
Remote Sensing of Environment 188 (2016) 177–189

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r .com/ locate / rse

Estimating forest canopy parameters from satellite waveform LiDAR by
inversion of the FLIGHT three-dimensional radiative transfer model

I.J. Byea,*, P.R.J. Northa, S.O. Losa, N. Kljuna, J.A.B. Rosettea, C. Hopkinsonb, L. Chasmerb, C. Mahoneyb

aGlobal Environmental Modelling and Earth Observation (GEMEO), Department of Geography, Swansea University, SA2 8PP, United Kingdom
bDepartment of Geography, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada

A R T I C L E I N F O

Article history:
Received 10 July 2015
Received in revised form 20 October 2016
Accepted 30 October 2016
Available online xxxx

Keywords:
GLAS/ICESat
Model inversion
Forest canopy parameters
FLIGHT
Monte Carlo radiative transfer model
Waveform
LiDAR

A B S T R A C T

The Geoscience Laser Altimeter System (GLAS) has the potential to accurately map global vegetation heights
and fractional cover metrics using active laser pulse emission/reception. However, large uncertainties in the
derivation of data products exist, since multiple physically plausible interpretations of the data are possi-
ble. In this study a method is described and evaluated to derive vegetation height and fractional cover from
GLAS waveforms by inversion of the FLIGHT radiative transfer model. A lookup-table is constructed giving
expected waveforms for a comprehensive set of canopy realisations, and is used to determine the most likely
set of biophysical parameters describing the forest structure, consistent with any given GLAS waveform. The
parameters retrieved are canopy height, leaf area index (LAI), fractional cover and ground slope. The range
of possible parameters consistent with the waveform is used to give a per-retrieval uncertainty estimate for
each retrieved parameter. The retrieved estimates were evaluated first using a simulated data set and then
validated against airborne laser scanning (ALS) products for three forest sites coincident with GLAS over-
passes. Results for height retrieval show mean absolute error (MAE) of 3.71 m for a mixed temperate forest
site within Forest of Dean (UK), 3.35 m for the Southern Old Aspen Site, Saskatchewan, Canada, and 5.13 m
for a boreal coniferous site in Norunda, Sweden. Fractional cover showed MAE of 0.10 for Forest of Dean and
0.23 for Norunda. Coefficient of determination between ALS and GLAS estimates over the combined dataset
gave R2 values of 0.71 for height and 0.48 for fractional cover, with biases of −3.4 m and 0.02 respectively.
Smallest errors were found where overpass dates for ALS data collection closely matched GLAS overpasses.
Explicit instrument parameterisation means the method is readily adapted to future planned spaceborne
LiDAR instruments such as GEDI.

© 2016 Published by Elsevier Inc.

1. Introduction

Satellite laser altimeters have the capacity to provide global esti-
mates of vegetation height and structure (Lefsky, 2010; Simard et al.,
2011; Los et al., 2012). This can provide an important baseline
for future assessment and comparison of forest structural changes,
including biomass. Such estimates are needed to inform and test
models of carbon sequestration (Ciais et al., 2013), and to monitor
changes in carbon stocks due to climatic change and both natural and
human disturbance (Goetz and Dubayah, 2011).

While passive optical systems have been used extensively to
observe vegetation covered land by measuring the spectral prop-
erties of the surfaces, such systems are limited in their ability to
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measure vertical structure below the upper surface of the canopy.
Active light detection and ranging (LiDAR) systems have addressed
this, providing information about the vertical profile of a forest
canopy. Waveform LiDAR has been in use since the early 1980s,
when the Wallops Flight Facility’s AOL airborne laser scanner was
used to profile a 14 km flight line near Doubling Gap, Pennsylvania
(Nelson et al., 1984). Height and density metrics were compared with
photogrammetry derived values and the results were encouraging;
height means were within 0.6 m of their respective photointerpreted
values. Aldred et al. (1985) also demonstrated that waveform record-
ing LiDAR had the potential to mitigate one of the problems arising
from the use of discrete-return LiDAR, which was the systematic
underestimation of stand height. In the 1990s, first Scanning LiDAR
Imager of Canopies by Echo Recovery (SLICER) (Means et al., 1999;
Lefsky et al., 1999a; Lefsky et al., 1999b; Harding et al., 2001) and
then Laser Vegetation Imaging Sensor (LVIS) (Blair et al., 1999; Drake
et al., 2002) were developed by NASA as demonstrators for potential
spaceborne LiDAR.
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In the decade following, the Geoscience Laser Altimeter System
(GLAS), a space-borne waveform instrument, was carried on the
ICESat mission (Brenner et al., 2003). While GLAS was primarily
designed to measure ice sheet topography, secondary objectives
included measurements of vegetation height and land surface ele-
vation. Launched in January 2003, the mission lasted until October
2009 when its instrument failed. The mission platform was placed
in a 183 day ground track repeat cycle, to provide a 15 km spacing
between tracks at the equator and 2.5 km at 80◦ latitude. Using GLAS
data, canopy height has been estimated directly from the Gaussian
wave components of a decomposed LiDAR waveform (Harding and
Carabajal, 2005; Lefsky et al., 2005; Lefsky et al., 2007; Rosette et al.,
2009; Duncanson et al., 2010), and volume has also been success-
fully derived (Rosette et al., 2008a; Nelson et al., 2009; Popescu et al.,
2011). More recently, near global datasets of height for forest (Lefsky,
2010; Simard et al., 2011) and total vegetation (Los et al., 2012) have
demonstrated the importance of the near-global coverage of GLAS.
Los et al. (2012) conclude that the GLAS height product appears to
be better suited as an input to ecological and climate models than
existing data sets based on land cover alone.

