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Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection
and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping
above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling ap-
proach to improve prediction of AGB and estimate AGB growth using LiDARdata. The proposedmodel accommo-
dates temporal misalignment between field measurements and remotely sensed data—a problem pervasive in
such settings—by including multiple time-indexed measurements at plot locations to estimate AGB growth.
We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and
uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to
predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR
data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from
the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant
counterpart models in predictive performance as indicated by a substantial reduction in root mean squared
error. The proposed model adequately accounts for temporal misalignment through the estimation of forest
AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future
AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional
modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Linking long-term forest inventory with air- and space-borne Light
Detection and Ranging (LiDAR) datasets via regression models offers
an attractive approach to mapping forest above-ground biomass
(AGB) at stand, regional, continental, and global scales. LiDAR data
have shown great potential for use in estimating spatially explicit forest
variables, including AGB, over a range of geographic scales (Asner,
Hughes, Varga, Knapp, & Kennedy-Bowdoin, 2009; Babcock, Matney,
Finley, Weiskittel, & Cook, 2013; Babcock et al., 2015; Finley, Banerjee,
& MacFarlane, 2011; Iqbal, Dash, Ullah, & Ahmad, 2013; Muss,
Mladenoff, & Townsend, 2011; Næsset, 2011; Neigh et al., 2013).
Encouraging results from these and many other studies have spurred
massive investment in new LiDAR sensors, sensor platforms, as well as
extensive campaigns to collect field-based calibration data. For
example, ICESat-2—planned for launch in 2017—will be equipped with
a LiDAR sensor able to gather data from space at unprecedented spatial
resolutions (Abdalati et al., 2010). As currently proposed, ICESat-2 will
be a photon-counting sensor capable of recording photon-returns on a
≈70 cm footprint (ICESat-2, 2015). The Global Ecosystem Dynamics
Investigation LiDAR (GEDI) will be an International Space Station
mounted system capable of producing 25 m diameter footprint
waveforms and is scheduled to be operational in 2018 (GEDI, 2014).
One of GEDI's core objectives is to quantify the distribution of AGB at a
fine spatial resolution. NASA Goddard's LiDAR, Hyper-spectral, &
Thermal (G-LiHT) imager is an air-borne platform developed, in part,
to examine how future space-originating LiDAR, e.g., ICESat-2, GEDI, or
other platforms,may be combinedwith field-based validationmeasure-
ments to build predictive models for AGB and other forest variables
(Awadallah, Abbott, Wynne, & Nelson, 2013; Cook et al., 2013).

Alongwith increasing attention given to development of LiDAR data
acquisition systems, there is continued and expanding interest in
acquiring long-term forest inventory datasets for ecosystemmonitoring
initiatives (Albercht, Hanewinkel, & Bauhus, 2012; Phillips et al., 1998;
Talbot et al., 2014). Long-term forest inventories including the United
States Forest Service's Forest Inventory and Analysis (FIA) Program,
Long-Term Ecological Research Network (LTER), and National
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Ecological Observatory Network (NEON) are collecting massive
amounts of space and time indexed ecological data (Kampe, Johnson,
Kuester, & Keller, 2010; Michener, Porter, Servilla, & Vanderbilt, 2011;
Smith, 2002). These datasets are able to provide the calibration
measurements necessary for large-scale AGB model development and
mapping using LiDAR systems (Healey et al., 2012).

Much of the interest in LiDAR based AGB mapping is to support
carbon monitoring, reporting, and verification (MRV) systems, such as
defined by the United Nations Programme on Reducing Emissions
fromDeforestation and Forest Degradation (UN-REDD) andNASA's Car-
bonMonitoring System (CMS) (CMS, 2010; Le Toan et al., 2011; Ometto
et al., 2014; UN-REDD, 2009). There are several challenges to specifying
models that yield prediction useful for MRV systems. Here, we consider
two common data characteristics that, if ignored in the modeling
process, can result in misleading model-based inference about AGB or
similar forest variables of interest. The first, and central focus of this
study, is temporal misalignment between LiDAR data acquisition and
AGB calibration datameasurements. The second is spatial independence
among model residuals—a key assumption of regression models. These
characteristics are not simple nuisances that need accommodation to
ensure valid inference. Explicit development ofmodels that incorporate
misalignment and residual spatial dependence can yield improved pre-
diction of forest AGB and growth superior to that of commonly applied
models.

In regression models, temporal misalignment occurs when the
response variable and covariates (e.g., LiDAR metrics) are measured at
different times. Temporal misalignment is common in settings where
permanent sample plots (PSPs)—remeasured on a periodic basis as
part of a long-term inventory or monitoring system—are used to
calibrate remotely sensed data. For example, Saatchi et al. (2011) use
field data from inventories conducted between 1995 and 2005 when
building regression models for AGB with LiDAR data. Zhang et al.
(2014) use FIA inventories collected between 2001 and 2007 to predict
AGB using LiDAR data for California. Blackard et al. (2008), trained
MODIS based regression models using national inventory data ranging
from 1990 to 2003. Gregoire et al. (2011), García, Riaño, Chuvieco, and
Danson (2010), Chen, Vaglio Laurin, Battles, and Saah (2012) and
Anderson et al. (2008) use data from long-term inventories spanning
a three year period to calibrate regression models. Some researchers
elect to retain field data from long-term inventories spanning 10+
year intervals (Blackard et al., 2008; Saatchi et al., 2011) to obtain
calibration datasets with large numbers of observations, whereas
other researchers sacrifice sample size by only using inventories
spanning a small time interval (Anderson et al., 2008; Chen et al.,
2012; García et al., 2010; Gregoire et al., 2011). Because the FIA (the
largest long-term forest inventory network both in spatial extent and
number of PSPs) only measures between ten and twenty percent of
their PSPs annually, we should expect to continue to see temporal
misalignment to be an point of concern when attempting to combine
long-term inventory and remote sensing data (Bechtold & Patterson,
2005). As another example, the recently established long-term invento-
ry, NEON, only plans to acquire field inventories from their PSPs every
five years, but collect airborne remote sensing data over these plots
annually (Kampe et al., 2010; Kao et al., 2012). In order to develop
yearly maps of forest structure and prediction uncertainty leveraging
the annual LiDAR acquisitions, NEON will likely need sound statistical
modeling strategies that accommodate temporal misalignment.

