. set η=1n. Since φ is

unknown, (5) can be reformulated by some kernel functions as

||φ(y)− Φ(X)θ||22 + λf(||θ||p)

= (φ(y)− Φ(X)θ)T(φ(y)− Φ(X)θ) + λf(||θ||p)

= k(y,y) + θTKθ − 2k(•,y)Tθ + λf(||θ||p)

(6)
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where K=Φ(X )TΦ(X )∈ Rn×n is a symmetric positive semi-definite kernel ma-

trix. kij=k(x i, x j) is the given kernel function, and k(•,y)=[k(x 1, y),...,k(xn,

y)] =Φ(X )Tφ(y). There are some commonly used kernel functions, i.e., the

linear kernel, polynomial kernel as well as the most frequently used Gaussian

kernel that is defined as

k(xi,xj) = exp(−||x i − x j||22/2σ2) (7)

where σ is a tunable parameter.

Integrating (7) and (4) into (2) can lead to kernel weighted version of SR-

based approaches, such as Kernel WCRC (KWCRC) [17]. Literature [17] and

[24] demonstrate that the performance of kernel weighted representation classi-

fication is superior to that of other representation type classification empirically.

3. Kernel group sparse representation classifier via structural and

non-convex constraints

To improve the weighted group constraint and further enforce it in the ker-

nel space, a new non-convex penalty function and the kernel trick is adopted

to present a joint-sparsity SR-based method, namely kernel group sparse rep-

resentation classifier via structural and non-convex constraints (KGSRSN). In

KGSRSN, the locality metrics are measured in the kernel space, thus the non-

linear structure of input samples would be better explored. In this section, we

first explain the relationship between data normalization and sample selection,

and then present the kernel-based method to deal with the norm normaliza-

tion problem. Second, we chose a specific non-convex constraint in parametric

form, so that the complete objective function would be strictly convex. Finally,

we derive the optimization algorithm according to the principle of ADMM and

MM.

3.1. The norm normalization problem

In the practical IC problems, some normalization steps, such as mean nor-

malization [31] or norm normalization [23], always conducted in advance. These
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steps can regulate the distribution of input data and enhance the numerical sta-

bility of classifiers, but the consequence has not been analyzed in theory and

empirically. By a concrete example, we investigate the impact of norm normal-

ization on sparse representation algorithms in this subsection.

Consider the samples in Fig. 1(a) as an example, where the dataset consists

of 150 points from three classes. all of them are given by standard Gaussian

distribution and without any normalization. We choose the red dot (1, 2) as

the test sample and the others as training samples. From Fig. 1(b) and Fig.

1(c), it can be seen that the selected samples for representing the red dot mainly

involves the ones from different classes, which indicates that the sparse repre-

sentation has no discriminality in this case. We call this phenomenon as the

norm normalization problem. The reason is that the data points in the data

set may have different l2-norm (or l1-norm), so the sparse representation of one

point may be inclined to select the data with larger l2-norm if possible. For this

dataset, the l2-norm of round samples, square samples and star samples respec-

tively range from 0.433 to 17.668, 13.194 to 48.659 and 3.494 to 31.602. It is

concluded that the l2-norm of square samples and star samples is significantly

higher than that of round samples. Thus the sparse representation of the red

dot may be inclined to select the square points and star points. In Fig. 1(b),

the selected samples with nonzero coefficients of SRC are marked with one blue

square and one blue star, not the right round data. It violates the basic idea of

SRC that is to represent a query sample as an intra-class sparse linear combi-

nation of the training samples. For CRC and GSC, we choose the 15% largest

elements of their representation coefficients for output, since they are not sparse

in strict significance. Although the effective samples of CRC involve three dif-

ferent kinds of input data, the majority is the square and star points in Fig.

1(c). In Fig. 1(d), GSC eliminates square samples by group constraint, but the

number of star points is still much more than that of round points. In Fig. 1(e),

WSRC represents the query sample as an intra-class sparse linear combination

of the training samples benefiting from the property of locality. However, the

selected representation samples are relatively with larger l2-norms, the norm

9
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Figure 1: Representation results of some non-normalized data from typical SR-based methods.

normalization problem still exists.