For the previous two decades, the use of LiDAR to map biomass
has increased dramatically. It is likely that over the next decade, in
combination with other forms of remote sensing, LiDAR will become
increasingly central to mapping biomass at regional, national or con-
tinental scales (Goetz and Dubayah, 2011; Wulder et al., 2012; Neigh
et al., 2013). In particular, upcoming space borne LiDAR missions,
such as the Global Ecosystems Dynamics Investigation (GEDI) LiDAR
(Dubayah et al., 2014; Coyle et al., 2015) and the second genera-
tion ICESat-2 (Abdalati et al., 2010; Montesano et al., 2015) will have
the potential to improve and update a definitive baseline for global
biomass stocks.

The complex structure of a vegetation canopy in combination
with uncertainties arising from instrument, suggest that remote
sensing of vegetation biophysical parameters is an ill-posed
problem; that is, multiple interpretations of the measured radiative
signal are possible. A physically based radiative transfer model (RTM)
(e.g. Sun and Ranson, 2000; Ni-Meister et al., 2001b; Disney et al.,
2006; North et al., 2010) can be used to describe the interaction of
radiation with canopy elements and explicitly relate canopy param-
eters, observation and illumination variables and remote sensing
signature.

Model inversion may be considered a multi parameter optimi-
sation problem. However iterative numerical optimisation methods
tend to be computationally intensive, and may not be appropriate for
applications on a per-pixel basis for regional and global data (Kimes
et al., 2002). An efficient approach to model inversion is the lookup
table (LUT) method. It involves: generating of a table of reflectance
signatures by varying the values of a set of reflectance model input
parameters, comparing an observed signal against all signatures in
the LUT to determine the best fit and corresponding set of param-
eters. Unlike iterative optimisation based approaches, LUTs can be
applied to computationally expensive and complex models with-
out any modifications, and so are particularly suitable for Monte
Carlo or ray tracing models such as the 3D radiative transfer model,
FLIGHT, we have used in this study (Weiss et al., 2000; Leonenko
et al., 2013). Also, unlike iterative methods, LUTs do not require a
set of initial values, preventing the chance of poor values leading to
non-global minima. The effectiveness of the LUT approach to model
inversion is sensitive to the accuracy of the RT model, but also to
assumptions concerning choice of LUT generation parameters and
crown macro-structure and shape. Turbid medium geometric primi-
tives are typically used to model LUT canopy realisations due to their
simplicity. However, studies (Calders et al., 2013; Widlowski et al.,
2014) suggest that biophysical parameter retrieval may be sensitive
to choice of crown shape or internal structure, and further work is
recommended to improve understanding of this.

Several studies have applied model inversion to airborne LiDAR
waveform (Koetz et al., 2006,2007; Ma et al., 2015). In particular LUTs
have been used previously to invert LiDAR data with some success by
Koetz et al. (2006), who inverted a 3D LiDAR waveform model (Sun
and Ranson, 2000). Subsequently, Koetz et al. (2007) investigated
the fusion of imaging spectrometer and LiDAR data, demonstrating
greater constraint on LAI. The inversion was tested on both simu-
lated data and waveform data synthesised from small-footprint data
acquired in the Swiss National Park, showing good correlation with
retrieved parameters.