Regression model parameters (i.e., intercept, slope coefficients
associated with LiDAR metrics, and residual variance) estimated using
temporally misaligned data can lead to erroneous model-based
inference and prediction especially as forest disturbances operate on
temporal time scales rarely aligned with field and remotely sensed
inventory programs. For AGB modeling, the worst cases will arise
when there is a large time lag between LiDAR acquisition (covariates)
and AGB measurements (response variable). The posited relationship
between LiDAR metrics and response variables will be further
weakened if the PSPs are visited across a large time interval (e.g., FIA
sample cycle lengths) in concert with rapid changes in AGB (e.g., due
to wildfire or wind throw). In both cases, large is relative to forest
growth rates and disturbance intervals. Strategies to address misalign-
ment include discarding all measurements outside of some acceptable
time interval around the LiDAR acquisition date, using growth models
to project PSP measurements to align with LiDAR acquisition date, or
simply assume temporal misalignment effects are negligible (Blackard
et al., 2008; Weiskittel, Hann, Kershaw, & Vanclay, 2011; Zhang et al.,
2014). In many cases, such strategies are less than ideal—due to small
resulting sample size, desire to avoid unrealistic assumptions about
growth, or need to quantify components of uncertainty in AGB
predictions.

Repeated time- and space-indexedmeasurements within long-term
inventory datasets make possible an approach to the misalignment
problem that does not discard data and facilitates uncertainty quantifi-
cation on both AGB and growth. The framework we pursue builds on
work by Banerjee and Johnson (2006) and Nathoo (2010) who model
spatially varying growth curves using repeated measures. In both
works, regression models are specified with intercept and slope coeffi-
cients arising fromunivariate ormultivariate spatial Gaussianprocesses.
Here, we also use a space-varying coefficients framework but incorpo-
rate LiDAR covariates tomodel andmap AGB and growth simultaneous-
ly. In addition to accommodating temporal misalignment the proposed
model captures residual spatial dependence (i.e., spatially structured
variability not explained by LiDAR covariates) via a space-varying inter-
cept (Banerjee, Carlin, & Gelfand, 2014; Gelfand, Kim, Sirmans, &
Banerjee, 2003). Similar to Banerjee and Johnson (2006) and Nathoo
(2010), we use a Bayesianmodel specification that allows for appropri-
ately complex parameter associations and uncertainty propagation
through to prediction.

To better understand how LiDAR and long-term inventory datasets
can be used to map AGB, we look to Penobscot Experimental Forest
(PEF) in Bradley, Maine. Using the PEF's long-term inventory database
along with G-LiHT data acquired for the area in 2012, we present and
examine the proposed modeling approach to improve AGB prediction
and estimate growth. The proposed model is compared with two
benchmark regressions to examine predictive performance, ability to
account for temporal misalignment, and capacity to accommodate spa-
tial dependence.
2. Methods

2.1. Field data description and preparation

The PEF is a 1600 ha tract of Acadian forest land located in Bradley,
Maine (44° 52′ N, 68° 38′ W) (Fig. 1). The average annual temperature
and precipitation near Bradley is 6 °C and 110 cm respectively.
Composition of the PEF is a mix of coniferous and deciduous species
including spruce (Picea spp.), balsam fir (Abies balsamea), red maple
(Acer rubrum), birch (Betula spp.), and aspen (Populus spp.), among
others. Since the 1950s, the PEF has been subjected to routine manage-
ment and monitoring initiatives. With over 600 PSPs currently
established and scheduled for remeasurement on an approximate ten-
year cycle (and immediately pre- and post-harvest), the PEF has a
wealth of calibration data available for fitting AGB models using LiDAR
(Brissette & Kenefic, 2008). The PEF is divided into over 50management
units (MU). Within each MU, different silvicultural treatments are
implemented, e.g., unregulated harvest, shelterwood, diameter limit
cutting, or natural regeneration (Fig. 1). MU 32 is a mature, natural
area that serves as a reference stand for the PEF with limited harvesting
or other management actions conducted since 1954. MU 8 and MU 22
were commercially clearcut in 1984 and 1989, respectively (Fig. 1).
MU 23 is undergoing a three-stage shelterwood management plan
(Sendak, Brissette, & Frank, 2003). For further details regarding the



Fig. 1.Map of PEF. PSP's highlighted in red. Example PSP (site 420) colored in green. Black
polygon boundaries outline different management units (MU) on the PEF. Hashed out
polygons identify MUs with no inventory data. Select MUs have been labeled and
highlighted in yellow. MU 8 and MU 22 were clear cut in 1984 and 1989 respectively.
MU 32 is an old-growth stand that has experienced very limited management activity
since 1954. MU 23 is a stand undergoing a three-stage shelterwood harvesting
technique. The inset map in the upper right corner shows the location of the PEF with
respect to Maine. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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PEF's MU silvicultural treatments see Hayashi, Weiskittel, and Sader
(2014).

