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One key pitfall in diffusionmagnetic resonance imaging (dMRI) clinical neuroimaging research is the challenge of
understanding and interpreting the results of a complex analysis pipeline. The sophisticated algorithms
employed by the analysis software, combinedwith the relatively non-specific nature ofmany diffusionmeasure-
ments, lead to challenges in interpretation of the results. This paper is aimed at an intended audience of clinical
researchers who are learning about dMRI or trying to interpret dMRI results, and whomay be wondering “Does
dMRI tell us anything about thewhitematter?”Wepresent a critical reviewof dMRImethods andmeasures used
in clinical neuroimaging research, focusing on the most commonly used analysis methods and the most com-
monly reported measures. We describe important pitfalls in every section, and provide extensive references
for the reader interested in more detail.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Diffusion magnetic resonance imaging (dMRI) is powerful. It mea-
sures microstructural properties of the brain and it enables the study
of the living brain's connections. The popularity of dMRI in clinical
research has grown tremendously since its introduction (Le Bihan
et al., 1986) and since the development of the diffusion tensor model
(Basser et al., 1994a,b). In fact, the number of publications related to
the phrase “diffusion MRI” has increased from yearly totals in the
hundreds in the early 1990s to over 25,000 publications in 2013 alone
(Fig. 1).

However, despite the wealth of publications, performing clinical re-
search using dMRI is absolutely not straightforward. There is a plethora
of available processing and analysis methods for dMRI, includingmulti-
ple software platforms, data models, algorithms, and philosophies.
Complicating the picture further, changes in the most commonly mea-
sured quantities are not specific to a particular brain pathology. It
is clear we can measure statistically significant brain changes with
dMRI, but what do they mean? Today, the chief pitfall in applying
dMRI to clinical research may well be the challenge of understanding
and interpreting its meaning.

We note that other review articles have covered the basics of dMRI
in depth (Le Bihan and Johansen-Berg, 2012) and have given detailed
nell).
technical information on pitfalls that may occur (Jones and Cercignani,
2010; Jones et al., 2013). Our goal is not to duplicate theseworks; rather
we intend to give a brief introductory overview of key concepts, with
pointers to references that have more technical detail. Our experience
with researchers new to dMRI is that they do not realize initially that
the results cannot be compared across studies without knowledge of
themethods employed in each study. Thuswe focus especially on giving
intuition for how methods applied in dMRI studies actually work, and
their pitfalls or caveats, to give context for the clinical researcher begin-
ning to read about and/or apply dMRI analyses. We assume the reader
has some basic familiarity with dMRI, such as that given in an introduc-
tion (O'Donnell and Westin, 2011).

Readers interested in diffusion MRI analysis will benefit by starting
with an existing pipeline. These pipelines may not overcome all pitfalls
but are a good starting point. Example pipelines are available in FSL
(http://fsl.fmrib.ox.ac.uk/), including preprocessing, motion correction,
and voxelwise statistical analysis; Slicer (http://slicer.org/) including
preprocessing (via DTIPrep extension), DTI tractography, and two-
tensor tractography (via UKFTractography extension); and Enigma
(http://enigma.ini.usc.edu) for diffusion MRI and genetics studies.

1.1. Roadmap

In the rest of this article, we first give very brief overviews of dMRI
acquisition and reconstruction, followed by descriptions of many popu-
lar analysis methods and measurements. In each section we include
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Fig. 1. The impact of diffusion MRI on clinical research has resulted in an enormous
increase in the number of publications per year from 1986 to 2013. For reference, selected
research milestones in the field are shown in italics above their year of publication. To
create this graph, Google Scholar searches (Google, 2014) were performed on the phrase
“diffusionMRI” limiting the date range to single years, and the total publication counts per
year were recorded. One imagines that the total for 2013 will increase during the current
year of 2014 as more papers are found by Google Scholar.
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potential pitfalls. We conclude with a discussion of our original ques-
tion, “Does dMRI tell us anything about the white matter?”

2. dMRI acquisition: A brief overview

Diffusion magnetic resonance spectroscopy was invented in the
1960s (Stejskal and Tanner, 1965), later to be generalized from spec-
troscopy to imaging (Le Bihan et al., 1986) in the late 1980s, making
it a potential clinical tool. The underlying principles of dMRI and the
history of its first 25 years have been reviewed in detail (Le Bihan and
Johansen-Berg, 2012). In short, water molecules serve as a probe of
tissue structure at the micron level. Oriented tissues, such as white
matter fiber tracts or heart muscle, affect the diffusion of water in a
measurable way. In the brain, faster diffusion occurs along a fiber tract
than perpendicular to it, giving rise to diffusion anisotropy, and enabling
measurement of properties of the brain's connections and microstruc-
ture in vivo.