To illustrate the importance of l2-norm, we further take the two-dimensional

case as an example. Suppose that there are two classes X 1=[x 1, x 2, x 3] and

X 2=[x 4, x 5, x 6] which are normalized to have unit l2-norm and distributed on

a unit sphere in Fig. 2. Here x 1 is regarded as a test sample while the rest as

training samples. Denote q1 as the junction of the line linking x 2 to x 3 with

the line linking x 1 to the origin, and denote b1 as the Euclidean distance from

q1 to the origin. Similarly, denote q2 as the junction of the line linking x 2 to

x 4 with the line linking x 1 to the origin, and denote b2 as the distance from q2

to the origin. Assume that x 1 can be represented as a linear combination of x 2

10
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Figure 2: The illustration of norm normalization problem.

and x 3. Then x 1 can be denoted as

x1 =
1

b1
(q1) =

1

b1
(θ2x2 + θ3x3)

= [x1,x2, ...,x6][0,
θ2
b1
,
θ3
b1
, ..., 0]T

where θ2 and θ3 are some positive numbers satisfying θ2+θ3=1. For SRC,

x 1=[X 1 X 2]θ and ||θ||1=1/b1. Similarly, if x 1 can be represented as a linear

combination of x 2 and x 4 by θ′=[0, θ2
′/b2, 0, θ2

′/b2, 0, 0]T, then x 1=[X 1X 2]θ′

and ||θ′||1=1/b2. From Fig. 2, it can be observed that b1>b2, hence ||θ||1<||θ′||1,

which makes SRC select x 2 and x 3 as the representation samples. In other

words, when all samples have the same l2-norm, the linear representation of a

test data will be declined to select neighbor points from the same class, which

leads to the property of discriminability under the well-known assumption that

intra-class samples always agglomerated closer than inter-class samples. Fur-

thermore, triangle data in Fig. 2 are normalized to have unit l1-norm. It is

obvious that this pretreatment can also regulate the structure of input data,

but the output data all lie on one line [32], which makes q1 and q2 overlap

to a single point (the yellow star), i.e., b1=b2. Therefore, l1-norm has less

discriminality than l2-norm.

3.2. The proposed method

For any data point x , we have ||φ(x)||22=k(x , x )=1 from (7), so the data

point φ(x ) naturally have unit l2-norm. Since kernel trick can make the data
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points in high-dimensional feature space linearly separable, the kernel-based

sparse representation of data can be a reasonable strategy to solve the norm

normalization problem. From Fig. 1(f), we can see that KGSRSN obtains the

accurate representation data that distributes around the test samples.

For the penalty function on the other hand, many works involved lp-norm

regularizer for more compact representation. However, this non-convex con-

straint generally suffers from many numerical problems such as suboptimal local

solutions, slow convergence rate, and some initialization issues. In this subsec-

tion, we introduce a new penalty function for more accurate data reconstruction,

while maintaining convexity of the total cost function. For this purpose, the log-

arithmic penalty [33],

f(x) =
log(1 + a|x|)

a
(8)

is adopted, where a >0 is a scalar parameter.

Integrate (2), (7), and (8) into WGSC, the cost function of our KGSRSN is

min
θ

1

2
||φ(y)− Φ(X)θ||22 + λ

c∑

i=1

ri
log(1 + a||di � θi||2)

a
(9)

where di is locality metric, whose entry dij measures the distance between y

and training sample xij in the kernel space as

dij =||φ(xij)− φ(y)||22
=φ(xij)

Tφ(xij)− 2φ(xij)
Tφ(y) + φ(y)Tφ(y)

=2− 2k(x ij ,y)

(10)

ri is the group weight to indicate how well Xi can represent y. A smaller ri

denotes larger probability of y belonging to the ith class. By learning from the

idea of LRC [34], ri can be defined as

ri =||φ(y)− Φ(Xi)θ
∗
i ||22

=1− 2ki(•,y)Tθ∗i + θ∗i
TKiθ

∗
i

θ∗i =arg min ||φ(y)− Φ(Xi)θi||22 = K−1i ki(•,y)

(11)

12
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where K i=Φ(Xi)
TΦ(Xi)∈Rni×ni is the ith kernel matrix, ki(•,y)=Φ(Xi)

Tφ(y)

is the kernel vector between y and the training samples from the ith class.

Similar as (3), the final decision rule can be formulated as

k = arg min
i
||φ(y)− Φ(Xi)δi(θ

∗)||2

= 1− 2ki(•,y)Tθ∗i + θ∗i
TKiθ

∗
i

(12)

i.e., the class label of y is decided as the class which gives the minimum residual

error in the kernel feature space.

Notice that the chosen kernel needs to satisfy k(x ,y) = c for avoiding norm

normalization problem, where c is a constant. This can be satisfied when it

is an isotropic kernel k(x ,y) = k(‖x ,y‖) or any normalized kernel k(x ,y) =

k(x ,y)/(k(x ,x)1/2× k(y ,y)1/2). In this paper, we adopt the Gaussian kernel in

our experiments.

