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The reporting of ecological phenomena and environmental status routinely required point observations, collect-
ed with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses
difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional
spatial coverage for observing the marine environment. This review provides guidance on (i) the structures
and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple
spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation il-
lustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the pro-
duction of high-quality assessments of ecological phenomena and the regional reporting of environmental status.
Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also
make full use of the techniques and data sets that expedite this process.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Traditional methods of sampling typically provide point observa-
tions with a high information content, i.e. the characteristics of the sea-
bed at one place. For logistic reasons, these observations typically
cannot provide continuous data surfaces over large spatial areas (Gray
and Elliott, 2009). Consequently, they are poorly suited for detecting
the detailed structure within broad-scale gradients (e.g. salinity, depth
and propagule dispersal) and representing spatial heterogeneity (e.g.
substratum patchiness). Although ecological phenomena occur at vari-
ous spatial scales (Fig. 1), those occurring at broader spatial scales are
currently the target of greater attention e.g. species loss, environmental
health and climate change impacts (Box 1). This means there is a grow-
ing discrepancy between the spatial scales associatedwith the sampling
and reporting of variables (Urban et al., 1987) – this is especially true for
observations from traditional sampling techniques.

The assessment and reporting of these broad-scale phenomena
therefore requires that observations, sampled at smaller spatial scales,
are ‘scaled-up’ (Miller et al., 2004; Peters et al., 2008; Aertsen et al.,
2012) or spatially extrapolated (Fig. 2). Although undertaken routinely,
the extrapolative process is complex (Levin, 1992;Wu andDavid, 2002)
andmay introduce substantial errors if not undertaken correctly (Miller
et al., 2004; Denny and Benedetti-Cecchi, 2012). Of potentially value for
extrapolation are the technological developments, often from military
and medical sectors, that have generated many remote sensing
, M., The value of remote sen
tin (2017), http://dx.doi.org/1
techniques (i.e. techniques that use sound or light to quantify variables
or surrogates of interest) suitable for themarine environment (Solan et
al., 2003). The greater spatial coverage captured bymany imaging tech-
niques is more closely aligned with the domains of scale (Fig. 1) appar-
ent in marine ecology and required by the current suite of international
legislation.

Datasets covering multiple spatial scales, such as those provided by
remote sensing techniques, are particularly informative about processes
and properties occurring at various spatial scales and especially larger
and more ecologically relevant scales. Accordingly, here we examine
the complexities inherent within the extrapolative process and the in-
formation, provided by remote sensing techniques, that can address
these difficulties. Specific objectives are:

1. explain the difficulties in producing robust extrapolations;

2. describe the process of spatial extrapolation used within ecology;
3. develop a framework that combines remote sensing datasets within

the extrapolation process (provided with examples); and
4. describe remote sensing techniques and indicate their value, in terms

of coverage and thematic focus, and limitations.

1.1. Obstacles to effective extrapolation

The requirement to traverse between many spatial scales (i.e. do-
mains of scale) and account for the localised sources of heterogeneity
within each scale complicates the process of extrapolation. Environ-
mental or ecological observations and phenomena (e.g. sampling
events, environmental impacts, ecological phenomena and areas for
sing techniques in supporting effective extrapolation across multiple
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Fig. 1. Domains of scale for examples of marine sampling, anthropogenic pressures and the reporting of environmental status.
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the reporting of environmental status) are all associated with specific
spatial scales termed ‘domains of scale’ (Urban et al., 1987). These do-
mains are not spatially exclusive and can overlap (Fig. 1). Changes in
ecosystem properties and the dominance of specific processes create
discontinuities in the scaling relationship when scaling between do-
mains of scale. For example, sea surface temperature may generally
Box 1
Research and policy drivers for effective extrapolation.

As environmental and ecological information and understanding
accumulates at a local level, there is a greater interest and ability
to examine broad-scale issues. This has also been driven by in-
creased concern regarding regional and global pressures on eco-
logical phenomena and environmental status (e.g. distributional
mitigation and climate change, broad-scale habitat loss and the
modification of ecosystem goods and services). Unfortunately,
this has coincided with a paradox in marine assessments – that
an increasing marine governance is dependent on acquiring great-
er data across larger spatial scales (Borja et al., 2016, b) and yet
the bodies responsible for data collection are subject to significant
resource limitation (Borja and Elliott, 2013). For example, ambi-
tious legislation, such as the EU Marine Strategy Framework Di-
rective (2008/56/EC) and the US Oceans Act (S.C. 1996), are
making greater demands from the assessment process, with the
current trends including:
(i) the evaluation of health over large spatial scales; increasingly
defendable and repeatable measurements of status;
(ii) responsive to management measures, and
(iii) cost-effective implementation (Borja and Elliott, 2013).
Estimating environmental status over larger spatial scales requires
that reliable extrapolation is used. While those assessments have
been historically centred on point observations that may or may
not have been extrapolated to larger areas, this is now acknowl-
edged to create larger uncertainty in policy implementation. It is
now apparent that the most effective extrapolations are those
drawing on both high-quality point observations (i.e. traditional
sampling) and informative, broad-scale sampling (i.e. remote
sensing techniques) to be combined to deliver the best outputs
possible.

Please cite this article as: Strong, J.A., Elliott, M., The value of remote sen
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not be expected to vary much 1–1000 m, but will vary, and therefore
be influential, over 1–N1000 km. As such, it is important to identify
and characterise these domains of scale during extrapolation.

The environmental or ecological properties and processes associated
with each domain will be associated with a particular type and range of
variation, termed here ‘source(s) of heterogeneity’ (SoH). An individual
SoH can be either qualitative (comprised of differing classes e.g. broad-
scale substratum or habitat classes) or quantitative (gradient of a con-
tinuous variable e.g. sea surface temperature) (Fig. 2). Both natural
and anthropogenic properties and processes can generate SoH. Due to
the ‘nesting’ of the domains of scale, a SoH can occur within another
SoH present within a larger domain of scale. Interactions can occur be-
tween nested SoH to generate further heterogeneity. For example, an
interaction will occur between substratum patchiness (SoH1 in Fig. 2)
and biological dispersal (SoH2 in Fig. 2) if settlement is only possible
on one class of substratum. These interactions complicated the aggrega-
tion of response surfaces. Combining all of the individual sources of het-
erogeneity, and the interactions generated between sources, provides
the ‘total heterogeneity’ observed (Fig. 2).

It is therefore apparent that robust extrapolations require informa-
tion on SoH from several domains of scale. These sourcesmust be repre-
sented during extrapolation to avoid scaling errors and provide an
accurate spatial representation of the phenomena of interest. Depend-
ing of the size of the extrapolation, this may require several sources of
information. Of particular value for meeting this requirement are re-
mote sensing techniques that generate continuous data surfaces over
large spatial areas.