By applying magnetic field gradients such that signal is lost when
water molecules diffuse along the gradient, a diffusion-weighted
image (DWI) is acquired. The length of the diffusion experiment is
typically a few tens of milliseconds (preferably b100 ms), in which
water molecules can displace up to a few tens of microns. To measure
the shape of water diffusion in three dimensions, many DWIs are
acquired with magnetic field gradients of different orientations, often
distributed evenly on a sphere (Jones et al., 1999a), and potentially
with several strengths corresponding to several b-values as in multi-
shell or diffusion spectrum imaging (Wedeen et al., 2005). Diffusion is
often calculated relative to a baseline or B0 image that is not sensitized
to diffusion. The diffusion-weighted and baseline images are then fit to
a diffusion or fiber model for analysis. A standard echo-planar imaging
(EPI) DTI acquisition (b-value near 1000 and 6–64 directions, for
example) is available on most clinical scanners. Currently, acquisitions
with multiple b-values and high numbers of gradient directions are
not widely available and are limited to research protocols.

2.1. Pitfalls

A critical review with very detailed information on acquisition
choices and tradeoffs, as well as data processing for artifact removal, is
available (Jones et al., 2013). Information on dMRI acquisition pitfalls,
including distortions due to eddy currents and magnetic susceptibility
effects, is available in reviews (Basser and Jones, 2002; Le Bihan et al.,
2006). The various distortions can complicate image alignment be-
tweendMRI and otherMRI acquisitions. Additionally, since the informa-
tion in diffusion imaging is contained in multiple DWIs, it is important
to correct for possible artifactual differences between these images,
such as head motion, that may cause spurious group differences
(Yendiki et al., 2014). To ameliorate eddy current distortions and head
motion, often an image registration approach is applied where all
DWIs are affinely aligned to the baseline image. Susceptibility effects
may also be corrected in software, especially if additional scanning
information is available, such as a field map that measures the strength
of the main magnetic field, or if the acquisition has two opposite phase
encode directions (Andersson et al., 2003). The results of these two
strategies are visually compared in Jones and Cercignani (2010). A
book chapter reviewing possible corrections for these artifacts is avail-
able (Andersson and Skare, 2010).

Not all motion artifacts can be corrected using post-processing
methods, however. For example, motion while the image is being
acquired will cause artifacts such as signal drops, blurring and ghost-
ing that go beyond displacing the image in space. Such motion
artifacts could also be introduced by pulsation, which cannot be
avoided bymaking sure the patient does not move. There are special-
ized sequences that are gated to the cardiac cycle, however cardiac
gating complicates the acquisition and prolongs it, and is not com-
monly used.

Since not all artifacts can be identified or corrected by automatic
tools, it is still considered good practice to assess the quality of all
DWIs visually by a trained rater that is familiar with the different
types of artifacts, and whether they can be corrected.
3. Reconstruction: Mathematical models for dMRI

At each voxel, traditionally some diffusion or fiber model is fit to the
diffusion measurements. The most popular is the diffusion tensor (DTI)
whose major eigenvector aligns with the principal diffusion direction,
assumed to represent the underlying tract orientation (Fig. 2). For a
review of DTI acquisition and processing see Le Bihan et al. (2001).
The tensor model is able to represent just one fiber tract orientation
per voxel, an anatomical implausibility in much, if not most of the
brain (Tuch et al., 2002). This limitation has spurred a large body of re-
search into higher-order and multiple-fiber models including spherical
harmonics, multiple tensor models, ball-and-sticks models, orientation
distribution functions, and more. See for example, selected methods
(Tournier et al., 2004; Tuch, 2004; Wedeen et al., 2005; Behrens et al.,
2007; Malcolm et al., 2010) and reviews covering the topic (Alexander,
2005; Jones et al., 2013).
3.1. Pitfalls