3.3. Optimization algorithm

Although some well-known algorithms, such as Homotopy [35] and sparse

projections [36], have been deliberatively developed for SR-based approaches,

they cannot be used directly for our method since it integrates both locality

group sparsity and non-convex penalty in the kernel space. We derive our

optimization algorithm jointly under the framework of ADMM [37, 38] and MM

[39, 40]. The former is efficient for most convex coding problems, and the later

replaces some tough problems by simpler ones. For convenience, we introduce

matrix D=diag([d1, d2, ..., dc])∈Rn×n and define β = Dθ. Then our KGSRSN

algorithm can be rewritten as

min
β

1

2
||φ(y)− Φ(X)D−1β||22 + λ

c∑

i=1

ri
log(1 + a||βi||2)

a

= min
β

1

2
βTK̃β − βTk̃(•,y) + λ

c∑

i=1

ri
log(1 + a||βi||2)

a

(13)

To solve (13), we first define the augmented Lagrangian function as

Lρ(β, z,µ) =
1

2
βTK̃β − βTk̃(•,y) + λ

c∑

i=1

ri
log(1 + a||zi||2)

a

+ µT(β − z) +
ρ

2
‖β − z‖22

(14)
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where µ is the Lagrange multiplier and ρ > 0 is a penalty parameter. Solv-

ing (14) is equivalent to tracing the solutions (β∗, z∗, µ∗) of the saddle-point

problem [38]:

L(β∗, z∗,µ) ≤ L(β∗, z∗,µ∗) ≤ L(β, z,µ∗) (15)

With the computed (or initialized) vector zk and µk, by applying the ADMM

iterative scheme to (15), the update of each variable goes as

βk+1 ← arg min
β
L(β, zk,µk) (16a)

zk+1 ← arg min
z
L(βk+1, z,µk) (16b)

µk+1 ← µk + ρ(βk+1 − zk+1) (16c)

Fixing zk and µk, the subproblem for βk+1 can be rewritten as

βk+1 ← arg min
β

(
1

2
βTK̃β − βTk̃(•,y) +

ρ

2
‖β − zk +

µk

ρ
‖22 (17)

where the constant terms have been omitted. The first-order optimality condi-

tions of quadratic minimization problem (17) lead to:

βk+1 = (K̃ + ρI )−1(k̃(•,y) + ρz k − µk) (18)

Fixing βk+1 and µk, the update of zk+1 is given by minimizing the following

subproblem

zk+1 ← arg min
z

(
ρ

2
‖z− βk+1 − µ

k

ρ
‖22 + λ

c∑

i=1

ri
log(1 + a||zi||2)

a
) (19)

Solving subproblem (19) is difficult due to the involving of group constraint

and non-convex logarithmic penalty. We use the MM procedure to derive a

method minimizing (19). Firstly, Proposition 1 is presented to specify a ma-

jorizer of the logarithmic function.

Proposition 1. The function q defined by

q(x, v) =
x2

2v(1 + av)
+

log(1 + av)

a
− v

2(1 + av)
(20)

is a majorizer of the logarithmic function except for v=0, i.e.,

q(x, v) ≥ log(1 + ax)

a
,∀x ∈ R, v ∈ R\{0} (21a)
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q(v, v) =
log(1 + av)

a
,∀v ∈ R\{0} (21b)

Proof. (21b) can be verified by a simple substitution. For (21a), using Talors

expansion, we get

log(1 + ax)

a
=

log(1 + av)

a
+

(x− v)

(1 + av)
− a(x− v)

2

2(1 + av0)
2

(22)

for v0 between v and x. Since a >0, we have

log(1 + ax)

a
≤ log(1 + av)

a
+

(x− v)

(1 + av)
(23)

Using x ≤ x2/2v + v/2, we further get

log(1 + ax)

a
≤ x2

2v(1 + av)
+

log(1 + av)

a
− v

2(1 + av)
= q(x, v) (24)

which completes the proof. �
From Proposition 1, the total function

Q(z, zk) =
ρ

2
‖z− βk+1 − µ

k

ρ
‖22 +

λ

2

c∑

i=1

ri
‖zi‖22

‖zki ‖2(1 + a‖zki ‖2)
+ C

=
c∑

i=1

(
ρ

2
‖zi − βk+1

i − µ
k
i

ρ
‖22 +

λri‖zi‖22
2‖zki ‖2(1 + a‖zki ‖2)

) + C

(25)

is a majorization surrogate function of subproblem (19) with C being a constant

term independent of z. We then can obtain all zk+1
i , i = 1, ..., c, as follows

zk+1
i = (ρ+

λri
‖zki ‖2(1 + a‖zki ‖2)

)−1(ρβk+1
i + µki ) (26)

The details of our KGSRSN are given in Algorithm 1.
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Algorithm 1 KGSRSN

Input: D, K, k(•, y), r, λ, a, ρ, ε1, and ε2.