Existing datasets of height derived from GLAS show higher dis-
agreement for regions of dense forest cover and higher ground
slopes (Los et al., 2012; Xing et al., 2010); a physically-based joint
retrieval of slope, cover and height has potential to improve accu-
racy over such regions. Fractional cover has previously been esti-
mated (Los et al., 2012) over wider regions by statistical sampling,
assuming each footprint represents either zero or complete vege-
tation cover, rather than per-footprint. This study aims to develop
and evaluate a model inversion method suitable for satellite LiDAR
waveform observations, to retrieve simultaneously parameters such
as maximum canopy height (Htop), fractional cover (Fc), underlying
topography and estimates of their error. In the following sections
we will describe a lookup table (LUT) based inversion of the three-
dimensional radiative transfer model FLIGHT (North, 1996; North
et al., 2010) and evaluate the retrieval using GLAS waveform data,
validated against airborne laser scanning data.

2. Method

In this section we first describe the FLIGHT (North, 1996; North
et al., 2010) radiative transfer model applied to simulation of GLAS
waveforms. We next outline generation of a lookup table for per-
forming model inversion. Finally we describe the method for deter-
mining the most likely set of biophysical parameters describing the
forest structure for a given waveform, and error estimates associated
with these parameters.

2.1. FLIGHT radiative transfer model

The FLIGHT radiative transfer model simulates vegetation bidi-
rectional reflectance and LiDAR return by applying Monte Carlo
simulation of photon transport within a three dimensional repre-
sentation of vegetation structure. In the original radiative transfer
mode of operation of FLIGHT (North, 1996), photon trajectories are
traced forwards from the source, through a sequence of interactions
between and within crown boundaries. At each interaction a pho-
ton may be absorbed, reflected or transmitted and this process is
modelled with a continuous probability density function. On leaving
the canopy boundary, energy is accumulated in bins defined for each
solid angle of exit. The LiDAR mode of the model (North et al., 2010)
samples the paths of individual photons received within the field of
view of a given sensor position, accumulating path length and energy
from both laser and solar sources and including multiple scattering
events.

Large-scale forest structure is modelled by a set of geometric
primitives, either ellipsoidal or conical, giving approximate extent
of foliage vertical and horizontal extent. The representation is
widely used to allow modelling of the main characteristics of three-
dimensional forest canopies, but which remains computationally
tractable by allowing a semi-analytic radiative transfer approach
(Ni-Meister et al., 2001a; Duursma et al., 2012; North, 1996). A sim-
ple growth model is used to limit the degree of overlap between
neighbouring crowns. Inside each crown, foliage is modelled using
the parameters of leaf area density, leaf angle distribution (LAD),
size and the optical parameters of reflectance and transmittance.
The parameters are set to be homogeneous within a crown but are
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allowed to vary between crowns. The effect of slope is incorporated
into the model using a planar surface with defined slope angle.

For LiDAR simulation, the model calculates the probability distri-
bution of return of a photon emitted from the laser as a function of
time, and has been compared with field and satellite observations
(North et al., 2010;Rosette et al., 2010;Morton et al., 2014).

2.2. LUT-based inversion

Inverting the LiDAR waveform model was performed using a LUT
approach to allow an efficient retrieval of the range of parameters
possible for a given waveform. The LUT inversion requires two stages.
Firstly, prior to inversion, we use the FLIGHT model to generate the
LUT. Each entry in the LUT contains a waveform, and the correspond-
ing biophysical parameter set which gave rise to that waveform.
Secondly, during operation of the inversion, we automatically select
from the LUT the solution or solutions whose simulated waveform in
the LUT best matches to a given observed waveform.

The LUT was generated by modelling LiDAR waveforms, repre-
senting a total of 107,100 unique canopy representations. For each:
a combination of LUT parameter values was selected from within a
defined range, a corresponding 3D representation of a forest stand
was simulated and photon paths modelled. Values for leaf reflectance
and transmittance were derived from the LIBERTY model (Dawson
et al., 1998, 2003) based on field measurements of leaf structure
and pigmentation from the BOREAS campaign (Hall, 1999; Plummer
and Curran, 1998), while understory reflectance was based on field
measurements from this campaign (Hall et al., 2000). Sensor config-
uration and location were fixed to appropriate GLAS specifications.
The set of parameters defining the LiDAR sensor are listed in Table 1,
along with example values for GLAS (Brenner et al., 2003).

Tree crowns were modelled as ellipsoidal. Horizontal tree posi-
tioning within a scene was random and tree heights were uniformly
distributed between a specified minimum and maximum height
range. The LUT was designed to contain a wide range of possible tree
height arrangements, including stands with highly variable heights
(i.e. the maximum range Hmin–Hmax is large) and stands with a sin-
gle height canopy (i.e. the maximum range Hmin–Hmax is 1 m). While
a single layer canopy is used here, more complex structures, for
example to include an understory layer, are possible with the same
methodology.