The DTI model can be fit to data with a single b-value near 1000 and
aminimumof 6 (but today generally 20 ormore) unique gradient direc-
tions. Acquisition schemes that are sufficient for the estimation of DTI
are currently available on most clinical scanners. The length of the
scan depends on thenumber of themeasured gradients,where themin-
imal acquisition would require 1–2 min of a scan, and more robust DTI
acquisitions could take 15 min or more. While longer scans provide
more information, they are also more likely to cause increased discom-
fort to the subject, which in turn increases motion artifacts. Higher-
order models have more stringent requirements for the DWIs (higher
number of gradient directions and possibly multiple b-values), and
often require altering the existing DTI protocols, as well as extensive
additional post-processing steps.
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Fig. 2. A visual example illustrating the diffusion tensor model and the major concepts of diffusion anisotropy, fiber tracking or tractography, and eigenvectors and eigenvalues. A fiber
trajectory from tractography (middle) is shown as a thin black line and shaded in gray, while selected diffusion tensors along it are displayed as ellipsoids and colored according to
fractional anisotropy (FA). High (blue), medium (yellow), and low (red) FA tensors may be seen. FA values range from 0.1 to 0.8 in this small dataset. Three example tensors are
shown in more detail with eigenvectors drawn in red. The eigenvectors form an orthogonal coordinate system and correspond to the axes of the ellipsoids. Each eigenvector is scaled
proportional to the square root of the corresponding eigenvalue. The eigenvector corresponding to the largest eigenvalue was followed during fiber tracking and is therefore tangent
to the fiber from tractography. Equations describing the relative relationships of the eigenvalues are shown for each zoomed tensor. The tractography and diffusion ellipsoid rendering
was performed in 3D Slicer (www.slicer.org).
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4. dMRI scalar measurements: Anisotropies and more

Diffusion anisotropy enables modeling of the oriented cellular struc-
tures in brain tissue. Diffusion anisotropy in the brain is causedmainly by
cellular membranes, with some contribution from myelin, as described
in a thorough review that also discusses diffusion anisotropy's history
and complex relationship to pathology (Beaulieu, 2002).

The most commonly reported value in clinical studies, the fractional
anisotropy or FA (Basser and Pierpaoli, 1996), measures how different
the ellipsoidal shape of the diffusion tensor is from that of a sphere.
Other anisotropy measures have been proposed for the tensor (Westin
et al., 2002) and for many flavors of higher-order models. The other
commonly reported value is the mean diffusivity (MD), equivalent to
one-third of the trace of the tensor (the sum of its eigenvalues). Many
DTI reviews describe these measures (Le Bihan et al., 2001; Jellison
et al., 2004). Most clinical research thus far has used the FA, MD, and/
or other scalar measures, as opposed to studying the entire tensor,
fiber model, or diffusion model.

4.1. Pitfalls

Interpretation of changes in scalar measurements is complex due to
their non-specificity. For example, many factors (e.g. cell death, edema,
gliosis, inflammation, change in myelination, increase in connectivity of
crossing fibers, increase in extracellular or intracellular water, etc.) may
cause changes in FA. Thus the common description of FA as “white
matter integrity” is a misnomer. Rather, FA is ameasure that is sensitive
to neuropathology in its many forms, as well as to local changes or ana-
tomical differences in connectivity. Reviews that discuss the topic of
non-specificity of FA include Assaf and Pasternak (2008), Le Bihan and
Johansen-Berg (2012), and Jones et al. (2013). The MD also suffers
from non-specificity: it is affected by tissue geometry and has been
shown to be lower in areas of complex fiber configuration (Vos et al.,
2012).

Much of the difficulty in interpretation of dMRI measures is funda-
mentally caused by the fact that the scale at which diffusion is measured
with dMRI (mm scale) ismuch larger than the size scale of the individual
axons and cells that are probed by the diffusing water (micron scale).
Thus what is measured is a voxel-averaged quantity that must be com-
putationally modeled to extract any biologically relevant parameters.
This is a difficult inverse problem. For intuition into the problem, a
table of size scales pertaining to dMRImeasurements in the brain is avail-
able (O'Donnell and Westin, 2011).

In addition to the non-specificity issue, the analysis of FA and MD is
not theoretically ideal, as the FA and MD measures are not mathemati-
cally orthogonal. This means that changes in FA are potentially reflected
as changes inMD and vice versa. Sets of orthogonalmeasures have been
proposed, including the mode that differentiates between “cigar” and
“pancake” tensor shapes, unlike FA that is high in both shapes (Ennis
and Kindlmann, 2006). Use of axial and radial diffusivities or individual
diffusivities (eigenvalues) in addition to FA may also clarify the picture
to some extent (Song et al., 2003; Alexander et al., 2007; Assaf and
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Pasternak, 2008). However, asmentioned above, all DTI derived param-
eters, including the individual diffusivities, represent averaging over
many cellular domains, and are therefore non-specific.