For this study we use 2203 field measurements from 604 PSPs
(Fig. 2). Only post-disturbance measurements from each PSP were in-
cluded. Further, only PSPs with at least one post-disturbance measure-
ment recorded between 1999 and 2011 were used. Data for the 33
measurements collected in 2012were held out formodelfit comparison
(2012was themost current data available for the PEF at the time of our
study). Each PSP contains three nested sampling areas with radii of ap-
proximately 16 m (1/5 acre), 8 m (1/20 acre), and 5 m (1/50 acre),
which are used to measure trees of progressively smaller diameter at
breast height (dbh) classes (Brissette, Kenefic, Russel, & Puhlick,
Fig. 2. Above-ground biomass remeasurements used in analysis. Most recent remeasuremen
identification number. Left vertical axis shows the remeasurement year and the right vertic
Since all remeasurements were conducted before the year of LiDAR acquisition, all t's are n
interpretation of the references to color in this figure legend, the reader is referred to the web
2012). For this analysis, only stems with dbh measures greater than or
equal to 12.7 cm (5 in) were used to calculate AGB, which precluded
trees measured only in the 8 m and 5 m plots. AGB was calculated
using dbh based, species specific, allometric equations provided by
(Jenkins, Chojnacky, Heath, & Birdsey, 2003). The response variable
used in subsequent regressionmodels was calculated for each PSPmea-
surement date by summing individual tree AGB values, scaling to
megagrams per ha (Mg/ha), then applying a square-root transformation
to better approximate a Gaussian distribution and ensure positive sup-
port following back-transformation of predicted values.
2.2. LiDAR acquisition and preparation

Large footprint waveforms characteristic of upcoming space-based
LiDAR instruments were simulated using discrete, multistop returns
from the G-LiHT airborne imager collected over the PEF in 2012. G-
LiHT is a portable multi-sensor airborne system developed by NASA
Goddard Space Flight Center that simultaneouslymaps the composition
and structure of terrestrial ecosystems. The G-LiHT airborne laser
scanner (VQ-480, Riegl Laser Measurement Systems, Horn, Austria)
uses a 1550 nm laser that provides an effective measurement rate of
up to 150 kHz along a 60° swath perpendicular to the flight direction.
At a nominal flying altitude of 335m, each laser pulse has a footprint ap-
proximately 10 cm in diameter and is capable of producing up to 8
returns.

Pseudo-waveforms were created over the PEF's 604 PSPs by aggre-
gating G-LiHT LiDAR returns and weighting return heights using a
Gaussian shaped 25 m diameter footprint (Blair & Hofton, 1999). The
pseudo-waveforms were then used to calculate percentile heights at
5% intervals between 5% and 100% (Fig. 3). Principal Components Anal-
ysis (PCA) via eigen decomposition of the percentile height variables
correlation matrix was used to reduce the dimension of the data set
and ensure the variables used as covariates in the subsequent regression
analysis were uncorrelated. An assessment of the principal component
eigenvalues showed that N85% of the variation in the percentile height
data was accounted for by the first two eigenvectors (principal compo-
nents). Hence, scores generated from the first two eigenvectors were
used as covariates for model fitting. Pseudo-waveforms were also gen-
erated for a grid of 8283 25 × 25 m cells over the PEF. PCA scores
were calculated for each grid cell and used for subsequent prediction
and mapping of AGB and AGB growth.
t for each permanent sample plot (PSP) is highlighted in red. Horizontal axis is the PSP
al axis shows the corresponding t value. t is the number of years after LiDAR collection.
egative. Vertical green line identifies example PSP (site 420, highlighted in Fig. 4). (For
version of this article.)



Fig. 3. Illustration showing the normalized G-LiHT pseudo-waveform intensity of return
energy height profile (blue) along with example percentile height values (red). Return
intensity is greater at heights where the forest canopy is encountered. The energy spike
at 0 m signifies energy returning from ground. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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2.3. Model description

Let Yt(s) be the square-root transformed AGB value at location s∈D
and year t centered on the year of LiDAR acquisition, where s is a vector
of location coordinates, e.g., easting and northing, and D is the forested
domain. A model describing AGB growth at site s can be written as,

Yt sð Þ ¼ α0 sð Þ þ α1 sð Þt þ εt sð Þ ð1Þ
Fig. 4. Square root transformed AGB versus time graph for example PSP (site 420,
identified with a vertical green line in Fig. 2). Upper horizontal axis shows the
remeasurement year and the lower horizontal axis shows the corresponding t value. t is
the number of years after LiDAR collection. Since all remeasurements were conducted
before the year of LiDAR acquisition, all t's are negative. Most recent remeasurement
highlighted in red. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
where α0(s) is the estimated value of Yt(s) when t=0 and α1(s) equals
the additive adjustment for every one year change in t. For the example
PSP shown in Fig. 4, α0(s) and α1(s) correspond to the intercept and
slope of the green line respectively. Since t=0 for the year the LiDAR
data was collected, α0(s) can be interpreted as an estimate of AGB at
the time of LiDAR acquisition. Higher values of α1(s) correspond to
faster AGB accumulation and lower values of α1(s) suggest slower
AGB growth over time. Note the s onα0 andα1 identify these as location
specific parameters. An independent white-noise process εt(s) captures
measurement error in Yt(s) and is modeled asNð0; τ2Þ. This is an attrac-
tive choice for modeling long-term inventory and LiDAR data. Specify-
ing the first stage of our hierarchical design as (1) allows the model to
acknowledge and account for temporal misalignment between field
and remote sensing data through the introduction of α1(s)t. Further,
this framework allows for the inclusion of multiple time-indexed mea-
surements at one location to inform AGB growth estimation.

Letting α0=(α0(si))i=1
N and α1=(α1(si))i=1

N , where N equals the
total number of observed locations (N=604 PSPs),wewrite the second
level of our hierarchical design as,

α0�N μ0;Σ0ð Þ ð2Þ

α1�N μ1;Σ1ð Þ; ð3Þ

where, μ0=(μ0(si))i=1
N and μ1=(μ1(si))i=1

N constitute the mean
components of α0 and α1 Gaussian processes (GP), respectively. For
our subsequent analysis, we set μ0(s)=x(s)β, where x(s) is a row
vector comprised of a 1 and the two LiDAR PCA scores for site s and β
is the corresponding column vector of regression parameters,
i.e., x(s)=(1,x1(s),x2(s)) and β=(β0,β1,β2)Τ. We set μ1(s)=γ, where
γ is a single regression parameter. Note that this framework can be
easily generalized to include any number of covariates to help estimateα0 (AGB) and α1 (AGB growth) simply by redefining μ0(s) and μ1(s)
accordingly.