Initialize z = µ = 0, io = ii = 0.

Repeat

1. io = io + 1.

2. Update β by (18).

Repeat

3. Initialize z = β + µ/ρ.

4. ii = ii + 1.

5. Update zj, j = 1, 2, ..., c, by (26).

Until the value of subploblem (19) satisfies that (norm(cost(ii)-cost(ii-

1))/norm(cost(ii))< ε2

6. Update µ by (16c).

Until norm(β-z)< ε1

Output: θ∗ = D−1β.

3.4. Convergence and complexity analysis

The convergence properties of ADMM have been extensively studied [22, 37,

38]. Following the ideas of Ref. [38], Proposition 2 holds under the assumption

that the functions of (16a) and (16b) are closed, proper, and convex.

Proposition 2 [38]. The ADMM iterates satisfy that

1) Residual convergence. βk − zk → 0 as k → ∞, i.e., the iterates approach

feasibility.

2) Objective convergence. The cost function (13) of the iterates approaches the

optimal value.

3) Dual variable convergence. µk → µ∗ as k →∞, where µ∗ is a dual optimal

point.

With the fact that the closedness and properness of our cost function (13)

are clear, we further need to make sure that all the subproblems be convex

and have convergent solutions. It is evident that subproblem (17) is strictly

convex and with closed-form solution (18), the remaining issue for us is to prove
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the convexity and convergence of subproblem (19). Above all, we introduce

Proposition 3 to assert the condition for convexity.

Proposition 3. Subproblem (19) is strictly convex under the condition that

0 < a <
ρ

λmax(ri)
(27)

Proof. For any v ≥ 0, define function g : R→ R with parameter a >0 as

g(v) =
ρ

2
v2 + λrf(v) (28)

Since the logarithmic function f(v) is continuous and twice differentiable for

v ≥0, the convexity of g can be ensured by a positive second derivative on v ≥0.

This leads to the condition

g′′(v) = ρ+ λrf ′′(v) > 0⇒ f ′′(v) > −ρ/(λr) (29)

Moreover, since f ′′(v) = −a/(1+av)2, and the minimum second-order derivative

of f(v) resides in f ′′(0) = −a, we can obtain that

−a > −ρ/(λr)⇒ a < ρ/(λr) (30)

Based on the convexity of ‖x‖2, g(‖x‖2) is also strictly convex. By expanding

and decomposing (19) into

ρ

2
‖z− βk+1 − µ

k

ρ
‖22 + λ

c∑

i=1

ri
log(1 + a‖zi‖2)

a

=
ρ

2
‖z‖22 −

ρ

2
zT(βk+1 +

µk

ρ
) + λ

c∑

i=1

ri
log(1 + a‖zi‖2)

a
+ C

=
c∑

i=1

g(‖zi‖2)− ρ

2
zT(βk+1 +

µk

ρ
) + C,

(31)

we can see that it is a linear combination of g(‖zi‖2), a convex term zT(βk+1 +

µk/ρ), and a constant term C. Hence, (19) is strictly convex with condition

(27). �
To analyze the convergence of z subproblem, we first characterize a δ strongly

convexity of the surrogate function Q(z, zk) in (25) as Proposition 4. Then by

the important property shown in Lemma 1 [40], we give convergence results for
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subproblem z as in Proposition 5.

Proposition 4. The surrogate function Q(z, zk) in (25) is δ strongly convex,

i.e., function Q(z, zk)− 0.5δ||z||22 is convex, where δ > 0.

The proof is omitted here since its derivation is very similar as the proof of

Proposition 3. �
Lemma 1 [40]. Let J(x): Rn → R be a δ strongly convex function, and x∗ be

the minimizer of J(x), then inequality 0.5δ||x−x∗||22 ≤ J(x)− J(x∗) holds for

any x ∈ Rn.

Proposition 5. Denote J(z) as subproblem (19), let {zk}∞k=1 be the generated

sequence by the inner loop of Algorithm 1 with any initial z0, then we have:

1) The sequence {J(zk)}∞k=0 is monotonically non-increasing and convergent;

2) The property limk→∞||zk−zk+1||22 = 0 holds for the corresponding sequence

{zk}∞k=0.

Proof. Recall Proposition 4, the surrogate function Q(z, zk) is a δ strongly

convex majorizer of J(z) at zk, and zk+1 is the global minimizer of Q(z, zk).

Thus for any k ≥ 0 we can write:

J(zk+1) ≤ Q(zk+1, zk) ≤ Q(zk, zk) = J(zk) (32)

which reveals the monotonically non-increasing property of sequence {J(zk)}∞k=0.

Notice that {J(zk)}∞k=0 is bounded from below with zero, hence convergent.