There are many practical challenges in conducting a scalarmeasure-
ment based study. Statistically, it is difficult to compare dMRI measures
across scanners (or even within-scanner if, for example, a software up-
grade has affected the dMRI acquisition). Repeated scans on two
scanners measured the coefficient of variation (CV = standard devia-
tion/average) and found that within-scanner FA and trace measures
were reproducible (CV of 1.9% and 2.6%, respectively) but across-
scanner measures were biased (CV of 4.5% and 7.5%, respectively)
(Pfefferbaum et al., 2003). A more recent study found that inter-site
bias in FA could be corrected with a global scaling factor (Vollmar
et al., 2010). The same study provided a useful table of results compar-
ing studies on DTI test–retest reliability in both 1.5 T and 3.0 T scanners
(Vollmar et al., 2010).

Furthermore, while the trace and MD vary little within the brain,
the FA is highly spatially variable (high in tract centers and abruptly
dropping on tract borders, areas near CSF, or voxels where tracts
cross). This complicates its analysis across subjects (see Section 5 for
more detail). Additionally, when cerebrospinal fluid (CSF) and white
matter are both present in a voxel, CSF contamination can bias results.
This may be corrected with mathematical modeling that includes an
isotropic or free water component (Pasternak et al., 2009; Metzler-
Baddeley et al., 2012). The amount of free water in white matter may
change depending on age or pathology, and eliminating its effect can
increase the specificity of the DTI measures to changes that occur in
the tissue (Pasternak et al., 2012; Rathi et al., 2014).

New approaches under investigation aim to disambiguate mea-
surements from dMRI by calculating more biologically relevant tissue
parameter(s), such as free water, axon diameters, disambiguated
anisotropies, and more (Assaf and Basser, 2005; Assaf et al., 2008;
Shemesh et al., 2010). Often, this requires advanced scanningparadigms
aswell as novel computationalmethods. Another possibility for improv-
ing specificity is to combine dMRI resultswith other imagingmodalities,
such as magnetic resonance spectroscopy, magnetization transfer,
positron emission tomography, or functional MRI (Mandl et al., 2010;
Du et al., 2013).
5. dMRI studies: Methods that analyze voxels

Once a parameter of interest has been calculated, most commonly
FA and/or MD, statistical analyses are applied across the group.

One popular style of analysis performs statistics at the voxel level,
requiring image registration to align or normalize all subjects' data
to a common coordinate system. This paradigm is called voxel-based
morphometry or VBM (Ashburner and Friston, 2000). The VBM strategy
analyzes the whole brain without any a priori hypothesis needed as to
the location of an effect, and it can be performed automatically, thus it
is an extremely popular technique.

Another popular analysis style can be applied when a hypothesis
about the location of an effect is available. A region of interest (ROI)
is defined, and data are measured (usually averaged) within the ROI.
The ROI definition may be done via image segmentation, however in
dMRI, ROIs are often defined using tractography (see Sections 6
and 7 for more detail on tractography and tractography-based
measurements).

A voxel-based approach designed to address issues specific to dMRI
is called tract-based spatial statistics or TBSS (Smith et al., 2006).
Despite the frequent misconception in researchers new to dMRI, the
TBSS approach actually analyses data at selected voxel locations, not in
“tracts” from tractography. The difference between TBSS and standard
VBM is that TBSS analyzes only high FA data from each subject that is
likely to correspond to the core of a tract, while avoiding low FA values
that are not considered to be the core.
5.1. Pitfalls

Themain assumption underlying VBM is that the normalization will
place corresponding anatomy at the same location across subjects.
Precise voxelwise alignment of FA across subjects is challenging due to
its high spatial variability and to CSF contamination near ventricles. In
VBM, the challenge of anatomical variability is often addressed by
smoothing (spatial averaging) to “spread out” the data, bringing it into
better spatial correspondence while also improving the Gaussianity of
the voxelwise distributions of data across subjects. However, VBM
may not give consistent results across dMRI studies. FA changes in
VBM studies are highly dependent on the size of the smoothing kernel
(Jones et al., 2005), and reported coordinates of significant difference
in VBM of FA in schizophrenia are extremely inconsistent across studies
(Melonakos et al., 2011).