2. Extrapolation and a framework for integrating remote sensing

2.1. Types of extrapolation in ecology

Observations canbe scaled over space, time and ranges of base quan-
tities (Fig. 3). Lumping, extrapolation and explicit integration are the
three main methods for scaling (King, 1991). Lumping averages obser-
vations within an area and creates a mean value assumed to represent
a larger area. Extrapolationmaintains the detail within the observations
through creating a small-scale response function, which either project
(empirical approach) or model (mechanistic approach) the extrapolat-
ed value based on initial observations and predictor variable(s). Extrap-
olation by explicit integration rescales a smaller scale model to create a
new, larger scale model with space as an integrating variable (King,
sing techniques in supporting effective extrapolation across multiple
0.1016/j.marpolbul.2017.01.028
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Fig. 2. The nesting of three sources of heterogeneity and the generation of the total heterogeneity observed. Source of heterogeneity (SoH) 1 is a fine-scale qualitative variability occurring
across an area (e.g. patches of different substratum classes), SoH 2 is a broad-scale qualitative variability occurring across an area (e.g. dispersal range of a species) and SoH 3 is quantitative
gradient in variability that occurs across an area (e.g. temperature).
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1991; Aertsen et al., 2012). Although simple to undertake, lumping fails
to provide spatial detail within the predicted areas and makes assump-
tions about the homogeneity of an area and the distribution of the data.
Fig. 3. Basic types of extrapo
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Formost applications, the ability of extrapolation to be able to overcome
data gaps and use predictor variables (via a model) to generate detailed
spatial outputs has meant it is the most used method for scaling.
lation used in ecology.

sing techniques in supporting effective extrapolation across multiple
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2.2. A framework for structuring the extrapolative process and integrating
remotely sensed data

The conceptual framework given byMiller et al. (2004) for the use of
extrapolation in ecology is modified here to integrate and exploit the
particular benefits provided by data sets from remote sensing tech-
niques (Fig. 4). This framework provides:

(i) A conceptual model: this provides the objectives of the extrapo-
lation. It also identifies influential sources of heterogeneity and
predictor variables that best represent these sources within the
extrapolation. It also defines the influence of each source of het-
erogeneity on the extrapolated variable and the interactions be-
tween sources that may modify this influence.

(ii) A response function: an empirical ormechanistic relationship be-
tween the variable being extrapolated and the predictor vari-
able(s) used to represent source(s) of heterogeneity;

(iii) A response value or surface: quantities, rates or area produced
through the combination of a response function and predictor
variable(s).
Fig. 4. A framework for extrapolation (modified extensively from Miller et al. (2004)). The exa
sources of heterogeneity. Within the example, substrata patchiness constitutes the fine-sca
(medium-scale heterogeneity). Finally, a temperature gradient provides a broad-scale sour
functions for species richness for each source of heterogeneity (or a combine response
heterogeneity, provided as predictor variables from remote sensing techniques, into predicted
combined response surface (unless route B has been used).

Please cite this article as: Strong, J.A., Elliott, M., The value of remote sen
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(iv) The extrapolated product derived from the response value or
surface with an associated assessment of uncertainty.

2.2.1. The conceptual model
The conceptual model is a critical first stage in developing the ex-

trapolation process by defining:

1) the objectives of the extrapolation, i.e. the thematic, temporal and
spatial properties of the extrapolated product and a desired level of
certainty;

2) the thematic, temporal and spatial properties of the observations to
be extrapolated;

3) the sources of heterogeneity that modify the extrapolation of the re-
sponse variable and the predictor variables that can be used to rep-
resent these sources;

4) interactions between sources of heterogeneity that modify the ex-
trapolation of the response variable, and

5) the type of response function (i.e. calculations, geospatial analysis or
another model) required to extrapolate the response variable.
mple depicts how species richness could be extrapolated across an area containing three
le heterogeneity, which is itself nested within a larger zonation of biological dispersal
ce of heterogeneity across the entire site. The example provides hypothetical response
function in ‘route B’). The response functions can then be used to convert values of
values of species richness. The individual response surfaces are aggregated to produce a

sing techniques in supporting effective extrapolation across multiple
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Specifying the objectives and classifying the variables to be extrapo-
lated defines the scope of the extrapolation (Fig. 4). The conceptual
model should identify and detail the properties and processes that influ-
ence the response variable within the extrapolation area (Holling,
1996), i.e. identifying influential sources of heterogeneity. It should
also state the character of each source of heterogeneity i.e. whether
they are qualitative or quantitative variables (Table 1). The model can
then pair each SoH with a predictor variable capable of representing it
within the extrapolation area. The influence of each SoH does not oper-
ate in isolation, i.e. the influence of one source may well be modified by
being nested within another source of heterogeneity. As such, the con-
ceptual model should indicate these interactions and the way in
which sources of heterogeneity collectively influence the response var-
iable – this may require rules or additional functions on how to aggre-
gate separate SoH into the final output.

Primarily, the conceptual model should guide the selection of pre-
dictor variables required. Without this step, there is a temptation to
use widely available or routinely used variables without considering
their ecological relevance, likely influence or potential interactions. If
certain predictor variables are not available then the conceptual
model should be used to identify surrogates, or dummy variables or, if
the particular source of heterogeneity cannot be addressed, important
caveats are required for the extrapolated output.

2.3. Response function(s)

A response function provides a relationship between the variable
being extrapolated and a property or process that modifies the variable
(i.e. sources of heterogeneity as represented by predictor variables). For
a spatially-consistent, homogeneous area, a response function is not
necessary and only lumping or a linear spatial scaling function may be
required for extrapolation (also termed direct scaling: see King, 1991;
Miller et al., 2004). However,mostmarine areas forwhich extrapolation
is required are heterogeneous. Response functions can be based on ei-
ther mechanistic/deterministic or empirical relationships. The former
are based on a theoretical and underlying understanding of the re-
sponse of specific components within the system of interest whereas
an empirical relationship is a specific response associated with a set of
conditions or projection from a trend that may be statistically shown
but have no known underlying theory. Regardless of the approach
used, the response function must also be stable over time and depen-
dent of the direction of change i.e. responsive to hysteresis should it
occur (Denny and Benedetti-Cecchi, 2012). Stochastic relationships
may also need consideration within the response function.

Common response functions used for extrapolation include:

• Qualitative response variables - deductive (rule-based) or inductive
(correlative) modelling methods such as logistic regression, maxi-
mum likelihood and decision tree learning (classification trees)

• Quantitative response variables - regression-based (parametric and
non-parametric) models such as generalized linear model (GLM),
generalized additive model (GAM) or machine learning methods
such as decision trees.
Table 1
Information required from qualitative and quantitative sources of heterogeneity for the constr

Sources o

Qualitativ
of differen

Response variable to be
extrapolated with example
variable

Qualitative (P/A, state or class) e.g.
categorical levels of environmental status

Determin
class for e

Quantitative (range of values on a
continuous scale) e.g. change in extent

Determin
each class

Please cite this article as: Strong, J.A., Elliott, M., The value of remote sen
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The conceptual model will specify whether response functions are
qualitative or quantitative. The choice of specific approaches will be de-
termined by the distribution of response variables. Response variables
that are normally distributed and homoscedastic (variance does not
change as a function of themean) can bemodelledwith classical regres-
sion methods. For response variables deviating from a normal distribu-
tion, newer regression models such as GLM (parametric), and GAM
(semi-parametric) for non-linear relationships, are more appropriate
(Guisan and Zimmermann, 2000; Guisan et al., 2002).