Lemma 1 with Q(z, zk) in place of J(x) and zk+1 in place of x∗ yields

δ

2
||z − zk+1||22 ≤ Q(z, zk)−Q(zk+1, zk),∀z ∈ Rn, k ≥ 0. (33)

Furthermore, (33) with zk substituting for z leads to

δ

2
||zk − zk+1||22 ≤ Q(zk, zk)−Q(zk+1, zk) ≤ J(zk)− J(zk+1) (34)

Summing the inequalities (34) over k, we then obtain

∞∑

k=0

||zk − zk+1||22 ≤
2

δ

∞∑

k=0

(J(zk)− J(zk+1)) =
2

δ
(J(z0)− J∗) (35)

where J∗ is the limit of the convergent sequence {J(zk)}∞k=0 (the first statement

of Proposition 5). Since that {J(zk)}∞k=0 is a monotonically non-increasing se-

quence and δ > 0, the last term of (35) is a finite non-negative number, which
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proves the convergence of the first term and verifies the property limk→∞||zk−
zk+1||22 = 0. �

For the computational complexity of Algorithm 1, it is clear to see that the

main running time lies in updating β and z. Since (K̃ + ρI)−1 can be com-

puted in advance and cached offline, the complexity of performing (18) is O(n2).

Besides, with the fact that eacch zi, i = 1, ..., c, can be updated in parallel as

in (26), then the complexity of z subproblem costs O(iicni). Therefore, the

overall time complexity of Algorithm 1 is O(io(n
2 + iicn

2
i )). In our experiments,

KGSRSN always reaches the convergence condition (we set ε1 = ε2 = 1e − 3)

with ii ≤ 10 and io ≤ 30.

4. Experimental analysis

4.1. Datasets and experimental settings

1) Datasets. Three real-world benchmark datasets, i.e., MNIST handwrit-

ten digits database, AR and PIE face databases, are used for evaluation. For

AR database, we use a subset [17] including 100 individuals for a total of 700

training and 700 testing images of 60 × 43 pixels. The PIE database contains

41368 face images collected from 68 subjects. In accordance with AR database,

we select 700 training samples and 700 test samples at random in our experi-

ments. For MNIST database, we randomly select 50 training images for each of

the 10 digits from the training set and 70 from the test set. All images in PIE

and MNIST are manually cropped to 28×28 pixels.

2) Form of input data. Our experiments are conducted on original gray-

valued pixels and subspace projections. For the original pixels, each image is

concatenated by its columns, and then all samples are arranged in a tandem

array. For subspace projection samples, dimension reduction methods, includ-

ing principal component analysis (PCA) and iterative nearest neighbors linear

projections (INNLP) [10], are used for feature extraction. We set the regular-

ization parameter of INNLP to be 0.05 permanently.
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3) Competing methods. The selected competing classifiers include linear

algorithms SRC [7], CRC [8], and GSC [12], weighted algorithms WSRC [16],

WCRC [17], and WGSC [21], kernel-based algorithms KSRC [24], KCRC [17],

KGSC [27], and KWCRC [17]. In addition, the performance of KGSRSN is

also compared with other classical algorithms, including INNC [10], NMR [22]

and KINNC [10]. In the implementation, we adopt 5-fold cross validation to

confirm optimal value of the regularization parameters. For arbitrary classifi-

cation algorithms, we search λ from {1e − 6, 1e − 5, . . . , 1e0}, and select the

highest average recognition rate as the ultimate model parameters in different

feature dimension. Without special declaration, in our method we set ρ=1 and

a=0.9ρ/(λ max(ri)).

4.2. The behaviour of normalization and non-convex penalty

As described in Subsection 3.1, different normalization of input data affects

the performance of SR-based approaches. In this subsection, we take GSC and

KGSRSN as examples to evaluate the recognition rate versus different norm

normalization on MNIST, AR and PIE databases in Fig. 3. PCA is used for

feature extraction. Fig. 3 shows the recognition rate of GSC varies greatly with

the change of norm normalization, where its gap reaches 2%-6% under differ-

ent subspace dimensions. Among them, GSC-l2 reaches the highest recognition

rate with l2-norm while GSC−none performs poorest. Besides, KGSRSN takes

advantage of kernel trick to overcome the normalization problem described in

Subsection 3.1, so its recognition rate changes less (about 1%) under different

datasets and different subspace dimensions. Overall, the experimental results

in Fig. 3. agree well with the theoretical analysis in Subsection 3.1. In the

following experiments, we adopt l2-norm normalization for better recognition

rate of linear algorithms.