The Σ0 and Σ1 describe the spatial covariance of α0 and α1. We can
write (2) and (3) as

α0 ¼ μ0 þw0;wherew0�N 0 ;Σ0ð Þ ð4Þ

α1 ¼ μ1 þw1;wherew1�N 0 ;Σ1ð Þ: ð5Þ

w0=(w0(si))i=1
N and w1=(w1(si))i=1

N are zero centered random
effects and provide local adjustment with spatial dependence to μ0

and μ1. Such flexibility is desired because we might expect AGB and
growth, i.e., α0 and α1, to have some spatial pattern over a forest do-
main. If the covariates used to inform the model (i.e., LiDAR metrics)
fail to fully account for the spatial structure in the outcome variable
(AGB), w0 and w1 will absorb any unaccounted for spatial structure,
thereby reducing spatial dependence among the residuals. Aside from
helping to ensure statistical validity, the spatial random effects yield
other modeling benefits. For example, we can interpret w0 and w1 as
capturing the contribution of unobserved (or unobservable) covariates
with spatial pattern. Capturing these latent covariates via the spatial
random effects should result in improved fit and predictive perfor-
mance. The inclusion of w1 provides an additional benefit specific to
modeling growth with long-term inventory data. Often at locations,
only one post-disturbance inventory will be available—for this analysis
173 PSPs had one post-harvest measurement (Fig. 2). By introducing
w1, estimation of growth at sites with one measurement becomes pos-
sible because the model borrows biomass accumulation information
from neighboring sites where multiple inventories may be available.

The spatial random effects are specified as w0(s)~GP(0,C(⋅, ⋅ ,θ0))
and w1(s)~GP(0,C(⋅, ⋅ ,θ1)), where C(s,s',θ0)=Cov(w0(s),w0(s')) and
C(s,s',θ1)=Cov(w1(s),w1(s')) are functions that model the covariance
between any pair of locations s and s'. The (i, j)-th elements of the Σ0

and Σ1 spatial covariance matrices are given by C(si,sj,θ0) and
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C(si,sj,θ1), respectively. To ensureΣ0 andΣ1 are symmetric and positive
definite, the spatial covariance functions are defined as

C s; s0; θ0ð Þ ¼ σ2
0ρ s; s0;ϕ0ð Þ; and θ0 ¼ σ2

0;ϕ0
� � ð6Þ

C s; s0; θ1ð Þ ¼ σ2
1ρ s; s0;ϕ1ð Þ; and θ1 ¼ σ2

1;ϕ1
� �

; ð7Þ

where ρ(⋅;ϕ0) and ρ(⋅;ϕ1) are correlation functions with ϕ0 and ϕ1

determining the rate of correlation decay. The spatial variance parame-
ters σ0

2 and σ1
2 equal Var(w0(s)) and Var(w1(s)), respectively. For the

subsequent analysis, exponential correlation functions were assumed
for w0 and w1, where ρ(| |s−s'| | ;ϕ0)= exp(−ϕ0 | |s−s'| | ) and
ρ(| |s−s'| | ;ϕ1)= exp(−ϕ1 | |s−s'| | ) with ||s−s ' || being defined as
the Euclidean distance separating sites s and s'. To ease interpretation
of the ϕ estimates, corresponding effective spatial range estimates are
presented in Table 1 and labeled as esr0 and esr1. We define effective
spatial range as the distance (m) where the spatial correlation between
locations drops to 0.05.

The data model for (1) is constructed as follows. Let n(s) be the
number of remeasurements at location s. Defining the M×1
column vectors Y=((Ytj(si))j=1

n(s i ))i=1
N , t=((tj(s))j=1

n(s i ))i=1
N , andε=((εtj(si))j=1

n(si ))i=1
N , whereM=∑i=1

N n(si), wewrite themodel as,

Y ¼ Zα0 þ Zα1tþ ε; ð8Þ

where Z is an M×N block-diagonal matrix with the i-th diagonal
element being an n(si)×1 vector of ones.

To complete the Bayesian specification of our hierarchical model,
prior distributions are assigned to the parameters and inference
proceeds by sampling from the posterior distribution. As customary,
we assume β and γ follow Nðμβ;ΣβÞ and Nðμγ ;σ2

γÞ priors (Gelman,
Carlin, Stern, & Rubin, 2013). The spatial variance components σ0

2 and
σ1
2, along with the measurement error τ2, are assigned inverse-

Gamma, IG(a,b), priors. The spatial decay parameters ϕ0 and ϕ1 follow
a Uniform prior distribution,Unif(a,b), with support over the geograph-
ic range of the study area.

Using notation similar to Gelman et al. (2013), we can write the
posterior distribution of the parameters as p(Ω |Y), where Ω=
{β ,γ ,w0 ,w1 ,σ0

2 ,σ1
2 ,ϕ0 ,ϕ1,τ2), which is proportional to

Unif ϕ0jaϕ0
; bϕ0

� �� Unif ϕ1jaϕ1
; bϕ1

� �

�IG σ2
0jaσ2

0
; bσ2

0

� �
� IG σ2

1jaσ2
1
; bσ2

1

� �

�N βjμβ;Σβ
� �

�N γjμγ ;σ
2
γ

� �
� IG τ2jaτ ; bτ

� �

�N w0j0 ;Σ0ð Þ�N w1j0 ;Σ1ð Þ�N YjZα0 þ Zα1t; τ2IM
� �

: ð9Þ
Table 1
Parameter estimates and associated 95% credible intervals for benchmark model 1, 2, and the t
ranges, or the distances (m) at which correlation drops to 0.05, for w0 andw1 respectively.

Benchmark 1

Parameter estimates 50% (2.5%, 97.5%) β0 9.73 (9.56, 9.9
β1 −0.38 (−0.42
β2 0.72 (0.62, 0.8
γ –
τ2 4.84 (4.34, 5.4
esr0 –
σ0
2 –

esr1 –
σ1
2 –

Prediction metrics 10-fold RMSE 42.88
95% CP 0.94%
95% CIW 169.25
Posterior samples of Ω are collected via Markov Chain Monte Carlo
(MCMC) algorithms detailed in (Banerjee et al., 2014).