TBSS was developed to address the difficult FA image registra-
tion problem, where the “cores” of the white matter tracts do not
align sufficiently after image registration (Smith et al., 2006). Im-
proved image registration is needed not only to identify corre-
sponding anatomical regions across subjects, but also to attempt
to generate results based on microstructural, not macrostructural,
brain changes. If the image registration is not adequate, even
though FA measures microstructural tissue properties in individual
subjects, groupwise changes in FA can be caused bymacrostructural
changes (such as an increase in ventricle size or change in tract
thickness).

Thus the TBSS method limits VBM analyses to the likely cores of
major fiber tracts, i.e. regions of high FA. To do this, first an analysis
region is calculated as a groupwise white matter skeleton, a surface
of high FA voxels from a group average FA map. Then the TBSS meth-
od uses a heuristic to find and analyze high FA values for each sub-
ject. The heuristic is a local search to find a maximal FA voxel by
looking in directions perpendicular to the skeleton. Using TBSS,
high FA values may be found for analysis despite challenges in FA
registration. However it is not guaranteed that the FA values selected
for analysis at each skeleton voxel actually belong to the same ana-
tomical tract across all subjects. It has been shown that the FA vari-
ance interacts with the anatomy and the imaging matrix in TBSS
(Edden and Jones, 2011). Unsurprisingly, central structures are less
variable than peripheral structures in terms of FA variance, but
much more surprisingly, the rotation of the brain in the scanner af-
fects the skeleton thickness and therefore the local sensitivity to dif-
ferences (Edden and Jones, 2011).

All voxel-based analyses are heavily dependent on the image regis-
tration or normalization method employed. Methods for registration
of dMRI data have been compared (Park et al., 2003; Zhang et al.,
2007;Wang et al., 2011), demonstrating that high-dimensional normal-
ization and use of multiple channels/full tensor information is superior
to registration based on a single scalar value such as FA. However,
many studies are still performed with simpler registration methods
based for example on FA.

Finally, it should be noted that while the above mentioned methods
provide a statistic, a rigorous statistical analysis and hypothesis testing
are required for any inference. Similar to other imaging modalities,
familywise errors must be addressed due to the many statistical tests
(multiple comparisons) that are performed (one for each voxel)
(Nichols and Hayasaka, 2003). Currently, specialized statistical ap-
proaches designed for dMRI analysis are not widely available, with the
exception of FSL that includes a rigorous statistical analysis tuned for ap-
plication to thewhitematter skeleton results of TBSS. Other novel statis-
tical approaches include methods that steer away from conventional
group analysis, moving toward identification of abnormalities in an in-
dividual subject when compared to a group of normal controls. This is
important when the suspected pathology varies in its spatial location
between patients (White et al., 2009; Lipton et al., 2012; Bouix et al.,
2013).



Fig. 3. An example of single-tensor streamline tractography showing the corpus callosum (purple), arcuate fasciculus (pink), uncinate fasciculus (orange), and inferior longitudinal
fasciculus (green) tracts segmented with an atlas created by spectral clustering, using the methods described in O'Donnell and Westin (2007). The two views are from the left and
right sides of the brain. Some subtle differences can be seen across hemispheres, potentially due to anatomical differences and/or to properties of the data and computational pipeline.

Fig. 4. What should one call the computational output of an algorithm to estimate brain
connections? This survey of terminology used in papers related to dMRI tractography
in 2013 employs paper counts estimated by Google Scholar (y-axis). Searches were
performed with the words “diffusion” “MRI” and “tractography,” (leftmost bar) plus
additional terms (all other bars) to investigate their co-occurrence. In papers that relate
to dMRI tractography, the nouns “tract” and “fiber” seem to be winning, as they are
present in about 80% of papers, while their combination “fiber tract” is present in 19%.
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6. dMRI studies: Methods that trace connections

Tractography is the name given to any computational method that
attempts to reconstructwhitematterfiber tracts or “trace brain connec-
tions” based on dMRI data (Fig. 3). For DTI reviews that teach anatomy
of major white matter fiber tracts, see Jellison et al. (2004) and Catani
and Thiebaut de Schotten (2008). For a recent review on the field
of tractography and future directions, see Jbabdi and Johansen-Berg
(2011).