In Algorithm 1, parameter a is used to determine the degree of non-

convexity for the logarithmic penalty. With Proposition 3, our experiments

adopt a=τρ/(λmax(ri)), τ ∈ {0.1, 0.2, . . . , 0.9} to ensure the overall convexity

of the total cost function. Fig. 4 illustrates the role of parameter a. In Fig. 4
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Figure 3: The recognition rate of GSC and KGSRSN under different norm normalization
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Figure 4: Plot of the penalty function defined in (8) and the recognition results with various

parameter values.

(a), a specific parameter a closer to 0 makes the penalty function closer to the

classical l1-norm constraint. On the other hand, a larger τ leads to a deeper de-

gree of non-convexity. Fig. 4 (b) illustrates the recognition rate of our method

versus various choice of τ in MNIST, AR, and PIE, respectively. We can see

that the performance of KGSRSN improves with the increasing of τ to some

extent. This empirically verifies the statement that more non-convex penalty

leads to a more compact representation.

4.3. Recognition performance

In this subsection, we conduct classification on original input data and sub-

space data respectively. The subspace dimension is set as l={50, 100, 150, 200,

250, 300}. Table 1, Table 2 and Table 3 show the recognition rates and corre-
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sponding dimension on MNIST, AR, PIE, where the best results are highlighted

in bold and the second best results are highlighted in italics. From Tables 1-3,

we can see that

1) Considering diverse distribution of practical images, most classifiers have dif-

ferent performance in different input feature. We cannot guarantee that any

classifier has overwhelming superiority, so we attempt to seek out the one that

is relatively more stable and more effective.

2) The recognition rate of INNC and KINNC is clearly lower than other meth-

ods. Take PIE database with PCA as example, they achieve 61.0% recognition

rate while the lowest recognition rate of other algorithms is 64.7%. It shows

that nearest neighbor based algorithms are suboptimal for classification in real

world applications compared with the SR-based algorithms.

3) Among the linear approaches, GSC outperforms SRC and CRC in most sce-

narios. Specifically, GSC wins 3 bold values in PIE database, which ties with

KGSC in the second place. This is attributed to the group constraint with su-

pervised l2,1-norm. Interestingly, the performance of the matrix-based method,

NMR that is developed for block corruptions, is equally matched with CRC,

since that its advantages cannot be taken in these Gaussian or Laplacian dis-

tributed data [23].

4) The performance of linear representation methods can be further improved

by locality metrics and kernelization. From Tables 1-3, it can be seen that the

recognition rates of weighted methods and kernel methods are mostly superior.

Particularly, when the dimensionality of the data is reduced to 150 by INNLP

in AR dataset, WSRC achieves 95.3% recognition rate, which outperforms all

other competing algorithms.

5) By integrating all the merits of group constraint, locality metrics, nonlinear

mapping, and non-convex penalty, KGSRSN obtains the highest recognition

rates in most scenarios. It achieves 92.8%, 94.8%, 91.9% recognition rate in

MNIST, AR, PIE, respectively. Notice that it may not lead to better perfor-

mance in practical applications with parts of these properties. In AR database,

many results from the kernel methods are poorer than those from the linear
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methods. KGSRSN achieves the appealing performance benefiting from the

properties of group constraint and locality metrics in this situation. Similarly,