The posterior predictive distribution of the spatial random effectsw0

and w1 at new (unobserved) locations are given by

p w�0jYð Þ∝∫ p w�0jw0;Ω0;Yð Þp w0jΩ0;Yð Þp Ω0jYð ÞdΩ0w0 ð10Þ

p w�1jYð Þ∝∫ p w�1jw1;Ω1;Yð Þp w1jΩ1;Yð Þp Ω1jYð ÞdΩ1w1; ð11Þ

where w�0 ¼ ðw0ðs�iÞÞmi¼1 and w�1 ¼ ðw1ðs�iÞÞmi¼1 are the collections
over prediction locationss�’s, andΩ0 andΩ1 include the appropriate sub-
sets of parameters fromΩ. Then given the set of LiDAR covariates at loca-
tions�, (4) and (5) can be evaluated to obtainα0ðs�Þandα1ðs�Þ. Finally,
the posterior predictive distribution of the response variable, Ytðs�Þ, is
obtained from Nðα0ðs�Þþ α1ðs�Þt; τ2Þ. Samples from the predictive
distribution of each component of interest, i.e.,w0ðs�Þ,w1ðs�Þ,α0ðs�),α1

ðs�Þ, and Ytðs�Þ, are obtained via composition sampling, see, e.g., Finley,
Banerjee, and Gelfand (2015) and Banerjee et al. (2014) for details.
Summary statistics of these posterior predictive distributions,
e.g., mean, median, variance, interquartile range and credible intervals,
can then be computed and mapped as illustrated in Section 3.

2.4. Model comparison and validation

The modeling framework described in Section 2.3 (test model) is
compared with the benchmark regression models

Y sð Þ ¼ x sð Þβþ ε sð Þ benchmark 1ð Þ ð12Þ

and

Y sð Þ ¼ x sð Þβþw0 sð Þ þ ε sð Þ benchmark 2ð Þ; ð13Þ

where β and w0(s) were defined previously. Further, the benchmark
models provide a way to evaluate the test model's ability to accommo-
date temporal misalignment and need to accommodate residual spatial
dependence. Specification of the benchmark models (including param-
eter prior distributions) are defined analogous to the test model, aside
from Y(s) which is the most recent measurement of square-root trans-
formed AGB for location s (red measurements in Figs. 2 and 4) and εðsÞ
�Nð0; τ2Þ. Again, posterior samples of the benchmarkmodels' parame-
ters and predictions are collected via anMCMC algorithm and composi-
tion sampling in the same fashion as the testmodel. Neither benchmark
model acknowledges temporal misalignment between the time LiDAR
and field data were acquired—which is typical of most contemporary
modeling exercises that couple LiDAR and long-term forest inventory
data. Because we can only include the most recent measurements at
each PSP, the benchmark models lack the ability to estimate AGB
growth and hence only estimate AGB. Benchmark model 2 includes a
est model. 10-fold RMSE is presented in Mg/ha units. esr0 and esr1 are the effective spatial

Benchmark 2 Test model

0) 9.53 (8.52, 10.51) 10.55 (10.12, 10.98)
, −0.33) −0.28 (−0.32, −0.23) −0.27 (−0.31, −0.23)
2) 0.38 (0.29, 0.47) 0.34 (0.25, 0.43)

– 0.173 (0.111, 0.23)
5) 1.16 (0.82, 1.53) 0.048 (0.045, 0.052)

810.85 (537.45, 1860.61) 283.62 (227.49, 365.23)
4.10 (2.89, 7.66) 4.19 (3.55, 5.12)
– 1112.12 (693.52, 2501.50)
– 0.009 (0.006, 0.018)
31.27 17.52
0.94% 0.92%
117.26 54.21
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spatial random effect that should absorb any spatially structured varia-
tion that may be present in the residuals of benchmark model 1.

To test predictive performance of the three candidate models, a ten-
fold holdout set design was constructed by separating the PSPs (n=
604) into ten approximately equal-sized groups. Square-root trans-
formed AGB for the holdout groups was sequentially predicted given
model parameters estimated using data in the remaining nine groups.
Each posterior predictive distribution sample was then back-
transformed prior to calculating the AGB posterior predictive distribu-
tion mean at each holdout location. Note, because we are working
within a Bayesian setting, inference proceeds from the entire back-
transformed posterior distribution and hence we avoid issues with
back-transformation bias encountered within a frequentist inferential
paradigm, see, e.g., Stow, Reckhow, and Qian (2006) for further
discussion. Root mean squared error (RMSE) was calculated using the
back-transformed holdout posterior predicted means and observed
AGB for each of the three models (labeled 10-fold RMSE in Table 1).
The model with the lowest 10-fold RMSE was considered the “best”
predicting model.

To graphically assess the impact of temporal misalignment on 2012
AGB prediction, scatterplots comparing candidate model fitted values
from the 33 PSPs with measurements taken in 2012 and the actual
2012 remeasurements were examined (recall, as noted in Section 2.1,
2012 data was not used to estimate model parameters and reserved
for model comparison).

2.5. Posterior inference

Model-based parameter and predictive inference for each of the
three candidate models were based on three MCMC chains run for
25,000 iterations. Diffuse hyper-parameters for the IG(a,b), Nðμβ;ΣβÞ,
and Nðμγ ;σ

2
γÞ prior distributions were selected to minimize influence

on the posterior distribution. The IG a hyper-parameter was set to 2
which results in a prior distribution mean equal to b and infinite vari-
ance. The N hyper-parameters were set to mean zero and variances
equal to 10,000. EachMCMCwas initiatedwith different starting values
and random seeds. Chain convergence was diagnosed by monitoring
mixing and the Gelman-Rubin statistic (Cowles & Carlin, 1996;
Gelman & Rubin, 1992). Satisfactory convergence was achieved after
10,000 iterations for all models. Posterior inference was based on a
post burn-in sub-sample of 15,000 iterations (5000 from each chain).

