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ARTICLE INFO ABSTRACT

The work presented here aims at comparing monitoring of S-metolachlor, the major pesticide in use in the
Arcachon Bay (South West of France, transitional coastal area), by chemical analysis (monthly passive sampling)
POCIS and contaminant dissipation modeling from sources (Mars-2D model). The global strategy consisted in i)

Keywords:
Passive sampling

Mars-2D identifying the major sources of S-metolachlor to the Bay, ii) monitoring these sources for 12 months, and iii)
Contaminant . . . . -

Monitoring comparing modeled data in the Bay based on measured inputs, to chemical measurements made inside the Bay
Coastal area along with the 12-month source monitoring. Results first showed that the major S-metolachlor surface inputs to
Pesticides the Arcachon Bay are mainly from one single source. Modeled and measured data were in good agreement at 5

sites in the Bay, both in terms of concentration range and seasonal trends. Modeling thus offers a cost-effective
solution for monitoring contaminants in transitional waters, overcoming in addition the technical limitations for
measuring pg L~ or lower levels in coastal waters. However, we highlighted that secondary sources may affect

S-metolachlor

accuracy at local level.

1. Introduction

The need for monitoring tools in natural water increases with reg-
ulation (Allan et al., 2006; Poulier et al., 2014). However, monitoring
networks are often expensive when they aim at covering the entire area
of interest. Among the targeted organic contaminants, pesticides are
largely represented in priority pollutant lists because of their toxicity
and ubiquitous presence (e.g., half of the Water Framework Directive,
2000/60/EC). Remarkably, herbicides exhibit the highest sales volumes
(e.g., glyphosate, S-metolachlor), and are thus quantified in surface
waters at higher levels than other pesticides (Comoretto et al., 2007).
These substances may reach coastal water from freshwater inputs and
affect organisms that were not initially targeted. For example, mea-
surable biological effect of S-metolachlor on marine organisms vary
between levels higher than mg L~! for microalgae growth, photo-
synthetic efficiency or lipid content (Ebenezer and Ki, 2013; Coquillé
et al., 2018), to environmentally realistic sub ugL~" levels causing
spermio and embryotoxicity on Crassostrea gigas (Mai et al., 2013).
Passive sampling is increasingly developed for a wide range of con-
taminants, because it provides more accurate data, e.g., time-weighted
average concentrations, freely dissolved contamination fraction, high
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preconcentration rates decreasing limits of detection (LD). It offers at-
tractive advantages when considering how challenging surface water
(and coastal water more importantly) monitoring is, due to high con-
centration variability over time and analytical difficulties inherent to
trace level measurements in complex matrices. The Polar Organic
Chemical Integrative Sampler (POCIS) was introduced by Alvarez et al.
(2004) for the sampling of medium polar and polar organic con-
taminants (e.g., pesticides, pharmaceuticals), and is therefore a sampler
of choice for the study of emerging pesticides, although recent devel-
opments tend to improve the quantitative ability of such adsorption
based passive samplers (Chen et al., 2013; Belles et al., 2017; Fauvelle
et al., 2017).

The work presented here aims at monitoring S-metolachlor with
POCIS in the Arcachon Bay and its main tributaries, in order to get a
comprehensive overview of sources and transfer from freshwater to
seawater. Contamination modeling using Mars-2D (2-dimensions
Hydrodynamical Model for Applications at Regional Scale) adapted to
Arcachon Bay (Plus et al., 2009) is also assessed as a monitoring tool.
The monitoring strategy we propose is based on three consecutive steps,
i) preliminary mapping for sources identification during 4 months (03/
22/2010 to 07/17/2010), ii) actual monitoring of the sources and the
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Fig. 1. Localization of tributaries (right list) and sampling stations inside the Arcachon Bay (left list). Map from French National Institute of Geographic and Forestry

Information.

Bay by POCIS for the consecutive 12 months (07/17/2010 to 07/21/
2011), iii) comparing MARS-2D modeled data from sources inside the
Bay to the chemical measurements.