the performance of the weighted methods in PIE database exhibit little im-

provements. However, our method still performs better with the properties

of group constraint and nonlinear mapping. To further improve the perfor-

Table 1: Recognition rates versus different dimensions on MNIST databases

Classifier
Input Subspace dimensions from PCA Subspace dimensions from INNLP

dimension 50 100 150 200 250 300 50 100 150 200 250 300

SRC 91.1 91.0 91.0 91.0 91.0 91.3 91.1 65.7 65.7 65.1 65.3 65.7 65.7

CRC 86.4 87.4 87.1 87.1 87.0 87.0 87.0 63.1 63.3 63.1 62.9 62.9 62.9

GSC 91.6 90.9 91.0 91.1 91.1 91.2 91.3 65.3 66.1 66.0 66.4 66.3 66.3

WSRC 89.7 90.9 90.6 90.4 90.7 91.1 90.9 65.7 64.9 63.6 65.3 65.0 65.1

WCRC 88.0 90.3 90.4 89.9 89.7 89.4 89.4 64.4 63.9 64.3 63.3 63.0 63.0

WGSC 91.6 91.5 91.6 91.6 91.6 91.6 91.6 65.3 66.8 66.8 67.0 67.0 67.3

INNC 91.6 91.6 91.9 91.7 91.7 91.6 91.6 65.6 64.1 66.9 65.0 65.3 65.3

NMR 85.8 87.2 87.2 87.2 87.1 87.1 87.1 63.2 62.2 63.2 63.0 63.0 63.0

KSRC 91.7 91.9 92.3 91.9 91.9 92.0 92.0 66.3 66.6 66.4 67.9 67.4 67.4

KCRC 91.7 91.7 90.6 90.0 89.3 88.3 88.5 66.7 67.9 67.1 67.9 67.3 67.4

KGSC 91.8 91.7 92.1 92.1 92.0 91.8 91.8 66.6 67.8 67.6 67.6 67.6 67.4

KWCRC 91.7 90.1 90.1 90.1 90.3 90.1 90.1 66.7 67.9 67.1 67.9 67.3 67.4

KINNC 91.5 91.4 91.4 91.6 91.4 91.6 91.6 55.4 48.1 42.3 40.1 36.7 36.1

KGSRSN 92.2 92.2 92.4 92.8 92.6 92.6 92.4 66.6 68.4 68.3 68.3 67.9 67.9

mance of our method, Fig. 5 exhibits two failed tests in AR database. From

Fig. 5 (a), we can see that both of these two samples are with exaggerated

facial expressions, which makes them difficult to be accurately represented by

their intra-class samples. In Fig. 5 (b), it is clear that if we classify the query

samples to the class with the largest coefficients, then both of these two tests

will be correctly identified. In Fig. 5 (c), the reconstructed residuals from the

intra-class samples are very close to the minimum one. Thus, the failure also

can be avoided by a majority vote from several SR-based methods. However,

these tricks only work for some special samples, and cannot make an overall

improvement. By introducing a learned convolutional neural network [41] as a
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Table 2: Recognition rates versus different dimensions on AR database