3. Results

3.1. Parameter estimates and prediction accuracy

Parameter estimates and prediction metrics for the three candidate
models, detailed in Sections 2.3 and 2.4, are given in Table 1. Here, we
can see the 95% credible intervals for β1 and β2 do not include zero—the
LiDAR PCA covariates explain a substantial portion of the variability in
AGB for all three models. Regarding prediction performance results in
Table 1, benchmark model 1 yields the largest 10-fold RMSE
(42.88 Mg/ha) among the candidate models. In comparison, the spatial
random effects in benchmark model 2 and the test model capture sub-
stantial residual spatial structure and hence improve prediction at un-
observed locations, i.e., by borrowing information from observed
measurements. There is substantial residual spatial dependence and
space-varying impact of t, as indicated by long effective spatial range es-
timates (esr0 and esr1, noting a maximum inter-location distance be-
tween PSP of ~5.6 km) and relatively large spatial variances (σ0

2 and
σ1
2). This, along with increased prediction accuracies, is compelling evi-

dence that spatial dependence is present in the residuals of benchmark
model 1—suggesting inference about parameters and predictions could
be compromised. Indeed, benchmarkmodel 1 prediction is less accurate
compared with the other models.
Between the random effects models, the test model provides a
substantially lower 10-fold RMSE compared to the benchmark model
2 (17.52 versus 31.27 Mg/ha). Similarity between the models' β1 and
β2 estimates suggests that once residual spatial dependence is accom-
modated, via w0, both models provide similar LiDAR calibration and
any improvement in prediction is due to correction for temporal
misalignment.

The testmodel's increased prediction accuracy, alongwith higherβ0,
suggests benchmark model 2 yields a negative prediction bias. Because
the most recent measurement at each PSP occurred before G-LiHT data
collection, a negative prediction bias should be expected. Calibrating
LiDAR data to past measures of AGB, without accounting for the tempo-
ralmismatch,will result in underestimates of AGB for the year of remote
sensing data collection. The difference in 10-fold RMSE between the two
models suggests the negative bias in benchmark model 2 is substantial
and correcting for it, as we have in the test model, increases prediction
accuracy. Fig. 5 graphically demonstrates the negative bias introduced
by ignoring the effects temporalmisalignment between PSP remeasure-
ment and remote sensing acquisition. We see in Fig. 5a that benchmark
model 1 fitted values at the 33 PSPs with 2012 remeasurements are
substantially lower than actual 2012 AGB. Fig. 5b shows that this bias
is reduced but still present when a spatial random effect is introduced.
Only after temporal misalignment is explicitly accommodated via the
introduction of a growth related random effect is the model fit bias
effectively removed (Fig. 5c).

3.2. Predictive uncertainty and precision

In addition to assessing prediction accuracy, we are interested in
candidate models' capacity to provide appropriate measures of predic-
tion uncertainty. To assess the quality of uncertainty quantification,
we count the number of holdout set observations that fall within their
respective posterior predictive distribution credible intervals, e.g., we
can use a credible set that gives a 95% credible interval (Carlin & Louis,
2008, pp. 48), then divide this count by the total number of observations
in the holdout set and multiply by 100 to yield an empirical coverage
percentage (CP). We expect the CP to be approximately equal to the
chosen credible set, e.g., ~95% of the holdout observations should fall
within their respective 95% credible interval bounds. These CPs are
given in Table 1 for the 10-fold holdout measurements. The CP results
suggest that all models provide appropriate estimates of prediction
uncertainty—even benchmark 1 that violates the independent and iden-
tically distributed residuals assumption.

CP is useful for identifying misspecified models and issues arising
from prediction in extrapolation settings; however, it does not provide
information about the precision of prediction. For this we can look at
the posterior predictive distribution credible interval width
(CIW)—more precise predictions have shorter CIW. Table 1 provides
themean CIW calculated using the 95% posterior predictive credible in-
terval width for the 10-fold holdout sets. Here, the 10-fold CIW for the
test model is approximately half the width of the benchmark 2 and
about 1/3 that of benchmark 1.

3.3. Prediction and influence of PSP measurements

The test model was used to generate posterior predictive distribu-
tions for 2012 AGB and AGB growth (α1) for each of the 8283
25× 25m cells over the PEF. Themean of each cell's posterior predictive
distribution is mapped in Figs. 6a and 7a and serves as our best
predictions of 2012 AGB and growth (posterior predictive samples
were back-transformed prior to calculating summary statistics and
subsequent maps). In addition to these point estimate maps, the 95%
posterior predictive distribution CIW was calculated and mapped for
AGB and growth, Figs. 6b and 7b respectively.

Figs. 6b and 7b show that CIW for AGB and growth is generally
largest in MUs with no inventory data (hashed out MUs in Fig. 1). This



Fig. 5. Fitted values versus actual 2012 AGB scatter-plots for the three models. The line on each plot is the one-to-one line.
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behavior is expected and clearly illustrates how precision of prediction
decreases as we move away from the field data used to calibrate the
model. In Fig. 6b, we can even identify PSP locations as points of high
precision, i.e., narrow CIWs, within MUs. The plot of grid cell AGB CIW
versus distance to nearest PSP (Fig. 8a) further illustrates the negative
relationship between precision of prediction and distance to observed
PSPs, i.e., high precision at and near observed PSPs. Additionally,
Fig. 8a suggests that, on average, AGB CIW increases until distances of
~200–300 m from PSP locations, after which it levels off. This corre-
sponds to the estimated value for esr0 for the test model (Table 1). Sim-
ilarly, Fig. 8b shows how the precision of predicted α1(s) changes as a
function of distance to the nearest PSP. Here, we see the effect PSPmea-
surements have on prediction precision is farther reaching than for AGB
(N1200 m)—also reflected in the esr1 parameter estimate for the test
model (Table 1).