2.4. Response value or surface

Extrapolated products from a response function can be presented as
data surfaces (for spatial scaling) or values (for temporal or quantity
scaling).Yhey can be determined either (i) directly (with a deterministic
function(s) generating a specified value), (ii) by ‘expected value’ (creat-
ed empirically by statistical methods and includes moderate
stochasticity, associatedwith the input variables, to generate a probabil-
ity distribution and therefore a range of possible values) or (iii) driven
by chance alone (purely stochastic model) (Denny and Benedetti-
Cecchi, 2012). The choice of which output type is most appropriate
will depend on the relative influence of stochastic sources of heteroge-
neity on the response variable.

Finally, the extrapolated products should be presented with values
of model performance (e.g. adjusted r-squared, Akaike Information Cri-
terion etc.) and/or validation results from an independent data set (e.g.
confusion matrices, kappa etc.). These values should form the basis for
estimating the uncertainty of the extrapolation. Other information can
also contribute to the estimation of uncertainty such as the density, dis-
tribution and relevance of the observations that have been extrapolated
and the performance of the remotely sensed data in representing the in-
fluential SoH within the domains of scale traversed. Furthermore, it is
critical that the estimation of uncertainty remains attached to the ex-
trapolated product and is presented in a meaningful and interpretable
manner. This will allow the end user to understand the limitations of
the output and assess its fitness for purpose for their own use. It is likely
many of the largest extrapolationswithin ecology are naturally associat-
ed with a high level of uncertainty. A failure to communicate uncertain-
ty clearly to the end user can lead to unrealistic expectations and
misguided management that may ultimately undermine the credibility
of the methods and assessments based on the extrapolation products.

3. Applied examples of extrapolation using remote sensing
techniques

Tables 2, 3 and 4 describe extrapolative approaches for three com-
monmarine assessments. Each approach progressive includes addition-
al remote sensing techniques, which in turn compensate for more
sources of heterogeneity. Habitat mapping is a common survey activity,
and the resultingmaps are used in various activities such asmarine spa-
tial planning of anthropogenic activities, the designation of marine
uction of response and scaling functions (P/A: presence/absence data).

f heterogeneity with example parameter

e (P/A, state or class) e.g. patches
t classes of substratum

Quantitative (range of values on a continuous
scale) e.g. sea surface temperature

e the response variable state or
ach class within a SoH

Determine the response variable state or class for
discrete ranges of values within the SoH

e the response variable value for
within a SoH

Determine the response variable value across the
range of values within a SoH

sing techniques in supporting effective extrapolation across multiple
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Table 2
A comparison of possible approaches for the extrapolation of habitat extent using remote sensing techniques.

Extrapolation approach and
information required

Sources of heterogeneity (SoH) addressed Processing and response function
required

Advantages Disadvantages

Distributional patchinessa Substratum Depth Oceano-graphic
variablesb

Interpolation from grabs or
photographic stills

No Partially
(broad-scale only)

Partially (from
platform only)

No Manual segmentation, buffering or
Thessian polygons (qualitative data)
or geospatial interpolation
(quantitative data) followed by
spatial summation

Minimal data requirement
Simple to undertake

Simplistic classification surface and
inaccurate extrapolation products
The extrapolated values will be
biased by sampling distribution,
allocation and effort
Extrapolation beyond the survey site
is not possible
Fails to fully account for any SoH
Expert judgement required for some
processing steps

Interpolation from video transects Partially (via burrow entrances
observed in footage)

Partially (broad
and fine-scales)

Partially (from
platform only)

No As above Partial correction for distributional
and substratum patchiness
Few assumptions

Extrapolation beyond the survey site
is not possible
This approach fails to account fully
for any SoH
The extrapolated values will be
biased by sampling distribution,
allocation and effort
Expert judgement required for some
processing steps

Full coverage photo/video-mosaic
surface (AUV or ROV)

Partially (via burrow entrances
observed in footage)

Yes Yes No Segmentation of the image followed
by spatial summation

Full correction for substratum and
depth improves the accuracy of the
extrapolation
No interpolation or assumptions
required
Full coverage products are generated

Expensive to collect and therefore
limited to small survey areas
Extrapolation beyond the survey site
is not possible

Geospatial modelling of grabs, stills
and/or video with hydro-acoustic
data (e.g. MBES)

Partially (via burrow entrances
observed in footage)

Yes Yes No Geospatial modelling (regression or
machine learning methods)
followed by spatial summation

An established mapping approach
Full correction for substratum and
depth improves the accuracy of the
extrapolation
Full coverage, high resolution
products Depending on
transferability, the model can be
applied to other local acoustic data
sets lack grab/video observations

This approach is complex and
requires specialist skills
Assumptions linking environmental
variables and ‘potential habitat’ are
required during the geospatial
modelling
An acoustic survey represents a
significant survey cost

Geospatial modelling of grabs, stills
and/or video, hydro-acoustic data
(e.g. MBES) and oceanographic
observations (in-situ or satellite
sources)

Partially (via burrow entrances
observed in footage)

Yes Yes Yes Geospatial modelling (regression or
machine learning methods)
followed by spatial summation

Full correction for substratum, depth
and oceanographic variables results
in high level of accuracy for the
extrapolated values
Depending on transferability, the
model can be applied to other
regional acoustic data sets lack
grab/video observations

This approach is complex and
requires specialist skills
Assumptions linking environmental
variables and ‘potential habitat’ are
required during the geospatial
modelling
An acoustic survey represents a
significant survey cost

a Example based on a habitat supporting a burrowing mega-infaunal assemblage
b For example, temperature, salinity, currents, chlorophyll, SPM etc.
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Table 3
A comparison of possible approaches for the extrapolation of fish abundance, from various stock assessment (SA) methods, using remote sensing techniques.

Extrapolation
approach and
information
required

Sources of heterogeneity addressed Processing and
response
function
required

Advantages Disadvantages

Local
patchiness
(shoal)

Regional
patchiness
(distributional)

Oceanographic
variablesa

Landings data
(fishery
dependent)

No No No Direct or ratio
SA expansion
method and
spatial
summation

Well replicated input data Extrapolated values biased by landings
size, under-reporting and port
avoidance
No SoH are specifically addressed, and
extrapolated values are likely to be
skewed

Gridded trawl
survey (fishery
independent)

No Yes No Direct or ratio
SA expansion
method and
spatial
summation

Greater sampling of size classes and a
broader assessment area addresses the
regional distribution of species and leads to a
more representative extrapolation of the
stock

Aspects of local patchiness or
broad-scale environmental drivers are
not assessed, hence reducing the
accuracy of the extrapolated value

Trawl and
hydro-acoustic
survey (fishery
independent)

Yes Yes No Area SA
expansion
method and
spatial
summation

Local distribution (shoal size and
distribution) is estimated, via the
hydro-acoustic survey, and the trawl
observations corrected (improving the final
extrapolated value)
Greater sampling of size classes and a
broader assessment area addresses regional
distribution of species and leads to a more
representative extrapolation

The influence of broad-scale
environmental drivers are not assessed,
hence reducing the transferability of the
extrapolation approach across large
spatial areas

Trawl and
hydro-acoustic
survey with
remotely sensed
oceanographic
variables

Yes Yes Yes Meta-analysis
SA method and
spatial
summation

All of the influential SoH are observed and
used to correct the extrapolation
The use of satellite-derived oceanographic
variables allows the modelling/extrapolation
of other probable fish locations and the
incorporation of the ‘ecosystem-based’
approach to fisheries management