A subset of FLIGHT parameters, comprising leaf area index LAI,
fractional cover Fc, lower limit height of first branch Hmin, upper limit
height of first branch (Hmax), slope (Sy), canopy radius (Exy) and for
the ellipsoidal crowns used in this study, canopy radius in the ver-
tical axis (Ez), was chosen for the LUT variables to ensure that a
sufficiently broad range of stand height and coverage could be sim-
ulated. Slope referred to the angle from horizontal, of a flat plane,

Table 1
FLIGHT LiDAR sensor model and GLAS specific values.

Parameter Description Unit Value

(Px , Py , Pz) Sensor position relative m (0, 0, 600000)
relative to scene

ho Sensor zenith angle deg. 0
0o Sensor azimuth angle deg. 0
sl RMS pulse width ns 5
qT Half width angle of rad 0.00011

beam divergence
IFOV Detector IFOV rad 0.0004
AT Detector telescope area m2 0.709
TRTstm Roundtrip atmosphere − 0.8 (532 nm)

transmittance 0.9 (1024 nm)
Etrans Total pulse energy mJ 32 (532 nm)

72 (1024 nm)
Dt Recording bin width ns 1

and is assumed to mean ‘equivalent slope’, and relates to the aver-
age change in elevation within a GLAS footprint. It is not possible to
differentiate between localised surface roughness and footprint scale
changes in elevation. The parameter ranges used are listed in Table 2.
The remaining FLIGHT parameters were fixed to default values.

The LUT generated using these parameters reflects a simplified
representation of natural forest structures and as such the robust-
ness and accuracy of this investigation can only be considered as an
indication of the ability of this approach to retrieve accurate forest
biophysical parameters.

The solution of the model inversion was then found by rank-
ing the distance using a Chi-Square metric (w2) between a reference
waveform (yref) provided by GLAS and a simulated waveform (ysim)
from the LUT as modelled by FLIGHT. To ensure equivalence, both
waveforms were normalised by total waveform energy. A merit
function was adopted:

w2 =
nbin∑
i=1

(
yref [i] − ysim[i]

sn

)2

(1)

where nbin is the number of bins of the waveform. The estimated total
uncertainty for each bin sn is the total sum of uncertainties arising
from errors (smodel) such as those in the model physics and real world
representation (e.g. a turbid medium approximation, vertical distri-
bution of LAI), deviation from values of default parameters (e.g. leaf
reflectance, soil reflectance), combined with the estimated measure-
ment errors (smeasure) associated with the data. The measurement
and model errors are described in further detail in the following
section.

s2
n = s2

measure + s2
model (2)

2.3. Error estimates

A practical estimate of model error smodel under real conditions
was made empirically, derived from the error in model fit for a set
of 66 GLAS waveforms over Forest of Dean, UK, which comprises
a range of mixed broadleaf and coniferous forest species on slop-
ing ground (Rosette et al., 2008b). A full description of the Forest of
Dean site is given in Section 3. Errors were approximated as follow-
ing a Gaussian distribution, and explaining the deviation between
GLAS waveform and FLIGHT model waveform as the combination of
model and measurement error, after finding of the best model fit to
each waveform. An estimated measurement error smeasure, for each
waveform was calculated as the standard deviation of the ‘noise’

Table 2
FLIGHT parameters and ranges treated as variables for the generation of the LUT. Addi-
tional parameters (e.g. leaf optical properties and angular distribution) were fixed to
default, broadleaf canopy, settings.

Parameter Description Unit Min Max Step

LAI Mean one-sided foliage
area per unit area

m2 m−2 0.4 6.1 0.1

Hmax Maximum height to first
branch

m 1 17 2

Hmin Minimum height to first
branch

m 0 16 2

Fc Fraction of ground cov-
ered by vegetation

% 20 80 10

Sy Ground slope deg. 0 20 5
Exy Crown horizontal radius m 1 4 1
Ez Crown vertical radius m 2 8 2
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from a non-signal portion of the waveform. Considering the reduced
Chi-Square (w2

red):

w2
red =

w2

m
(3)

where m is Degrees of Freedom given by N − n − 1, where N is total
number of observations, and n is the number of fitted parameters. If
w2

red ≈ 1 indicates a good model fit, then w2 ≈ m.