Classifier
Input Subspace dimensions from PCA Subspace dimensions from INNLP

dimension 50 100 150 200 250 300 50 100 150 200 250 300

SRC 93.6 76.4 79.4 80.5 81.4 81.6 81.8 90.6 93.3 93.9 94.3 94.4 94.1

CRC 93.0 77.5 87.6 89.6 90.7 91.0 92.6 91.0 94.0 93.9 93.4 93.4 93.1

GSC 94.0 83.0 88.9 90.3 91.1 91.2 91.3 92.1 94.3 94.4 94.3 94.1 94.3

WSRC 92.3 81.7 88.8 90.4 91.7 92.0 92.0 89.6 93.3 95.3 94.6 94.0 93.8

WCRC 93.0 80.8 88.1 89.7 91.3 91.7 92.3 93.4 94.1 94.3 94.4 94.4 94.4

WGSC 94.0 84.0 88.9 90.4 91.3 92.1 92.4 92.3 94.3 94.4 94.4 94.2 94.3

INNC 80.1 73.3 77.3 78.0 78.8 79.0 79.5 88.8 92.6 92.9 93.0 92.9 93.0

NMR 93.2 78.0 88.0 89.0 90.8 91.0 92.4 91.2 93.8 93.6 94.5 93.4 93.2

KSRC 81.9 75.5 78.3 79.4 80.5 80.7 81.3 87.8 92.1 92.3 92.4 92.4 92.4

KCRC 93.3 82.4 88.8 90.4 91.7 91.7 91.8 92.7 93.6 93.9 93.7 93.7 93.6

KGSC 93.8 83.0 88.9 90.6 91.7 91.8 91.8 92.6 94.0 94.0 94.2 94.6 94.4

KWCRC 92.4 78.8 86.0 89.3 91.3 91.0 92.1 85.8 92.4 92.7 92.6 92.7 92.7

KINNC 80.6 74.2 77.4 78.0 79.2 79.9 80.1 83.0 84.9 76.5 75.4 73.1 62.8

KGSRSN 94.2 84.2 90.2 91.3 92.3 92.9 93.6 93.2 93.9 94.7 94.8 94.8 94.8

Table 3: Recognition rates versus different dimensions on PIE database

Classifier
Input Subspace dimensions from PCA Subspace dimensions from INNLP

dimension 50 100 150 200 250 300 50 100 150 200 250 300

SRC 89.0 70.7 77.4 78.4 79.6 79.6 80.6 88.6 89.7 90.7 90.4 90.9 91.1

CRC 88.0 64.7 80.1 84.9 85.9 86.4 87.6 88.4 89.4 88.7 89.0 89.1 89.0

GSC 89.0 76.1 85.4 86.9 87.0 87.9 87.3 88.7 89.4 89.6 89.6 89.7 89.9

WSRC 84.7 75.0 83.4 84.7 85.7 86.9 86.4 89.4 89.1 89.6 89.7 89.4 89.6

WCRC 87.9 66.6 79.3 83.6 85.0 85.4 85.3 89.7 89.6 89.7 89.9 90.0 90.1

WGSC 88.5 77.2 85.0 85.4 86.8 87.0 86.9 89.8 89.6 90.0 90.0 90.0 90.2

INNC 61.3 52.9 57.6 59.3 60.6 60.6 61.0 89.9 90.6 91.6 91.3 90.9 91.1

NMR 87.8 65.0 79.6 85.0 85.6 86.4 87.0 88.1 88.9 88.8 89.1 89.1 89.1

KSRC 80.6 72.3 74.1 75.7 76.1 76.4 77.1 88.4 88.9 88.7 88.7 88.1 88.6

KCRC 88.7 79.7 83.9 85.9 87.1 87.7 86.6 88.6 88.7 89.0 89.1 88.4 88.6

KGSC 88.9 76.5 85.4 86.9 87.2 87.9 87.3 89.0 89.4 89.8 88.7 88.1 88.6

KWCRC 89.0 72.6 81.6 84.0 87.3 87.6 87.0 88.6 88.7 89.0 90.0 90.0 90.0

KINNC 43.0 33.6 34.1 33.1 33.1 34.3 35.7 83.3 79.6 82.6 83.0 80.7 79.0

KGSRSN 89.9 80.0 85.1 86.9 87.9 87.9 87.7 90.8 90.7 91.9 91.7 91.6 91.7
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(b) Learned coefficients

0 20 40 60 80 100

Subject index

0

0.5

1

R
es

id
ua

l

0 20 40 60 80 100

Subject index

0

0.5

1

1.5

R
es

id
ua

l

(c) Reconstruction residuals

Figure 5: The leaned coefficients and reconstruction residuals of two failed samples, where

the entries from the true subject and the mistakenly identified subject are marked in red and

blue, respectively.

deep features extractor, we further improve the recognition rate of KGSRSN

to 98.5% and 98.3% in AR and PIE, respectively. These results are close to or

even better than the deep learning based methods such as DeepFace [42]. Since

our method has more intuitive learning mechanisms and can be independently

applied with limited sample size, it has wide application prospects.

4.4. Computation efficiency

In this subsection, several experiments are conducted to verify the efficiency

of KGSRSN in comparison with six algorithms, i.e., SRC, GSC, WGSC, KSRC,

KGSC and KWCRC. The programming platform is with Intel Core i5 CPU,

2.4GHz dual-core processor, 4GB RAM memory, 32 bits Win 7 operating system

and MATLAB 2014. The average elapse time from 10 runs of recognizing one

original input data for each algorithm is illustrated in Table 4. We can observe

that KWCRC is the most efficient one among all the competing methods due to

the closed-form solution. KSRC, which achieves similar accuracy as KWCRC,

consumes about 3-5 times more time than KWCRC for recognizing one query

sample. The group constrained methods, including GSC, WGSC, KGSC, and

our KGSRSN, also need iterative computations as SRC in implementation, so

their computational efficiency is relatively lower than KWCRC. Our KGSRSN
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Table 4: Comparison of running time for recognizing one query sample

Methods
elapsed time(in seconds)

MNIST AR PIE

SRC 0.163 0.346 0.294

GSC 0.054 0.176 0.130

WGSC 0.062 0.180 0.140

KSRC 0.182 0.255 0.138

KGSC 0.112 0.210 0.142

KWCRC 0.027 0.047 0.051

KGSRSN 0.053 0.064 0.107
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Figure 6: The decreasing objective values of KGSRSN versus iterations io and ii on MINST

database.

runs faster than the other group constrained methods. This is attributed to the

newly proposed optimization algorithm, which not only consumes little costs

in each update step, but also converges with few loops. Fig. 6 illustrates

the convergence of KGSRSN using a randomly selected sample from MNIST

database. For the outer loop io, the objective values of our cost function (13)

decrease to below 1e-3 (in log domain) within twenty iterations, and for the inner

loop ii, the convergence condition can be satisfied in around 5-10 iterations.

5. Conclusion

In this paper, a new kernel group sparse representation approach via struc-

tural and non-convex constraints (KGSRSN) is proposed for classification. Specif-
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ically, three appealing properties, i.e., data locality for holding more structural

information, group constraint for penalizing inter-class representation, as well

as kernelization for implicitly avoiding norm normalization problem, are incor-

porated into a unified cost function for better discrimination. Furthermore, we

introduce a non-convex function with parametric forms to penalize the repre-

sentation coefficients; and we ensure an interval for the parameter that leads to

the convexity of the total cost function. Experiments are conducted on bench-

mark databases and the results verify KGSRSN outperforms many SR-based

methods. Moreover, an iteratively update solution of the convex problem for

KGSRSN is also presented, which can achieve the unique solution of the algo-

rithm within 30 iterations. Experimental results also show that the efficiency

of KGSRSN is superior to that of GSC and SRC.
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