The combination of multiple data
sources requires a complex
SA/extrapolation approach
The incorporation of ecosystem drivers
requires further calibration and
additional assumptions within the stock
assessment method

a e.g. Sea surface temperature and phytoplankton type/abundance.
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protected areas and research into marine landscape ecology. Before
hydro-acoustic methods became widely available, habitat mapping re-
lied on manual or interpolative approaches for spatial extrapolation
(Table 2). Products from this process, although easy to generate, only
provide coarse, indicative maps for the distribution of habitats and spe-
cies. They typically neglect the additional structure provided by substra-
ta, depth and other influential environmental factors. The inclusion of
video transects, and especially hydro-acoustic methods such as MBES
within the survey methodology, has allowed mappers to account for
substratum (via video observations or acoustic backscatter) and depth
(including variables derived from the bathymetry). Consequently, the
extrapolated products have greater levels of realism and accuracy, and
can now be used for the extraction of summary indicators, such as hab-
itat extent, that can be used for condition monitoring. Finally, the wide-
spread use of MBES by habitat mappers means that large areas of the
seabed are now mapped acoustically. Such is their combined extent
that the inclusion of broad-scale oceanographic variables is now rele-
vant within the extrapolation process. Based on the known influence
of bioclimatic variables for species distribution, and the increasing im-
portance of climate change formarine ecosystems, it is likely that the in-
clusion of satellite-derived data setswill further improve the accuracy of
habitat mapping and the accuracy of extrapolated indices from these
maps.

Stock assessments are an essential component of fisheries manage-
ment. Table 3 describes stock assessment methods that incorporate re-
mote sensing techniques. Once again, it is apparent that the inclusion of
these techniques addresses a greater number of SoH, such as the patch-
iness inherent in fish distribution (via hydro-acoustic surveys) and the
influence bioclimatic variables (via satellite-based imaging). Further-
more, remotely sensed data sets typically have a larger spatial extent
when comparedwith traditional trawl surveys. This is particularly effec-
tive at representing oceanographic sources of heterogeneity and
Please cite this article as: Strong, J.A., Elliott, M., The value of remote sen
marine spatial scales, Marine Pollution Bulletin (2017), http://dx.doi.org/1
capturing the inherent domain of scale appropriate for national stock
assessments. Efforts to include oceanographic variables from satellite
sensors within fisheries stock assessments include the development of
ecological provinces (Devred et al., 2007; Moore et al., 2009), essential
fish habitat (e.g. Reiss et al., 2008), modelling temporal variation in re-
cruitment (Stuart et al., 2011) and the direct detection of fishing activity
(e.g. the jumboflying squid fishery byWaluda et al., 2006 and the track-
ing of fishing fleets through the use of vessel monitoring systems).

Assessments of ecosystem functions and services are routinely used
bymarinemanagers and policymakers to provide regional indicators of
environmental status. Once again, several sources of heterogeneity
hamper the scaling of point observations to regional scales. Using the
example of primary production (Table 4), it is evident that remote sens-
ing techniques can capture several sources of heterogeneity acrossmul-
tiple spatial scales.Without representing these sources of heterogeneity
with the extrapolation, the process would quickly entrain excessive
levels of variance and bias, generated by the dynamic and patchy condi-
tions locally, that would promptly invalidate the final values. Lee et al.
(2015) also conclude that the linkage of in-situ samples with synoptic
and repetitive satellite observations is the only possible and feasible ap-
proach for the extrapolation of PP to regional and global scales.

The three case studies provided exemplify the assessments that are
commonly required for the routine monitoring and management of
the marine environment. They also demonstrate that a failure to ac-
count for the most influential sources of heterogeneity during the ex-
trapolative process can decisively undermine the outputs, and in turn,
discredit the assessment process relying on these outputs. Furthermore,
uncertainty associated with the outputs of extrapolation could results
insufficient regulation of the underlying causative pressures, which
could result in a further deterioration of status in the marine environ-
ment. Modern remote sensing techniques can cost-effectively capture
and represent these sources of heterogeneity, thereby increasing
sing techniques in supporting effective extrapolation across multiple
0.1016/j.marpolbul.2017.01.028
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Table 4
The extrapolation of total primary production (PP) using extrapolation approaches including progressively more remote sensing techniques. The advantages and disadvantages associated with each approach, and the sources of heterogeneity cap-
tured, are discussed for each approach.

Extrapolation approach and
information required

Sources of heterogeneity addressed Processing and response function required Advantages Disadvantages

Local patchiness
(horizontally and
vertically)

Oceanographic variables
(regional patchiness)

Temporal
variation

In-situ point sampling of
chlorophyll and the light field

Partially Partially (broad-scale
interpolation only)

No Mechanistic or empirical modelling of PP,
linear spatial integration followed by
volumetric summation

Simple and established assessment of
PP using chlorophyll concentration

Unable to extrapolate beyond the extent of the
point samples (horizontally or vertically)
Fails to fully account for any SoH and the
resulting extrapolation is likely to be inaccurate
in heterogeneous areas
Extrapolations biased by sampling distribution,
sampling depth, effort and survey timing

Moored, in-situ spectrometric
sensors of chlorophyll, light field,
temperature and nutrients

No No Yes Mechanistic or empirical modelling model
of PP, linear spatial integration followed by
volumetric summation

Temporal variation at the sensor station
is observed and integrated into the
extrapolated value

Multi-sensor moorings are expensive and
subsequently networks typically have a very
limited spatial coverage
Unable to extrapolate beyond the extent of the
sensor network (horizontally or vertically)
Extrapolations biased by the number and
location of moorings, sensor depth and
observation interval/timing

Aerial-derived chlorophyll
fluorescence, light field,
temperature

Yes Partially (full coverage of a
subset or partial coverage
of the full area)

No Mechanistic or empirical modelling and
volumetric summation

Full coverage, high-resolution mapping
of parameters relevant for PP generate
accurate extrapolations

The spatial coverage is insufficient for regional
extrapolations of PP
In situ profiling is still required to account for
vertical heterogeneity
Repeated surveys are required to capture
temporal trends within extrapolated values

Satellite-derived chlorophyll
fluorescence, light field, nutrients
and temperature

Yes Yes Yes Mechanistic or empirical modelling
followed by volumetric summation

All of the most influential SoH are
observed and compensated for within
the extrapolation
The spatial scale of the observations is
broadly aligned with the domain of
scale relevant for PP

In situ profiling is still required to account for
vertical heterogeneity
The combination of multiple data sources
requires a complex extrapolation approach
The incorporation of oceanographic variables
requires further calibration and additional
assumptions within the extrapolation
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accuracy and resolution (spatial and temporal), as well as providing
more direct mechanistic relationships between the response variable
and the predictor variables within extrapolations.

4.Useful remote sensing techniques for extrapolationwithinmarine
science

When compared with traditional observational methods, remote
sensing techniques demonstrate greater (i) cost-effectiveness per repli-
cate, (ii) non-destructive sampling capabilities, (iii) levels of replication
and, most notably, (iv) spatial coverage (e.g. McClain, 2009; Álvarez et
al., 2014; Fretwell et al., 2015). Given that remote sensing techniques
undertake data collection from a very large spatial range (i.e. b1 cm to
near-global scales), here we group the imaging techniques into fine,
medium and coarse spatial ranges before describing their thematic con-
tent, value and coverage.