If sn is assumed to be constant for all samples then an estimate
for sn = s can be determined empirically for each waveform of a
set of data from Eq. (1). Using:

s2 =
1
m

nbin∑
i=1

(
yref [i] − ysim[i]

)2 (4)

Consequently, an estimate for s2
model was obtained from each wave-

form fit of the reference data set by Eq. (2). The underlying
assumption is that the closest model fit to the ‘true’ forest structure
has been found by the inversion, and Eq. (2) gives an approxima-
tion of the total remaining (non-parameter) error s2

model including
model physics, errors in unknown/default variables such as ground
reflectance, and quantisation in the LUT.

Using the Forest of Dean data as a reference data set an estimate
for smodel was found to be ≈0.001 Normalised Intensity (IN). Sub-
sequent analysis on all data sets: simulated, Forest of Dean (FOD),
Southern Old Aspen (SOA) and Norunda (NOR) data sets included
this previously determined smodel alongside a measurement error
smeasure estimated from the non-signal region of the waveform being
analysed.

To account for the ill-posed nature of the model inversion, where
a number of possible solutions may exist due to measurement or
model uncertainties, the LUT was ranked according to a metric w2.
The first n = 1, 10, 100 simulated waveforms were accepted to be
candidate solutions and the mean of each of the parameters was
considered the solution.

3. Validation data

3.1. Forest sites

Three sites were selected for validation of the method: a mixed
temperate forest site within Forest of Dean (FOD), UK, the Southern
Old Aspen Site (SOA), Saskatchewan (Canada) and a boreal conif-
erous site in Norunda (NOR), Sweden. These sites were chosen to
provide a range of temperate and boreal forest types, and as they
have been well characterised using coincident ALS data and field sur-
vey for regions overlapping with GLAS tracks. Key characteristics for
the three study sites are summarised in Table 3.

Sources of uncertainty to consider include errors in the reference
ALS data. Andersen et al. (2006) aimed to quantify the accuracy of
tree height measurements made using ALS over conifer study sites
and found that accuracy was influenced by point density as deter-
mined by beam divergence. For a nominal 6 p/m1 the negative bias
in height retrieval was found to be −0.73 m (SD = 0.43 m) for the
narrow beam (0.33 m diameter footprint) LiDAR and −1.12 m (SD =
0.56 m) for wider beam (0.8 m). In a previous study Gaveau and Hill
(2003) attempted a similar study, this time for broadleaf woodland.
They reported a negative bias of 1.12 m for tree height but also note
that converting point data into grid format CHM data further propa-
gated error, resulting in a negative bias of 2.12 m (RMSE = 1.89 m).
Canopy cover reference data was also derived from ALS data. How-
ever, Rosette et al. (2009) showed that a good relationship with field
based estimates was possible, despite a relatively small data range.
Testing ALS estimates of fractional cover with hemispherical photog-
raphy they found R2 = 0.77 and RMSE = 0.02. A second source of
error pertaining to the reference data may be attributed to the use
of a slightly different approach for the derivation of parameters from
FOD data to that used for the SOA and NOR reference data. At the time
of the investigation only these derived parameters were available.

It should be noted that the Norunda site was subject to a consid-
erable difference in time between the acquisition of the GLAS data
(2003) and the airborne LiDAR data (2011). Many of the Norunda
height parameter estimates were affected by vegetation growth
occurring between the two data set acquisition dates. In the case of
the fractional cover, land cover differences through forestry activ-
ities such as harvesting or thinning may also explain a number of
overestimated outlier points.

3.1.1. Forest of Dean
The first study site was located in The Forest of Dean (FOD),

Gloucestershire, UK. The forest covers an area of approximately
11,000 ha and is managed by the Forestry Commission of Great
Britain. The site comprises mixed temperate species, mainly: Norway
spruce (Picea abies), oak (Quercus spp.), Corsican pine (Pinus nigra
var maritima), Douglas fir (Pseudotsuga menziesii), Scots pine (Pinus
sylvestris) and European larch (Larix decidua).

Airborne LiDAR data were used as a proxy for ground truth data.
Airborne data for the Forest of Dean study site were acquired dur-
ing August 2006, using the Optech Airborne Laser Terrain Mapper
(ALTM-3033) sensor system. The aerial survey was carried out by the
Natural Environment Research Council Airborne Research and Sur-
veying Facility (ARSF) (through the Unit for Landscape Modelling,
University of Cambridge), on behalf of the Forestry Commission of
Great Britain Forest Research Agency.

For FOD airborne LiDAR data, the log ASCII standard (LAS) for-
mat data were processed by Rosette et al. (2008b) using the method
described by Streutker and Glenn (2006). Return points were classi-
fied into vegetation and ground classes and a ground surface model

Table 3
Characteristics of forest sites used for validation.