Accurately estimating the course of the brain's connections from
dMRI is a difficult technical problem, therefore many methods for
performing tractography have been developed. First introduced
in 1999 (Conturo et al., 1999; Jones et al., 1999b; Mori et al., 1999;
Weinstein et al., 1999; Basser et al., 2000), DTI streamline methods re-
peatedly follow the principal diffusion direction (the tensor's principal
eigenvector) with many small spatial steps, where each step is usually
1 mm or less. Some tractography methods use additional information
from the tensor to “continue through” regions of crossing fibers
(Westin et al., 2002; Lazar et al., 2003) that are not well represented
by the eigenvector. Probabilistic tractography techniques were then
developed (Behrens et al., 2003) to perform tracking by sampling
from distributions on fiber orientation, rather than by following
only the principal diffusion direction. Currently available flavors of
tractography methods, with examples given as citations, include deter-
ministic (Conturo et al., 1999; Jones et al., 1999b; Mori et al., 1999;
Weinstein et al., 1999; Basser et al., 2000), probabilistic (Behrens et al.,
2003; Friman et al., 2006), regularized (Poupon et al., 2000), geodesic
(O'Donnell et al., 2002), global (Jbabdi et al., 2007; Aganj et al., 2011;
Mangin et al., 2013), with a prior or an atlas (Hagler et al., 2009;
Yendiki et al., 2011), with many different models (Behrens et al.,
2007; Malcolm et al., 2010), in individual subject data (most studies),
and in population average data (Goodlett et al., 2009; Aganj et al.,
2011). Colorful tractography visualizations of the brain's connections
have even inspired art contests (http://www.neurobureau.org/).

Reviews are available that describe tractography methods in much
more detail (Jones, 2008; Jbabdi and Johansen-Berg, 2011; O'Donnell
andWestin, 2011) and discuss issues and impacts of tractography
(Johansen-Berg and Behrens, 2006).

6.1. Pitfalls

With the many available options, and newmethods under develop-
ment, it is difficult to choose a tractography method, or to compare
results across studies. Recent studies have assessed the quality of the
results of various tractography algorithms (Fillard et al., 2011; Bastiani
et al., 2012), generally concluding that more sophisticated models are
an improvement over the single tensor DTI model.
The nomenclature for tractography is confusing. The output of many
tractography methods is a set of trajectories, approximating brain con-
nections. Other methods output connection probabilities or strengths
that may be viewed as images. The output of tractography methods
may be referred to as trajectories, streamlines, tracts, fibers, tracks,
tractograms, or other similar names. However, the field seems to
be converging toward exclusive use of the words “tract” and “fiber”
(Fig. 4). Often the word “tract” is reserved for some anatomically plau-
sible connection comprised of many trajectories or of many voxels
with high connection strength, while the word “fiber” refers to some
computational result that is smaller, usually a single deterministic or
probabilistic streamline trajectory.

Tractography can be variable both within and across subjects.
Several studies have quantified its reproducibility on a within-subject
basis. The CV of tract volume (with probabilistic tractography) between
repeated scans of the same subject was found to be quite high, between
10% and 15% when the tract was seeded in DTI space (Heiervang et al.,
2006). Compared to tract volume, MD and FA had much lower CVs
(2–7%) when measured in tracts in repeated scans (Heiervang et al.,
2006).We note thatMD/tracewasmore reproducible than FA in repeat-
ed scans (Heiervang et al., 2006), likely due to MD's lower spatial vari-
ability within the brain parenchyma, thus its relative insensitivity to
the tract measurement region, compared to FA which is highly spatially
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variable due to crossing fibers in addition to any neuropathology.
However FA was more reproducible than MD across scanners
(Pfefferbaum et al., 2003). The selection of the tract itself may be an-
other source of variability: interactive tract selection protocols (of
deterministic streamline tractography) were shown to have reason-
able inter-rater reproducibility for FAmeasurement (in repeated analy-
ses of the same subject, not repeated scans) with CVs near 1% Wakana
et al. (2007).

Across-subject variability of tractography, or even entire tracts
that are absent, is another feature of tractography that may be
caused either by actual anatomical differences, or by various pitfalls.
“Absent” tracts can be meaningful and due to anatomical structure:
in 62.5% of subjects the arcuate fasciculus was present only in the
left hemisphere when using single-tensor streamline tractography
(Catani et al., 2007). However, this should be interpreted as an ana-
tomical asymmetry in the language-related arcuate fasciculus tract,
as opposed to a confirmation of its complete absence in the right
hemisphere in many healthy people. A small, thin arcuate, if present,
would likely be traceable with another combination of dMRI data
and tractography algorithm.