4.1. Remote sensing techniques observing at small spatial scales
(10−1–101 m2)

The remote sensing techniques operating at the finest spatial scale
are often the most comparable to the scale of observation provided by
traditional point samples (Fig. 5). Table 5 describes eight remote sens-
ing methods that are particularly informative about SoH at the smallest
spatial scale for pelagic and benthic applications. The main sources of
heterogeneity addressed within benthic habitats concerns the variation
in sediment structure. Imagingmethods such as Sediment Profile Imag-
ing (SPI) (Solan et al., 2003) (Table 5), and Computed Tomography (CT)
scanning provide important information about the size, density and
spatial (horizontal and vertical) arrangement of bioturbation from
bothmacrofaunal (Solan et al., 2003) andmeio-faunal species (CT scan-
ning only -Mazik et al., 2008). This in turn provides valuable contextual
information for understanding the biogeochemical regimeof sediments,
such as redox (oxidation-reduction conditions), traditionally gathered
as point samples with profiling electrodes (Gray and Elliott, 2009).
The combined use of CT with Positron Emission Tomography (PET)
can observe and explain the distribution of burrowing processes, biotur-
bation and sediment heterogeneity (Delefosse et al., 2015). As such,
these imaging techniques can complement traditional techniques of
benthic sampling (physical and biological) using grabs and corers,
which provide high quality composite data of structural variables,
with valuable functional information from both the macro- and meio-
Fig. 5. Domains of scale associated with tradition
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faunal assemblages even if grab samples homogenise the vertical pat-
terns (Fig. 5).

Pelagic imaging techniques mostly address the heterogeneity that
stems from small-scale dispersal and patchiness (e.g. split-beam target
tracking (Klevjer and Kaartvedt, 2003) and laser scattering and
transmissometry (Anglès et al., 2008)). These techniques are particular-
ly valuable for providing context for point sampling of plankton and
suspend material within water column profiles.

Many fine-scale imaging techniques (Table 5) are also capable of
providing: (i) variables measured in real-time for the direct assessment
of environmental status (e.g. optical planar optodes combined with SPI
(Glud et al., 2001) and in situ spectrophotometric techniques), (ii) in
situ observations (e.g. SPI (Rosenberg et al., 2001; Solan et al., 2003),
laser scattering and transmissometry and Spectrophotometric tech-
niques), and (iii) ex-situ non-destructive observations (e.g. CT scanning
(Rosenberg et al., 2008; Weissberger et al., 2009; Salvo et al., 2013)).

Therefore, the remote sensing techniques operating at thefinest spa-
tial scale often provide the most compatible datasets for the initial ex-
trapolation from traditional point samples. However, at the finer
spatial scales, it is likely that the need for extrapolation is driven by re-
search interests and the need to understand benthic processes rather
than for assessments of environmental health. Equally, the high cost,
low replication and reduced availability of many of these techniques
(e.g. CT and PET) suggests that they are better suited as research tools
and currently have a limited value as routinemethods of environmental
health. Sediment Profile Imaging is, however, being increasingly used
for environmental monitoring with the development of quality indices
such as the Marine Sediment Quality Index (MSQI) (Gries, 2006;
Rosenberg et al., 2009).
4.2. Remote sensing techniques observing at medium spatial scales
(102–105 m2)

The multiple sources of heterogeneity occurring at this spatial scale
are often a product of both physical heterogeneity (e.g. benthic substra-
tum patchiness, bedformmorphology, and water body features or local
gradients) and biological processes (e.g. patchy distributions from set-
tlement behaviour or grazing pressure). The interaction between
these processes can generate high levels of influential heterogeneity
that are particularly difficult to sample and describe using traditional
methods. Acoustic techniques arewell suited for data collection at inter-
mediate spatial scales. Table 6 describes five remote sensing techniques
al sampling and remote sensing techniques.

sing techniques in supporting effective extrapolation across multiple
0.1016/j.marpolbul.2017.01.028
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Table 5
Description of remote sensing techniques observing at small spatial scales (typical survey coverage 10−1–102 m2).

Method

Computed tomography (CT) scanning Computed tomography (CT) scanners either rotate samples within a stationary X-ray beam or more conventionally,
rotate an X-ray source in a spiral around the sample. Magnified images are received onto a detector screen and
processed, by computer, into a high-definition, three-dimensional images of the sample. Computed tomography
scanners have been used to image burrow morphology within sediment samples and estimate rates of bioturbation (e.g.
Perez et al., 1999; Michaud et al., 2003; Rosenberg et al., 2007; Mazik et al., 2008 (including meiofaunal structures),
Rosenberg et al., 2008; Weissberger et al., 2009; Salvo et al., 2013).

Positron Emission Tomography (PET) PET scanning requires the spiking of samples with radionuclide tracers. The PET scan then detects products from the
decay of the radionuclide to indicate the movement and accumulation of the tracer within the sample. When used in
combination with CT scanning, PET scanning can be particularly informative about the distribution and rate of processes,
e.g. sediment/water diffusion induced by bioturbation (Delefosse et al., 2015).

Magnetic resonance imaging (MRI) Magnetic resonance imaging (MRI) use magnetic fields and radio waves to image the internal structure of samples and is
especially suited for soft tissues and materials. Magnetic resonance imaging (MRI) has proven well-suited and has been
successfully used to image the internal physiology of several species of oyster (e.g. Pouvreau et al., 2006), starfish (Sigl et
al., 2013) and estimate gonad maturation in oysters (e.g. Davenel et al., 2006; Smith and Reddy, 2012).

Sediment Profile Imaging (SPI) Sediment profile imaging collects cross-sectional images of benthic sediments and provides important insights into the
sedimentary environment at a greater spatial scale than traditional point sampling. (Rosenberg et al., 2001; Solan et al.,
2003). Variables collected include sediment grain size, redox discontinuity depth, gas vesicles, infaunal burrows and
epifaunal presence. Many of the variables are calculated automatically by processing software and the resulting values
used to calculate various indices of benthic habitat quality specific to SPI-derived data (Solan et al., 2003).

Two and three-dimensional imaging
of oxygen and pH

Optical planar optodes can provide two-dimensional quantification of oxygen distribution with a spatial resolution of
approximately 0.1 mm over areas of several cm2 (Glud et al., 1996; Glud et al., 2001). This approach has been shown to
be a sensitive and cost-effective tool for assessing the distribution of oxygen for marine sediment samples both in the
laboratory (Zhu and Aller, 2012) and in situ (e.g. combined with SPI by Glud et al., 2001). The same method can also be
used to image the distribution of pH values within sediments (Larsen et al. 2011). The three-dimensional imaging of
intra- and inter-cellular oxygen concentrations has also become possible through the use of MRI and electron spin
resonance (ESR) (Halevy et al., 2010), and the latter has been applied to various marine applications (e.g. the imaging of
oxygen fluxes within endolithic algal communities with corals (Kühl et al., 2008).

Automated particle tracking Split-beam target tracking has been used to both on hull-mount (Røstad 2000 in Klevjer and Kaartvedt, 2003) and in situ
applications (Klevjer and Kaartvedt, 2003) to track individual krill within the water column.