FOD SOA NOR

Region Forest of Dean, Great Britain Saskatchewan, Canada Norunda Common, Sweden
Location 51.81◦ N, 2.52◦ W 53.63◦ N, 106.20◦ W 60.09◦ N, 17.48◦ E
Elevation above 50–225 524–572 34–83
sea level (m)
Topography Moderate relief Low relief Low relief
Main species Norway spruce (Picea abies), Trembling aspen (Populus tremuloides), Norway spruce (Picea abies),

Oak (Quercus spp.), Hazelnut (Corylus cornutta) Scots pine (Pinus sylvestris)
Corsican pine (Pinus nigra),
Douglas fir (Pseudotsuga menziesii),
Scots pine (Pinus sylvestris),
European larch (Larix decidua)

Max canopy 30 21 28
height (m)
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was interpolated using Delaunay triangulation. Mean footprint slope
was derived from the surface model. Fractional cover (Fc) estimates
were calculated as the fraction of vegetation class point count over
the total point count. Only vegetation points over 0.5 m above the
interpolated ground surface were counted such that, only canopy
and taller understory affecting GLAS waveform were included in the
observed fractional cover. Maximum canopy height within each air-
borne LiDAR subset was then calculated to allow a comparison to be
made with estimated ICESat/GLAS height parameter.

3.1.2. Saskatchewan
The second study site is located within the southern boreal for-

est of Saskatchewan, Canada. The Southern Old Aspen (SOA) site was
first established as part of the Boreal Ecosystem Research and Moni-
toring Site (BERMS) study (Barr et al., 2004, 2006; Black et al., 1996;
Kljun et al., 2007) and lies approximately 10 km north of the transi-
tion zone between agriculture and forest. Located near the southern
end of the Prince Albert National Park, the SOA site (Barr et al.,
2004, 2006; Black et al., 1996; Chasmer et al., 2011) is predominately
uniformly aged trembling aspen (Populus tremuloides Michx.) with
hazelnut (Corylus cornutta Marsh) dominating the under storey (Barr
et al., 2006). The terrain is mainly flat, with a site mean slope of
≈2◦ (Mahoney et al., 2014) and the ≈21 m stand height is relatively
even due to natural regeneration after a wildfire in 1919 (Blanken
et al., 1997; Amiro et al., 2006; Kljun et al., 2007). Airborne LiDAR
data covering the SOA site were acquired on behalf of the authors
in August 2008, by the Applied Geomatics Research Group (AGRG)
and the Canadian Consortium for LiDAR Environmental Applications
Research (C-CLEAR), using an Optech ALTM-3100 system.

3.1.3. Norunda
A third study site is located at Norunda (NOR) (Lindroth et al.,

1998; Feigenwinter et al., 2010; Lagergren et al., 2005), situated 30
km north of Uppsala, Sweden. The site is at the southern part of the
boreal forest zone and is part of the integrated carbon observation
system (ICOS Sweden) research infrastructure. Norway spruce (Picea
abies) and Scots pine (Pinus sylvestris) dominate the site, while there
is a smaller fraction of deciduous vegetation (approximately 15%),
predominately birch (Betula sp.) (Lindroth et al., 1998). The area is
generally flat with some localised variations in elevation less than
10 m. Corresponding airborne data were acquired in June 2011 by
the ARSF on behalf of the authors. A Leica ALS50-II LiDAR instrument
was used.

For both the Southern Old Aspen and Norunda sites, airborne
LiDAR data were processed by Chasmer et al. (2011), Mahoney et al.
(2014), and Kljun et al. (2013). Canopy height was derived using
the IDW algorithm within a 2.5 m search radius of classified canopy
reflections greater than 0.5 m above the ground (Hopkinson et al.,
2005). Canopy fractional cover was calculated using the Beer’s Law
laser intensity method (Hopkinson and Chasmer, 2009).