Anatomical errors in tractography are prevalent. For images illustrat-
ing “false-negative” (missing fibers) and “false-positive” (anatomically
incorrect) tractography, see Catani (2007) and O'Donnell and Westin
(2011). False-negative errors can be due to the measurement model,
such as the failure to trace lateral connections of the corticospinal tract
with the single-tensor model (Behrens et al., 2007; Jones, 2008; Qazi
et al., 2009; O'Donnell and Westin, 2011; Farquharson et al., 2013).
This phenomenon of “missing fibers” is due to “crossing fibers” that are
not modeled by DTI, a pitfall that has been discussed in detail (Jones,
2008). In addition to missing fibers, spurious false-positive trajectories
are produced that cross from one anatomical structure to another. This
occurs especially when using sophisticated multiple fiber models.

Spurious fibers that are considered to be anatomically incorrect
are removed in various ways in published studies. Fiber removal
may be done for any tract. We illustrate it with the example of two
studies that reconstructed the corticospinal tract using two different
tractography methods, probabilistic and spherical deconvolution. In
these particular studies, errant fibers were removed in two ways. First,
fibers were not shown if the number of fiber trajectories passing
through a voxel was less than a threshold (Behrens et al., 2007;
Farquharson et al., 2013). Second, fibers were included and excluded
using regions of interest (motor cortex) and disinterest (midsagittal re-
gions to prevent crossing into the contralateral hemisphere) (Behrens
et al., 2007; Farquharson et al., 2013).

The extensive anatomical knowledge that is needed to “clean up”
and reconstruct tracts diminishes the expectation of discovering any
truly “new” pathway that has not been seen historically in dissection
studies. The state of the art of tractography, in general, aims to recon-
struct known connections. However, the potential to study these
connections and their variability in vivo, in health and disease, is an
amazing opportunity.
7. dMRI studies: Methods that analyze connections

Two main categories of method, tract-based quantification and
graph-theoretical connectome analysis, are popular for analyzing
the results of tractography. In tract-based quantification, anatomi-
cally labeled fiber tracts are used as regions of interest to measure
FA, MD, or another parameter. Thousands of successful studies
have been performed. In the quickly-growing field of connectomics
(Sporns et al., 2005), the tracts are reduced to a connectivity matrix
according to the regions of interest they connect, enabling the study
of the brain's connections using graph theory. Many recent reviews
are available regarding connectome analysis (Toga et al., 2012;
Johansen-Berg, 2013).
7.1. Pitfalls

Both categories of method inherit the pitfalls discussed earlier for
tractography, as well as for measurement of scalar indices such as FA
that are widely used in both categories. However there are additional
pitfalls that are worth mentioning. Recent reviews discuss pitfalls and
limitations in connectomics (Van Essen and Ugurbil, 2012; Fornito
et al., 2013), sowe focusmore on limitations and caveats whenmeasur-
ing properties of anatomically labeled fiber tracts from tractography.

Before any measurement can be made using tractography, whether
it is the mean FA in the corpus callosum or the number of streamlines
connecting cortical region A to B, some segmentation or division of
the tracts into relevant regions must be performed. This segmentation
problem is a challenge for tract-based quantification, in which the ana-
tomical structure of interest must be selected in some way, whether
automatic or interactive. Furthermore, the combination of tractography
algorithm and segmentationmethodmay not succeed for smaller tracts
in all subjects, thus studies are often limited to the major ones such as
corpus callosum, arcuate, uncinate, cingulum, corona radiata, etc. The
segmentation problem is also a challenge in connectomics: defining
the regions of interest or nodes of the connectome graph (that induce
a segmentation or grouping of the tracts) is considered to be a hard
and open problem. A recent review discusses the methods and issues
related to tractography segmentation in both tract-based quantification
and connectomics (O'Donnell et al., 2013).

The process of defining tracts for tract-based quantification can be a
source of variability in any study. The common paradigm of interactive
selection (“virtual dissection”) of fiber tracts (Stieltjes et al., 2001;
Catani et al., 2002) has an important inter-rater spatial variability:
kappa overlap measures in the neighborhood of 0.6 and 0.7 indicated
“substantial” agreement (Wakana et al., 2007). A clustering method
was found to reduce variability across raters (Voineskos et al., 2009),
and many automated methods have been proposed to identify tracts
based on a variety of atlases (Wakana et al., 2004; O'Donnell and
Westin, 2007; Hagler et al., 2009; Guevara et al., 2012). However, atlas
creation and representation is still an interesting open problem (Toga
et al., 2006), and detailed neuroanatomical knowledge and interactive
virtual dissection play an important role in studies ofwhitematter anat-
omy today (Catani et al., 2013).