Spectrometric sensors for in situ water analysis In situ spectrophotometric and fluorescence techniques are quickly providing a proven alternative to traditional
analysers using wet chemistry techniques for the monitoring of nutrients, chlorophyll and dissolved gases. Several
commercial units utilising ultraviolet spectrophotometric techniques now available and are supported by numerous
peer-reviewed studies (e.g. Adornato et al., 2007; Sandford et al., 2007; Zielinski et al. 2011). These in situ units are
typically capable of detecting nitrogenous compounds between 0 μM and 4000 μMwith an accuracy of ±2 μM (Zielinski
et al., 2011). These units can be deployed as either (i) static/buoyed, (ii) profiling or (iii) flow-through instruments.
Nitrogenous compounds, and especially nitrate, are extremely influential on coastal and oceanic ecosystems. Sizeable
anthropogenic contributions to coastal nitrate are associated with eutrophication and significant environmental
perturbation. As such, nitrate concentrations are a core water quality variable and common in many monitoring
programmes of water quality. Equally, in situ sensors utilising fluorescence quenching are rapidly replacing traditional,
galvanic sensors, for dissolved oxygen.

Laser scattering and transmissometry Deployable instruments, such as the ‘laser in situ scattering and transmissometry’ (LISST) 100×, were developed for the
automated detection of suspended particle size distribution (Agrawal and Pottsmith, 2000). Although originally
designed for sediment analysis, studies have demonstrated the potential of these instruments to measure the size
distribution of phytoplankton and bacteria (Serra et al., 2001; Rienecker et al., 2008), and for species detection in mixed
phytoplankton communities (Anglès et al., 2008).
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that have added greatly to our understanding of heterogeneity at inter-
mediate spatial scales.

As well as providing high resolution soundings of bathymetry,
acoustic mapping systems, such as multibeam echo-sounders, have
also been used tomap superficial substrata (Table 6) and biological fea-
tures (e.g. seagrass - Komatsu et al., 2003; Shono et al., 2004;DiMaida et
al., 2011, and macroalgae - McGonigle et al., 2011). They can also pro-
vide valuable spatial information on the distribution of organismswith-
in the water column (Benoit-Bird and Au, 2009) thereby indicating the
level of heterogeneity generated by biological dispersal at intermediate
scales (Table 6). Advances in autonomous underwater vehicle (AUV)
availability, endurance, and reliability will further increase the spatial
coverage of both acoustic and optical sensors mounted on these plat-
forms. This combination of detailed observations and high spatial cover-
age is especiallywell suited to detect heterogeneitywithin both surficial
substrata and the distribution of epifaunal species.

The use of video and photographic stills cameras to observe sea-
bed habitats is an established survey practice which provides footage
at the b1 m scale but can also cover transects of many km (Table 6).
This information can be expensive to collect and process. Although
problematic for many reasons (Lebart et al., 2000; Bernhardt and
Griffing, 2001; Dawkins et al., 2013), automated seabed image anal-
ysis is likely to assist greatly these surveys by improving the
Please cite this article as: Strong, J.A., Elliott, M., The value of remote sen
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objective classification and counting of benthic features in a cost-ef-
fective manner (e.g. Chailloux et al., 2008; Dawkins et al., 2013). Re-
flectance spectroscopy has also been used with image analysis for
automatically detecting and counting specific species (Table 6). For
pelagic environments, in situ techniques combining flow cytometry,
machine-learning algorithms and image analysis have flourished re-
cently (e.g. the Video Plankton Recorder (Davis et al., 1992, 1996)
and the In Situ Ichthyoplankton Imaging System (Cowen and
Guigand, 2008; Cowen et al., 2013)) can increase replication and/or
sample volume over large areas.

Given the above, many of the remote sensing techniques are well
suited for sampling, and therefore representing, sources of heterogene-
ity within intermediate spatial scales in both benthic and pelagic realms
(Table 6 and Fig. 5). Consequently, many imaging techniques already
provide predictor variable data for the spatial scaling of benthic and pe-
lagic point observations, e.g. predictive habitatmapping and species dis-
tribution modelling. Many of the acoustic and optical techniques are
widely adopted and cost-effective enough to be routinely used for re-
search and monitoring. The continued development and uptake of au-
tonomous platforms and image analysis will both reduce acquisition
and processing costs and increase coverage. Finally, the resulting data
sets often relate directly to the SoH relevant for common extrapolations,
e.g. substratum patchiness in benthic habitat surveys and turbulent
sing techniques in supporting effective extrapolation across multiple
0.1016/j.marpolbul.2017.01.028
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Table 6
Description of remote sensing techniques observing at medium spatial scales (typical survey coverage 102–105 m2).

Method

Underwater stills photography and video transects Underwater stills photography and video transects collected using various platforms (e.g. epibenthic sledges,
drop-down systems, ROVs and AUVs) are well-established techniques and deliver vast amounts of seabed
imagery to support various activities such as habitat mapping, stock assessments and condition monitoring. Most
photographic and video platforms have an unlimited bottom time and are capable of imaging large spatial areas.
As well as documenting the epifaunal community, this footage provides essential information on the physical and
biological heterogeneity of seabed habitats. Image analysis systems use various approaches such as shape/outline
analysis (Aguzzi et al., 2011), textural assessments, and machine-learning algorithms (Purser et al., 2009) to
automatically detect and quantify objects within images (Dawkins et al., 2013). Photo mosaicing has also been
shown to aid in the mapping of habitat (e.g. Rende et al., 2015). Automated image analysis is facilitating the
process of both video and stills imagery and has been successfully applied to cold water coral (Lophelia pertusa)
coverage (Purser et al. 2009), sessile benthic species (Beuchel et al., 2010; Teixidó et al., 2011; Trygonis and Sini,
2012), pacific scallops (Dawkins et al., 2013) and the counting of burrows (Nephrops norvegicus) (Lau et al. 2012).
Photo mosaicing has also been shown to aid in the mapping of habitat (e.g. Rende et al., 2015).

In situ reflectance spectroscopy for benthic mapping Hyperspectral radiometers used in situ have been used to identify and map individual species, physical substrata
and vegetative types based on reflected spectra (Werdell and Roesler, 2003; Moline et al., 2007; Caras and Karnieli
2013; Leeuw et al., 2013).

In situ imaging of plankton and nekton Recent developments have combined in situ platforms, flow cytometry, microscopy and image analysis to
automate the processing of phytoplankton cells and suspended particles that range from 3 to 3000 um in size.
Furthermore, the measurement of phytoplankton abundance and size from imaging-in-flow analyses are precise
and considered more reflective of natural size spectra, and often outperform manual microscopy methods (e.g.
Sosik and Olson, 2007; Álvarez et al., 2014) for all but thematic classification (Zetsche et al., 2014). Plankton
communities can be imaged and identified in situ using towed camera platforms, e.g. the Video Plankton Recorder
is able to optically image and automatically identify both phytoplankton and zooplankton taxa (broad groupings),
and map their abundance and distribution in real time (Davis et al., 1992, 1996). Similar in situ samplers have
been developed for other components e.g. ichthyoplanton (Cowen and Guigand, 2008; Cowen et al., 2013) and
JellyCam (Graham et al., 2003).