To graphically demonstrate the test model's ability to account for
uncertainty resulting from temporalmisalignment and the benefit of in-
cluding multiple measurements at PSPs, Fig. 9 summarizes annual AGB
predictions from 1972 to 2012 for 4 example PSPs with associated esti-
mates of uncertainty. We see in all 4 PSPs (especially PSP 120 and 150)
that prediction uncertainty increases (wider credible intervals, lower
precision) with increasing time since measurement. Fig. 9a and d
shows that PSPs 420 and 302 have better overall predictions (narrower
credible intervals) across the time gradient than PSPs 120 and 150–a
direct result of the number of measurements and hence information
to inform PSP specific intercept and growth. At PSP 150 (Fig. 9c), the
Fig. 6.Maps of predicted 2012 AGB (left) and associated 95% credible interval width (CIW) (r
(MU) on the PEF.
single measurement does inform AGB prediction in proximity to the
measurement year; however, as expected, the paucity of periodic mea-
surements results in low precision at the time interval extremes. Also,
these wide credible intervals suggest that PSP 150 is not close to other
PSPs that offer measurements at different values of t to inform predic-
tion. Overall, 2012 prediction of AGB at all 4 example PSPs is higher
than at the time of themost recentmeasurement, and growth curve un-
certainty is smallest at PSPs with more measurements.

Fig. 10a and c helps elucidate the relationship between 2012 AGB
and growth prediction uncertainty and the number of measurements
at influential PSPs (i.e., nearby PSPs that have themost influence on pre-
diction at unobserved locations.) Fig. 10a shows little discernible trend
in box-plots summarizing the 8283 grid cell prediction CIWs subset by
number of inventories at nearest PSP, suggesting that 2012 AGB uncer-
tainty is not substantially affected by the number of repeat measure-
ments on proximate PSPs. In contrast, the narrowing of CIWs after
~2–3 remeasurements at the nearest PSPs seen in Fig. 10c underscores
the need for such information to define the space-varying slope param-
eter on t, i.e., AGB growth.

Fig. 10b and d shows grid cell prediction CIWbox-plots subset by the
number of years since last inventory at nearest PSP for 2012 AGB and
growth, respectively. Neither figure provides strong evidence that
time since remeasurement affects precision of prediction on its own,
although Fig. 10d might show a slight trend that predictions near PSPs
measured in the last four years have higher precision, on average,
than predictions near PSPs with older measurements.
ight) using the test model. Black polygon boundaries outline different management units



Fig. 7.Maps of predicted α1 (growth) (left) and associated 95% credible interval width (CIW) (right) using the test model. Black polygon boundaries outline different management units
(MU) on the PEF.
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4. Discussion

4.1. Comparisons with other PEF studies

MU 8 and MU 22 were clearcut in 1984 and 1989, respectively
(Fig. 1). We see the consequence of this in the map of predicted AGB
(Fig. 6a) where both MU 8 and 22 are predominantly dark red, indicat-
ing comparatively low (b75 Mg/ha) AGB. Hayashi et al. (2014, Tab. 2)
found MU 22 to have the lowest stem volume of the MUs they exam-
ined. We see slightly higher AGB growth rates in MU 8 compared to
MU 22 in Fig. 7a.

These differences can be attributed to a time lag in stand reorganiza-
tion (i.e., stand initiation) and aggradation (i.e., stem exclusion) phases
(Oliver & Larson, 1996). Nyland (2007, pp. 204) points out the transition
from the stand reorganization to aggradation phase, marked by the be-
ginning of AGB accumulation, occurs approximately 20 years after
clearcutting in this forest type and region. Since MU 22 and MU 8
were harvested 25 and 30 years ago, respectively, the differences in
Fig. 8. 95% credible interval widths (CIW) for grid cell predictions of 2012 AGB and growth ver
mean AGB CIW and mean α1(s) CIW values binned for 10 m intervals in uncertainty-agb and
legend, the reader is referred to the web version of this article.)
AGB growth might be attributed to the five-year difference in stand
treatments and subsequent transition to the aggradation phase. Over
the next decade, we expect a rise in AGB growth rates in both stands
as they accrue biomass on ever larger trees until such a time that self-
thinning processes start to reduce the growth of dominant trees
(Oliver & Larson, 1996).MU 23 is undergoing a three-stage shelterwood
management system where initial stand entries remove over-mature
and undesirable trees to encourage the growth of advance regeneration
present at the site. In an empirical study of the silvicultural treatments
at the PEF Sendak et al. (2003, Fig. 4) found basal area growth to be
fastest in this management system. In support of Sendak's finding,
Fig. 7a shows high AGB growth rate in MU 23. MU 32 is a mature
stand that serves as a reference treatment for the PEF. Only very limited
management activity has occurred here since 1954. Fig. 6a shows that
MU 32 has the highest accumulated AGB of any of the PEF's MUs and
Fig. 7a indicates that AGB growth in MU 32 is currently very
low—characteristics expected of mature, relatively undisturbed, old-
growth stands in the steady-state phase of development (Nyland, 2007).
sus distance to nearest permanent sample plot (PSP). The overlayed red trend lines show
uncertainty-pro, respectively. (For interpretation of the references to color in this figure



Fig. 9.Predictions of AGB from1972 to 2012 for four example PSPs (black circles). Red circles indicatefield inventorymeasures of AGB. Vertical gray lines highlight the 95% credible interval
for the AGB predictions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.2. Benefits of proposed framework

Results in Table 1 show the test model detailed in Section 2.3
provides greater prediction accuracy and precision compared to the
benchmarkmodels. These improvements are a direct result of appropri-
ately modeling residual spatial dependence and capturing the space-
varying nature of AGB change by leveraging repeated measurements.
Other benefits of the proposedmodeling framework are data driven es-
timates of AGB growth and full uncertainty quantification of parameters
and predictions. The ability to estimate AGB and growth together and
propagate their uncertainties through to prediction is clearly advanta-
geous from an AGB monitoring and management perspective. As an
example, scientists who are part of NASA's CMS initiative, in effort to
advance the development of carbon MRV systems, need methods to
spatially predict AGB with uncertainty. The modeling framework
proposed here aims to help meet this goal.

The performance of the model introduced here provides evidence
that temporal misalignment between LiDAR and field inventory data
should be acknowledged during model fitting. The benchmark models'
poor performance as compared to the test model, indicates the effects
of temporally disjointed AGB and LiDAR measurements should not be
treated as negligible even when the time discrepancies are ten years
or less. This has implications for potential national scale mapping of
AGB using air- or space-borne LiDAR and inventory systems, such as
FIA. In most western U.S. states, only ten percent of FIA PSPs are mea-
sured annually, i.e., we would expect to encounter time disagreements
of up to ten years when calibrating LiDAR with FIA inventory data. Re-
sults from this analysis suggest that future continental scale LiDAR in-
formed AGB models using FIA inventory data may be improved by
accounting for temporal misalignment.