3.2. GLAS data

Waveform data in this study were acquired by the Geoscience
Laser Altimeter System (GLAS) (Brenner et al., 2003; NSIDC, 2014).
The GLAS instrument employed three Nd:YAG lasers (designated
Lasers 1, 2 and 3), to operate one at a time, at 1064 nm and 532 nm
wavelengths. The 1064 nm pulse was used for measuring surface and
dense cloud elevations, and, the 532 nm pulse was used to measure
the vertical distribution of clouds and aerosols. For this study, only
the 1064 nm pulse was used. The instrument was required to oper-
ate at a nominal 600 km altitude and with a 375 microradian field of
view to illuminate a footprint size of 70 ± 10 m (Brenner et al., 2003),
however footprints were found to be elliptical and averaged 48 m ×
102 m for Laser periods 1A through to 2C and 47 m × 57 m for the
Laser periods 3A through to 3K (NSIDC, 2014). A pulse frequency of

40 Hz resulted in a distance of approximately 175 m between the
spots measured centre-to-centre.

4,500,000 × 1 ns samples were collected for each transmitted
1064 nm pulse and on-board processing reduced this to 544 and
200 samples to be telemetered over ice sheet or land, and sea ice
or water surface respectively. For the Laser 1a and 2a periods, this
was designed to yield a range window of 81.6 m for land and ice
sheet or 30 m for water surface (Schutz et al., 2005). However, the
on-board software truncated the signal from the upper part of tall
vegetation or particularly steep slopes and so for later operational
periods a compression scheme was introduced to increase the overall
land height range to 150 m (lower 392 bins at 1 ns = 58.8 m, upper
152 bins at 4 ns = 91.2 m) (Harding and Carabajal, 2005).

All waveform data used in the study were from the level one (L1A)
GLA01 product (Zwally et al., 2011) which comprise the raw altime-
try data as transmitted from the space vehicle, and includes the long
(544 or 1000 bin) and short (200 bin) waveforms. Waveform foot-
print geolocation data were taken from the GLA14 product (Zwally
et al., 2014). Footprint geolocation accuracy was known to be < 1 m
for data releases V026 and onwards.

Forest of Dean data were taken from release V026, and
were acquired on 22nd October 2005 (laser 3D, Id: 885917496,
885917506, 885917516). The original dataset included 86 overpass
footprints, but filtered to a set of 66 to avoid artificial objects such
as buildings and roads (Rosette et al., 2008b). For the Southern Old
Aspen site, 22 footprints of GLAS data were available from release
V031, acquired 21st February 2003. The laser period was laser 1A.
Historical weather data records from Environment Canada indicate
that there was approximately 23 cm snow cover on the date of the
GLAS data acquisition (Environment Canada, Government of Canada,
2014). A total of 99 GLAS footprints for the Norunda study site data
were acquired over two dates: 49 footprints on 22nd February 2003
(laser 1A, Id: 22494495) and 50 footprints on 25th September 2003
(laser 2A, Id: 115682811), both from release V033.

3.3. Converting fractional cover to projected cover

The standard FLIGHT model output within the LUT of fractional
cover (Fc) is defined as vertically projected total crown cover. A
further LUT entry Pc is derived to approximate fractional cover com-
patible with airborne LiDAR, of vertically projected foliage area for
tree crowns. This is calculated using the conversion formula:

Pc = Fc

(
1 − e−k

(
LAI
Fc

))
(5)

was used, where k was chosen to be 0.5.

4. Results

4.1. Sensitivity analysis

The model inversion was applied first to a simulated data set to
determine the ability to retrieve parameters from individual wave-
forms and assess likely error. A set of 1000 waveforms represent-
ing a range of forest canopy realisations were created by running
FLIGHT. Canopy parameters were sampled randomly within a subset
of ranges specified in Table 4.

R2, MAE and Bias for all solution-set sizes are summarised in
Table 5. For the simulated data set, fractional cover and height
were well estimated with high R2 (0.77 and 0.91, respectively) and
low mean absolute errors (MAE) (6.30 % and 1.30 m, respectively).
Scatterplots with the distribution of results are shown in Fig. 1a
and b. Furthermore, close proximity to the 1:1 line demonstrates
the potential of this method to retrieve height. For the retrieval of
canopy vertical radius, R2 and MAE (0.77 and 0.96 m, respectively)
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Table 4
FLIGHT parameters and ranges treated as variables for the generation of waveforms
representing the forest canopy realisations belonging to the simulated data set. Addi-
tional parameters were fixed to the same default settings as with the generation of the
LUT.

Parameter Description Unit Min Max

LAI Mean one-sided foliage area
per unit area

m2 m−2 2.0 6.0

Hmin Min height to first branch m 0.0 16.0
Hmax Max height to first branch m 0.0 17.0
Fc Fraction of ground covered

by vegetation
% 20 80

Sy Ground slope deg. 0 20
Exy Crown horizontal radius m 2.0 4.0
Ez Crown vertical radius m 2.0 6.0

are reasonable (Fig. 1c). However, relatively large standard devia-
tions in individual estimates indicate a higher degree of uncertainty
in estimates for this parameter. A very high R2 = 0.93 for slope esti-
mation (see Fig. 1d) provides further evidence to suggest that the LUT
method might be suitable for estimating topography simultaneously
with other forest parameters. Low variability within the solution sets
is evident from the low standard deviation.