In quantitative tractography, what should onemeasure? Someof the
tract-based measurements that are made rely heavily on the parame-
ters of the tractography method employed. The most reviled example
is the reporting of a count of the number of streamline trajectories as
the “fiber count” (Jones et al., 2013). The fiber count is apparently losing
popularity, as it was present in only 3% of dMRI tractography publica-
tions as estimated using Google Scholar (Fig. 4). The “fiber count” is
highly dependent on the number of times tractography was seeded in
each voxel, and the properties of the tractography method employed.
Many studies use this number: it is often employed in connectomema-
trices and in anatomical comparisons across hemispheres, for example.
However it is crucial to realize that it is not a count of neuroanatomical
fibers, and that tractography has a spatial scale of mm, not microns. In
addition, the fiber count is not a meaningful number for comparison
across studies with differing tractography methods, thus there is a
danger in reporting this number directly. Parameters with real physical
measurement units or dimensionless quantities, such as tract volumes
inmm3, laterality indices, and graph-theoretic measures, are more pos-
sible to compare across studies. Finally, studies have shown that mea-
surement of scalar values along a tract can reveal localized differences
that may be missed when taking the mean within the entire tract
(O'Donnell et al., 2009; Colby et al., 2012).

8. Discussion: Does dMRI tell us anything about the white matter?

It is clear that dMRI provides useful information about brain struc-
ture to aid clinical decision making. For example, in a prospective
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study of 238 neurosurgical patients, the use of dMRI improved patient
outcomes and prolonged survival (Wu et al., 2007). And importantly,
diffusion-weighted imaging is now themost sensitive and specific tech-
nique for early stroke detection (Jauch et al., 2013).

But in clinical research, does dMRI tell us anything about the white
matter? It is clear that the information in dMRI, as tantalizingly non-
specific as it may be, has inspired much investigation into the anatomy
and alterations of the brain's tissue microstructure. As the only existing
method that can probe the white matter microstructure in the living
brain, dMRI is sensitive to changes present in many diseases. Recent re-
views have highlighted findings in schizophrenia (Fitzsimmons et al.,
2013; Samartzis et al., 2014), traumatic brain injury (Shenton et al.,
2012), autism (Travers et al., 2012), and attention deficit/hyperactivity
disorder (van Ewijk et al., 2012). That short list of recent reviews is
only the tip of the impressive dMRI study iceberg (see again Fig. 1). We
note also that dMRI can be as important and informative in gray matter
as in white matter (Sagi et al., 2012; Zatorre et al., 2012; Bouix et al.,
2013; Rathi et al., 2014), though the gray matter measures may be less
reproducible than the white matter measures (Vollmar et al., 2010).
However, there is a growing awareness of the non-specificity of many
dMRI findings (Assaf and Pasternak, 2008; Melonakos et al., 2011; Le
Bihan and Johansen-Berg, 2012; Vos et al., 2012; Jones et al., 2013).

Though the dMRI field is maturing, methods for acquisition, compu-
tational processing and modeling of the data are continually being
developed and improved. New research directions aim to address the
issues of non-specificity and data interpretation by measuring dMRI
parameters that may more closely relate to the physiological parame-
ters of brain tissue (Assaf and Basser, 2005; Assaf et al., 2008;
Shemesh et al., 2010). Partial volume effects due to CSF contamination
may be corrected (Pasternak et al., 2009; Metzler-Baddeley et al.,
2012). Additional approaches for improving the specificity of dMRI
findings involve measuring data from complimentary modalities.
Diffusion weighted MR spectroscopy (Du and Öngür, 2013; Du et al.,
2013) gives additional microstructural insight via diffusion profiles of
metabolites. Magnetization transfer imaging (Kubicki et al., 2005;
Mandl et al., 2010, 2015-in this issue) enables calculation of themagne-
tization transfer ratio, a putative myelin marker. Moving forward, we
expect that improvedmodeling and acquisition techniques, in conjunc-
tion with multimodal analyses, may more closely relate changes in
dMRI to changes in brain cells and their environment.

However, in clinical research today, interpreting any dMRI study is a
challenge. The final pitfall we will describe is that of comparing results
across studies: the dMRI protocol may vary, and the methods may
vary. Thus researchers must be cautious and aware of the strengths
and limitations of the methods employed, both when comparing the
results of different studies, and when interpreting their own results.
An awareness of the complex acquisition and processing pipelines
used in dMRI clinical research should enable a more nuanced interpre-
tation of the findings of any study.
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