2. Methods
2.1. Sampling and chemical analysis

Arcachon Bay is a 180 km? mesotidal lagoon on the South Atlantic
coast of France (44°40’N, 1°10’W), connected to the Ocean by a large
channel allowing important seawater exchanges (average of 0.4 10'2L
at each tide, i.e., 50% of the total volume). Its maximum depth in
channels is 20 m. The area supports several activities in the Bay itself or
its watershed (e.g., oyster farming, agriculture, aquatic recreational
activities) that present conflicts of practice, to some extent related to
the water contamination induced by any of these activities (Gamain
et al., 2017). Five sampling stations inside the Bay together with the six
main tributaries were selected for monthly sampling (Fig. 1). All ana-
lytical procedures are described by Belles et al. (2014) for POCIS ex-
posed inside the Bay, and by Fauvelle et al. (2012) for POCIS exposed in
the Bay tributaries. As S-metolachlor is exclusively used for agricultural
purposes, we assumed that sources were located only at freshwater
input sites. Therefore, the six main tributaries were selected in term of
flowrate (Fig. 1, > 90% total river inputs, Auby et al., 1994) and
monitored by POCIS immersed for four consecutive periods of 4 weeks
from 03/22/2010 to 07/17/2010 for mapping the main sources of S-
metolachlor to the Bay (Roubeix et al., 2012). Afterwards, 5 sampling
stations inside the Bay (Fig. 1) together with the main sources pre-
viously identified were monitored the same way from 07/17/2010 to
07/21/2011 to perform the modeling exercise.

2.2. MARS-2D model

MARS is a hydrodynamical model that solves fluid mechanics
equations commonly known as Navier- Stokes (Lazure and Dumas,
2008). This model has been previously applied to the Arcachon Bay
(Plus et al., 2009), assuming the horizontal current does not vary sig-
nificantly with depth and that the vertical current acceleration is neg-
ligible when compared to gravitational acceleration. Indeed, in this bay
the water column is well-mixed all along the year, due to the strong
tidal currents, the somewhat shallow depths and the low freshwater
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inputs when compared to the oscillating volume (Plus et al., 2009). The
model geographical extension is 44°21-44°54N and 0°57-1°27 W,
horizontal resolution is 235 x 235m (squared cells), and time step
varies between 60 and 200 s. The model also accommodates with wet/
dry zones and has been validated against tide gauges, acoustic Doppler
current profiler and salinity measurements. The model used, at its open
boundaries, a tide obtained from the Legos model (FES2004, Lyard
et al., 2006; decimetric precision close to the coasts) and a meteor-
ological forcing obtained from the ARPEGE model (meteo France,
Déqué and Piedelievre, 1995). In addition, the model incorporates
pooled bathymetric data provided by L'Yavanc (1995), the Gironde
maritime navigation service and the Marine Hydrographic and Ocea-
nographic Service (SHOM). For our purpose, it was hypothesized that i)
vertical contaminant concentration heterogeneity is negligible, and ii)
S-metolachlor is conservative (no degradation, no export to other
compartments such as sediment or biota) under the environmental
conditions of our study due to its high solubility and polarity (solubility
0.5gL~1, log Koy = 3.1). The model goodness-of-fit (observed vs.
predicted values) on the variable ‘Salinity’ gives a good idea on the
capacity of the model to reproduce passive tracer concentrations in the
bay: the calculated root mean squared deviation of simulated salinity is
2.25, which corresponds to a 7.4% error on average (Plus et al., 2009).

3. Results and discussion
3.1. Identification and monitoring of sources

Leyre river was found to be the main provider of S-metolachlor to
the Bay over the preliminary concentration mapping step (03/22/2010
to 07/17/2010, Table 1). It had by far the highest flow and was the
most contaminated sites (Table 1). Thus, it was considered thereafter as
the only source of S-metolachlor to the Bay, i.e., only the Leyre river
inputs were considered in MARS-2D model. S-metolachlor concentra-
tion in the Leyre river was then measured in the range of 10-80ngL ™!
during the actual modeling exercise (07/17/2010 to 07/21/2011,
Fig. 2). The maximum concentration in this tributary occurred together
with the maximum stream flow, resulting in an estimated massive flux
of S-metolachlor towards the Bay during winter time (up to an average
of 200 g day~* over the 11/30/2010-01,/02/2011 period). This major
flux was grown by the unconventional rainfall behavior in 2010 (twice
higher rainfall in November compared to the seasonal norms). Linking
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Table 1
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S-metolachlor concentration (ng L™ ') in the main tributaries of Arcachon Bay measured by POCIS over the preliminary contamination mapping period (03/22/2010
to 07/17/2010). Method relative standard deviation is 23% and limit of detection (LD) is considered 1.5ng L™~ ! for POCIS exposed for 1 month in freshwater (Lissalde
et al., 2011). Tributaries flow data are from Auby et al., 1994 over the 1989-1993 period.