Acoustic mapping of the benthos Acoustic methods such as AGDS, MBES and SSS interpret information from the delay, intensity and/or character of
an acoustic pulse returned from the seabed to determine depth and surficial character. The backscatter intensity
values obtained during sidescan sonar (SSS) and multibeam echosounder (MBES) surveys have been shown to
correlate with several geotechnical properties of the seafloor sediments such as grain size and sorting (e.g. Collier
and Brown, 2005; Brown and Blondel, 2009; Brown et al., 2011). As such, backscatter data, supported by
ground-truthing samples, is routinely used to classify the seabed into coarse surficial sediment classes.

Water column backscatter data from multibeam
echo-sounders (MBES) and wideband sonars

For MBES, the limitations of detection and storage (Colbo et al., 2014) mean that only the backscatter return from
the seabed was typically recorded and processed. Recent advances now allow the collection of backscatter from
the water column (both from MBES and single-beam wide-band sonars). Wideband sonars collect backscatter
information from a range of frequencies to greatly increase resolution and frequency response, which aids in the
discrimination between plankton and fish and facilitates species identification and shoal description. Biological
groups that can be clearly imaged within water column backscatter include (i) shoals of fish (e.g. Benoit-Bird and
Au, 2009), (ii) marine mammals and seabirds (e.g. Benoit-Bird and Au, 2009), (iii) zooplankton (e.g. Korneliussen
et al., 2009) and (iv) macroalgal biomass (McGonigle et al., 2011). Swim bladders (Foote, 1980) and lung cavities
for marine mammals (Au, 1996) are the primary sources of backscatter. Scattering also occurs between the
flesh/water interface thereby allowing the detection of fish without swim bladders (Reeder, 2011) – it is for the
same reason that concentrations of zooplankton can also be imaged acoustically (Colbo et al., 2014).
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advection induced patchiness in planktonic communities (Abraham
1998; McManus and Woodson, 2012).
4.3. Remote sensing techniques observing at large spatial scales
(105–1010 m2)

Sampling and representing this spatial scale hitherto has been the
most challenging for traditional forms of marine sampling. Fortunately,
satellite and aerial imaging sensors provide unparalleled imaging at the
broadest spatial scales on a range of important physical and chemical
variables (see Table 7 for an overview of these techniques). This is espe-
cially the case for the pelagic realm through the reporting of important
variables such as temperature, turbidity and the distribution of chloro-
phyll. The detection of biological features is however, limited to the di-
rect detection largermarinemammals in surfacewaters (Abileah, 2002)
and seabirds at sea and in colonies (e.g. Hughes et al., 2011; Fretwell et
al., 2015) (Table 7).

Imaging from satellite and airborne sensors is mostly restricted to
observations of the sea surface. Nevertheless, although highly
constrained in temperate areas due to the increased turbidity, satel-
lite-derived imagery can be used to determine shallow bathymetry
and broad-scale seabed features (Reshitnyk et al., 2014). This can great-
ly reduce the costs of collecting large areas of seabed information in a
zone typically falling between the coverage of two other remote sensing
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methods i.e. MBES and LiDAR (Table 7). Despite this, there are practical-
ly no broad-scale imaging techniques for deeper benthic habitats.

Overall, the current suite of satellite and airborne imaging systems
provides a clear representation of many of the most influential SoH
within surfacewaters.Mid-water and benthic SoH are poorly represent-
ed at this scale and still rely on remote sensingmethods associatedwith
the small and medium scales. With regard to the availability of this in-
formation, satellite and airborne imaging is becoming cheaper and
more available due to the increasing number of commercial suppliers
of satellite imagery and low cost airborne platforms such as Unmanned
Aerial Vehicle (UAVs). This has facilitated not just an increase in spatial
coverage but also the ability to routinely resample large areas andhence
provide greater temporal resolution on influential sources of pelagic
heterogeneity. As such, these information sources are an extremely
helpful when structuring regional and global extrapolation.

4.4. Summarising the descriptive and scalar properties of remote sensing

Many remote sensingmethods provide observations acrossmultiple
spatial scales, and are even capable of collecting information at conti-
nental and global scales (e.g. satellite observations of pelagic habitats).
Pelagic sources of heterogeneity can be observed almost across all spa-
tial scales (Tables 5–7 and Fig. 5). Benthic sources of heterogeneity can
be observed between small andmedium spatial scales, and occasionally
at larger scales for shallow water habitat although as yet it is not
sing techniques in supporting effective extrapolation across multiple
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Table 7
Description of remote sensing techniques observing at large spatial scales (typical survey coverage 105–108 m2).

Method

Satellite-derived surface observation The detection of oceanic variables from satellite sensors has transformed the observation of large and generally inaccessible sea
areas. Satellite sensors are capable of detecting ecologically important variables such as sea surface temperature (Merchant et al.,
2012), salinity (Reul et al., 2014), surface waves and currents (Klemas, 2012), and coarse seabed altimetry/bathymetry (Sandwell
et al., 2006) over continental and even global scales. Furthermore, ocean colour contains additional variables for pigments (e.g.
Chlorophyll a) and particulates (e.g. calcite products for the detection of coccolithophores and the use of reflectance and
backscatter for particulate organic matter) in seawater (McClain, 2009). It is also possible to estimate surface nutrient
concentrations such as dissolved inorganic nitrogen and phosphorus (e.g. Xu et al., 2013; Yu et al., 2016).

Satellite-derived bathymetry and seabed
features

The recent availability of satellite imagery of very high resolution with multiple collection bands has generated new possibilities
for seabed mapping. For example, WorldView-2 satellite images are being processed to provide the bathymetry and seabed
features (e.g. submerged vegetation, topographic features, and very coarse sediment classes) for shallow coastal waters
(Reshitnyk et al., 2014). Current estimates of vertical accuracy are approximately 10% of water depth, suggesting that bathymetry
derived from satellite imagery has a lower accuracy than traditional mapping techniques (e.g. MBES). Nonetheless, the vertical
error is likely to be acceptable for habitat mapping purposes where relative change is more important than absolute depth.
Bathymetry can be currently collected to approximately 30 m in clear, tropical waters. However, in turbid, temperate waters (or
tropical areas with poor water quality), penetration is significantly reduced (Reshitnyk et al., 2014), which reduces the current
applicability of this technique.

Satellite imagery for the direct observation
of marine animals

As the resolution and availability of satellite imagery increases, greater efforts have been made to directly detect marine animals
(Abileah, 2002) such as whales in specific locations (Fretwel et al., 2014). The detection of marine mammals that use the
shoreline is improved greatly as issues relating to turbidity and sea surface roughness are eliminated e.g. LaRue et al. (2011) used
satellite imagery to count hauled-out Weddell seals (Leptonychotes weddellii) in Antarctica. For seabirds, estimates of population
sizes based on ground discolouration (e.g. guano deposits or vegetation fertilised by guano) and were considered successful for
king penguins (Aptenodytes patagonicus) (Guinet et al., 1995) and emperor penguins (Aptenodytes forsteri) (Fretwell and Trathan,
2009). Increases in the resolution of satellite imagery now permit the detection of some nests and individual seabirds, hence
allowing population estimates to be obtained for several species of penguin (see references in Fretwell et al. 2015) and nests of
masked boobies (Sula dactylatra) (Hughes et al., 2011).