One common solution to temporal disagreement between field in-
ventory and remote sensing data is to apply growthmodels to “project”
inventories forward to the time of LiDAR acquisition. A potential weak-
ness of this approach is that uncertainty in growthmodel results are not
easily propagated through statistical model components to prediction.
Rather than attempting to correct for temporal misalignment in a



Fig. 10. Boxplots showing the distributions of 95% credible interval widths (CIW) for grid cell predictions of 2012 AGB (agb-box-num and agb-box-time) and productivity (pro-box-num
and pro-box-time) versus number of remeasurements (agb-box-num and pro-box-num) and years since last remeasurement (agb-box-time and pro-box-time) at nearest permanent
sample plot (PSP).
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disjoint data preprocessing phase, it is more attractive to specifymodel-
ing frameworks capable of acknowledging misalignment explicitly and
appropriately propagating resulting uncertainty.

Spatially and temporally explicit measures of uncertainty, a by-
product of fitting Bayesian spatio-temporal hierarchical models, can
help researchers determine when and where to collect additional in-
ventory data given specific inferential goals. For example, if the goal is
to increase growth prediction accuracy and precision at the PEF,
Fig. 10c and d suggests remeasurement of PSPs with fewer than three
measurements where the most recent measurement is at least four
years old. Looking at Fig. 10c and d together suggests the number of
remeasurements at a PSP may be more important than time since last
inventory in determining growth uncertainty at the PEF. Fig. 10a and b
indicates the number and timing of PSP remeasurements may not be a
strong determining factor concerning AGB prediction uncertainty. Rath-
er, Fig. 8a suggests that collecting new inventories further than 200 m
from existing PSPs will improve AGB certainty more than any remea-
surement effort. These types of questions cannot be addressed when
RMSE alone is considered.
4.3. Limitations and indications for future research

The assumption of a linear increase of AGB over time as imposed by
the first stage of the hierarchical model (1) is a potential drawback to
this specific design's application to other forests. A linear trendwas cho-
sen to relate time and square-root transformed AGB as opposed to a sig-
moidal growth curve that is commonly put forward for AGB growth
rates. AGB growth on the PEF did not exhibit any strong curvilinear
trends (Figs. 4 and 9) hence a linear trend was considered appropriate.
Ongoing management at the PEF is likely keeping much of the forest in
an active state of AGB growth. Areas are being harvested (or disturbed
in some other fashion) before forest growth begins to slow in the senes-
cence phase. Also, most PSPs had fewer than five post-disturbancemea-
surements, which may not be enough to appropriately characterize a
sigmoidal growth curve. Still further, the length of the temporal record
at the PEF may not be long enough to expose non-linearity in the sys-
tem. For datasets where a sigmoidal growth curve can be seen, the
framework described here can be adapted. Rather than proposing a lin-
ear trend for (1), one could consider a non-linear AGB growth model.
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The PEF PSP network is spatially densewithmanyPSPs having a long
temporal record of inventories, which is a luxury not common in most
forest monitoring systems. In the future, we will extend the proposed
modeling framework to large scale sparse PSP networks, e.g., FIA, to es-
timate andmapAGB growth. Previousmodeling exercises provide some
encouraging results. For example, in an effort to map forest biomass
using FIA data over an area in northern Minnesota, Banerjee and
Finley (2007) considered spatial regression models with a suite of
Landsat derived covariates and residual structure captured using a
Gaussian process capable of resolving short- and long-range spatial
dependence. Their results showed effective spatial long-range depen-
dence of ~7.9 km (with 95% credible interval from 4.1 to 11.1 km). In
a different modeling exercise, aimed at mapping forest biomass over
large heterogeneous landscapes (forest/non-forest areas), Finley et al.
(2011) estimated residual spatial dependence patterns extending as
far as ~352 km (with 95% credible interval from 290 to 429 km) across
Michigan's lower peninsula. Datta, Banerjee, Finley, and Gelfand (2015)
reported similar residual spatial dependence patterns when modeling
AGB using FIA data across the conterminous US. All three studies used
a model akin to benchmark model 2 and only the most recent FIA PSP
measurements. Results from each study showed improved fit and/or
holdout set prediction when leveraging residual spatial dependence
through estimation ofw0. Given the results of our current study, we an-
ticipate includingmultiplemeasurements on FIA PSPsmight further im-
prove prediction at new locations and fetch additional insight into forest
growth rates. Even if there is little residual spatial dependence—either
due to effective covariates or simply a high degree of short range
variability in the forest variable of interest—then w0 will not improve
predictive ability through borrowing information from proximate
PSPs. However, this does not negate the useful role of w1 to capture
space varying growth rates.

Extensions to the proposed model could incorporate functional
forms that use covariates in place of γ and w1. For instance, multi-
spectral data may be useful for explaining variability in AGB growth
rates across an expansive study region.

As we have demonstrated the benefits and knowledge gaps of
adopting our proposed model for estimating forest AGB and associated
AGB accumulation, the wider implications should not be understated.
Global interest inmitigating the emission of carbon dioxide necessitates
accurate estimates of terrestrial AGB and associated sequestration/
emission rates. Rigorous combination of spatially sparse and infrequent
in-situ measurements of forest AGB with potentially more spatially in-
tense and frequent remote sensing products such as LiDAR offers the
opportunity to refine our monitoring of the earth's terrestrial carbon
balance. Beyond reducing uncertainty and informing field campaigns,
our proposed model offers the opportunity to rapidly incorporate re-
motely sensed information following large-scale disturbance events
(e.g., wildfires or hurricanes) to inform the distribution of carbon emis-
sion to specific disturbances (e.g., Kyoto Protocol removal of non-
anthropogenic carbon emissions).
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