Sampler exposure period Unit Leyre Canal des Etangs Canal des Landes Cires Lanton Ponteils
03/22/2010 04/19/2010 r1gL71 44 7 19 43 63 <LD
04/19/2010 05/17/2010 nglL~! 51 <L1D 16 97 148 <LD
05/17/2010 06/17/2010 ngL™! 139 < LD < LD < 1D < LD < LD
06/17/2010 07/17/2010 ngL71 27 <LD <LD 30 105 <LD
Stream flow/Leyre flow - 1.0 0.26 0.03 0.04 0.02 0.02

this 200 g day ~ ! S-metolachlor flux to the total volume (~0.8 10'%L)
and the residence time of freshwater in the Bay (10 days for 120 m®s ™!
and 24 days for 10 m®s™! freshwater flow, De Wit et al., 2005, extra-
polated to 22 days in our case, with a maximum flow of 28 m®s~! in
November 2010, Fig. 2), we can roughly estimate a maximum averaged
S-metolachlor concentration inside the Bay of 5ng L™ !. It is interesting
to note that the maximum stream concentration measured in winter
does not match the S-metolachlor application period, generally occur-
ring in April-May for maize cultivation in this area. This finding sug-
gests an unconventional fate of S-metolachlor from field application to
its transfer to the receptive river. Indeed, because of the permeability of
the sandy soils of the watershed surrounding the Arcachon Bay, the
watercourses are more comparable to groundwater drains than to re-
ceptacles of the runoff water (Rimmelin et al., 1998). Therefore, the lag
time observed in river contamination could be attributed to a tem-
porary contaminant storage in superficial groundwater prior to dis-
charge in rivers when groundwater table level is high enough to be
drained by the neighboring river.

3.2. Modeled versus measured concentrations in the bay

The modeled data inside the Bay at different points were in good
agreement with measured concentrations (Fig. 3) both in terms of
concentration range and seasonal trend. The maximum concentrations
modeled at the 5 sites are also in the range of that estimated roughly in
the previous section (i.e., 5ng L™1). The dilution gradient between the
source (Leyre, Fig. 1) and the open water (Arguin, Fig. 1) is also well
represented by the modeled data at the various sampling stations. Data
measured at Arguin site suffer from high dispersion, in relation with
low levels quantified, close to LD. Although modeled and measured
trends are roughly similar, we obtained an almost systematic under-
estimation of data modeled compared to the one measured. As

highlighted in Section 3.1, groundwater is probably a crucial com-
partment for contaminants fate. Deborde et al. (2008) showed that
groundwater inputs to the Bay are between 2.7 and 5.3% of the rivers
freshwater inputs, which could be negligible at the global scale, but
might be of importance at the local scale. Unfortunately, we don't have
any chemical monitoring of groundwaters around the Bay to discuss
this hypothesis in more details. Moreover, the substantial under-
estimation observed at Balise 9 might highlight a secondary source on
the northern side of the Bay. Canal des Etangs has a significant flow
(26% that of Leyre, Table 1) and might affect S-metolachlor con-
centration at Balise 9, but the concentrations found at that site
were < LD most of the time, with occasional detection at levels always
below 7 ng L.~ . Other issues could arise when trying to implement such
an approach for more hydrophobic contaminants, which might have
higher affinity for suspended matter, and would therefore not be de-
tectable in the dissolved fraction of the water column. In light of a
previous study (Mai et al., 2013), implications of these results for the
local economy of Arcachon Bay could be of importance, since most of
the oyster farms are located close to the Leyre river mouth where S-
metolachlor concentrations are the highest, eventually implying
spermio and embryotoxicity.

Thus, the model outputs have to be considered with caution despite
their ability to predict concentrations ranges and seasonal trends, in
good agreement with measurements at different points of the Bay. In
fact, we speculate the need for more complexity in the behavior mod-
eling of the simulated tracer as well as for more accuracy in the esti-
mation of sources. This type of monitoring strategy would however be
of interest given the drastic reduction of analytical costs both in terms
of number of samples required, and analytical challenges for quanti-
fying low pg L~ levels. In addition, it offers the opportunity to get a
comprehensive and high spatial resolution overview of contaminants
dispersion.
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Fig. 2. Concentration of S-metolachlor and flow of Leyre river over the modeling exercise period (07/17/2010 to 07/21/2011). Method relative standard deviation is
23% and LD is considered 1.5 ng L~ for POCIS exposed for 1 month in freshwater (Lissalde et al., 2011).
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