Aerial optical and multispectral remote
sensing

Optical remote sensing techniques are routinely used for imaging shallow water habitats. For example, bathymetric Light
Detecting and Ranging (LiDAR) uses both blue-green and near-infrared lasers to obtain shallow water bathymetry. Laser
penetration is approximately 2–3 times the Secchi disk depth (approximately 40–50 m of depth in clear tropical waters but more
realistically b10–20 m in temperate waters). Bathymetric LiDAR is particularly useful for obtaining soundings in areas too
shallow for MBES, and yet too deep for standard terrestrial surveying methods. Airborne multispectral methods, such as CASI
(Compact Airborne Spectrographic Imager), have also contributed to wide-scale mapping of large intertidal and shallow subtidal
areas and are able to discriminate various types of vegetation and substrata.
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possible to observe benthic sources of heterogeneity at the larger scales
with sufficient resolution. This deficiency is likely to remain a significant
hindrance for spatially extrapolating benthic observations andwill limit
the scale of assessment to regional levels. Despite this, remote sensing
techniques will enhance several phases within spatial extrapolation,
such as:

1) Accurate and objective representation of sources of heterogeneity,
across broad spatial scales, within ecologically relevant predictor
variables (Fig. 3 and Table 8).

2) High-frequency sampling that enables cost-effective trend analysis
and temporal prediction.

3) A direct assessment of variables representing the status of the
environmental.

4) A cost-effective means of obtaining many broad-scale variables e.g.
sea surface temperature, when compared with traditional sampling
techniques obtaining similar levels of coverage.

Many of these benefits are often gained at the expense of traits com-
mon to traditionalmethods of sampling, i.e. certainty, specificity and the
direct detection of the primary variables of interest. It is, therefore, ap-
parent that information from traditional sampling and remote sensing
must be combined to generate the best results from the extrapolative
process. A framework is provided below for the integration of remotely
sensed data within the extrapolative process.

5. Conclusions and recommendations

There has been a sustained scientific effort to examine environmen-
tal and ecological phenomena at larger, and typically, more appropriate
spatial scales. The marine policy community has also driven this by re-
quiring assessments of environmental status at larger spatial scales.
For example, the EU Water Framework Directive and the Marine Strat-
egy Framework Directive (2008/56/EC) require sub-regional and re-
gional assessments of status (Borja et al., 2013a, b). Similarly, the US
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CleanWater Act and Oceans Act requires large-scale assessments of en-
vironmental quality (US Congress, 2002; Crowder et al., 2006). The chal-
lenge is compounded as themarine environment is a complexmosaic of
activities, each changing the environmental status within a homoge-
neous system, interspersed by areas where no impacts occur (Boyes et
al., 2016). In turn, governance requires the environmental status to be
summarised across that heterogeneous area. Extrapolation is therefore
required for both observing, assessing, interpreting and predicting eco-
logical phenomena at their appropriate scales and deliveringmarine re-
search and policy objectives.

If undertaken incorrectly, extrapolation can introduce substantial
error and bias that ultimately undermines assessment and hence ex-
trapolation must be reliable and repeatable. The basic framework for
the extrapolation process provided by Miller et al. (2004) has been ex-
panded here to help guide, formalise and make more objective these
calculations. In support, remote sensing techniques are overcoming
some of the limitations associated with traditional techniques and
now make a significant contribution to the observation of marine sys-
tems at previously unimaginable spatial scales. The variety of valuable
remote sensing techniques for the extrapolative process described
here and the framework adapted to show how these data sets could
be used to support extrapolation.

The adoption and greater use of existing imaging data sources are
likely to provide a cost-effective approach for undertaking necessary as-
sessments of environmental status and helping to overcome the moni-
toring requirement paradox highlighted by Borja and Elliott (2013) –
that more assessments are required but within decreasing resources
for making those assessments. The concurrent development of spatial
statistics within flexible platforms such as geographic information sys-
tems (GIS) has also greatly facilitated theuptake and analysis of imaging
datasets and its use in extrapolation (Miller et al., 2004).

Futurework is needed on (i) how to delineate units of heterogeneity
in a meaningfully and consistently manner, (ii) the best way to sample
response variables within units of heterogeneity, and (iii) capture
sing techniques in supporting effective extrapolation across multiple
0.1016/j.marpolbul.2017.01.028
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Table 8
Common sources of heterogeneity detectable with remote sensing techniques.

Class Source of heterogeneity Predictor variable for the source of heterogeneity Remote sensing technique

Physical Temperature Sea surface temperature Satellite-derived imagery
Bathymetry Broad-scale bathymetry (with derived variables) Satellite-derived altimetry

Shallow water bathymetry and habitat class (with derived variables) Satellite-derived bathymetry
Bathymetry (with derived variables) Acoustic mapping of the benthos (e.g. MBES)
Elevation and bathymetry (with derived variables) LiDAR

Sediment class Coarse sediment class Satellite-derived seabed features
Surficial sediments/texture Acoustic mapping of the benthos (e.g. MBES)
Identity and cover of broad-scale substrata Underwater stills photography and video transects
Identity and cover/abundance of substrata and epifaunal species In situ reflectance spectroscopy for benthic

mapping
Identity and cover/abundance of substrata and specific species Airborne multispectral methods

Physical disturbance Burrow structure/bioturbated area Computed tomography (CT)
Processes within burrow and bioturbated sediments Positron Emission Tomography (PET)
Bioturbation activity and redox depth Sediment Profile Imaging (SPI)
Wave and current energy Satellite-derived altimetry and mounted synthetic

aperture radars
Light penetration/turbidity Wavelength reflectance and coefficient of light attenuation (KDPAR) Satellite-derived ocean colour

Chemical Gas saturation Processes within burrow and bioturbated sediments Oxygen micro-imaging
Salinity Radiometric penetration depth (sea surface salinity) Satellite-derived imagery
Organic inputs Reflectance at 555 and 510 nm for particulate backscatter and

particulate organic matter.
Satellite-derived imagery

Biological Distribution and dispersal Automated particle tracking Split-beam acoustic target tracking
Classification and enumeration of planktonic patchiness In situ plankton analysers with in-flow imaging

and image analysis
Distribution of large, mid-water material Water column data from sonar backscatter
Extent, density and distribution of specific species Underwater stills photography and video transects
Cover and distribution of specific species Acoustic mapping of the benthos
Cover and distribution of specific species In situ reflectance spectroscopy for benthic

mapping
Classification and distribution of pelagic material Wideband sonars (single-beam)
Cover and distribution of intertidal and shallow subtidal
species and habitats

Airborne multispectral methods

Distribution and abundance of planktonic communities Satellite-derived ocean colour
Identity, distribution and abundance of colonies and certain species Satellites imagery (direct animal detection)
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uncertainty within extrapolation. Despite these difficulties, extrapola-
tion remains a critical component for the appropriate reporting of eco-
logical phenomena and environmental status and remote sensing
techniques are essential for supporting this process. Alternative pro-
cesses of scaling, such as lumping, are unlikely to provide values or sur-
faces of sufficient accuracy or resolution to be effective for ecological or
assessment purposes. As such, scientists and managers of the marine
environment working on related issues are encouraged to adopt and
support the use of remote sensing techniques within their work and es-
pecially when extrapolating observations.
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