4.1.1. Response to signal and model parameter error
To investigate the effect of signal noise and error in assumed

model parameters on the robustness of parameter estimation, a sub-
set of FLIGHT parameter values were modified individually, and in
combination, and the resulting simulated waveforms were compared
against the LUT using the method described previously. Leaf and
soil reflectance parameter values were perturbed by ±10%, and leaf
diameter was set randomly to a value between 0.01–0.1 m. Wave-
forms simulated with combined leaf and soil noise perturbations
were generated by varying randomly the reflectance parameters
between ±10%. Two further LAD functions representing erectophile
and planar foliage structures were specified and simulated waveform
data sets were modelled accordingly; all other parameters were fixed
between the three LAD types. R2, MAE and Bias for solution-set size
n = 10 are summarised in Tables 6 and 7.

As was expected, noise added to the leaf and soil reflectance
FLIGHT parameters had a greater effect on the estimation of Fc and Ez

than on parameters concerning the vertical dimension e.g. Htop and
Sy. In particular, negative bias for Fc was found to occur when leaf
reflectance was decreased or when soil reflectance was increased.
Conversely, bias moved in a positive direction when leaf reflectance
was increased or when soil reflectance was decreased. Noise from the
soil reflectance perturbation had the greatest effect on the estimation

Table 5
Chi-Square summary statistics on simulated dataset, for solution sizes n = 1, 10, 100.

Parameter Chi-Square

n = 1 n = 10 n = 100

R2 0.81 0.91 0.91
Htop MAE 1.66 1.30 1.43

Bias (m) 0.54 0.69 0.94
R2 0.70 0.77 0.79

Fc MAE 7.42 6.30 5.84
Bias 2.01 2.03 2.15
R2 0.70 0.77 0.79

Ez MAE 1.26 0.96 1.00
Bias (m) 0.38 0.41 0.55
R2 0.91 0.93 0.94

Sy MAE 1.44 1.23 1.11
Bias (deg.) 0.01 −0.02 0.00

of the parameters, particularly when soil reflectance was increased.
In this case, R2 was degraded for both Fc and Htop. Leaf diameter noise
was found to have minimal effect on forest parameter retrieval, due
to the compensatory effect of the Fc and LAI parameters.

4.2. Validation of GLAS retrievals over forest sites

The model inversion was validated using spatially consistent
GLAS and airborne LiDAR data from the three forest sites. A w2

metric was applied to every canopy realisation within the LUT and
sets of various sizes of possible solutions were then selected. Esti-
mates for canopy maximum height (Htop) and fractional cover (Fc)
parameters were compared for all sites, while slope was additionally
compared for the Forest of Dean study site. These parameters were
derived from the mean of the given set of possible solutions for each
waveform. Associated uncertainties were indicated by the standard
deviations of the solution sets. Where the uncertainty was found
to be less than the LUT parameter increment, the LUT parameter
increment was used instead as the minimum uncertainty.

Representative examples of waveform fitting over the simulated
and three real forest datasets are shown in Figs. 2, 3, 4 and 5 and
show a close agreement between the GLAS and simulated (LUT)
waveforms. The typical bimodal waveform is apparent in most of
the examples, however Figs. 2b and 3c also show the effect of coin-
cident vegetation and ground portions of the waveform due to the
combination of topographic slope and low lying vegetation.

4.2.1. Forest of Dean
Retrieved fractional cover and height from GLAS for the Forest of

Dean site are shown plotted against corresponding measurements
from ALS in Fig. 6a and b respectively, and Table 8 shows the Forest
of Dean site R2, MAE and Bias for three values of n. Fractional cover is
estimated with R2 of 0.52 and low MAE of approximately 0.10. Height
was estimated with a high coefficient of determination (R2 = 0.74)
and low MAE of 3.71 m. The coefficients of determination give an
indication of ability to distinguish within-site variability of height
and fractional cover. Both parameters display good adherence to
the 1:1 line. The Forest of Dean ICESat/GLAS and airborne data sets
were acquired in closest temporal coincidence of the three datasets
and the parameter regression results demonstrate robust retrieval of
height and vegetation cover in this case. Ground slope is estimated
with good accuracy (MAE ≤ 4◦) but showing a positive bias of ≈3.4◦.

4.2.2. Saskatchewan
Canopy fractional cover and height jointly derived from GLAS

footprints, compared with those from ALS for the Southern Old Aspen
study site are shown in Fig. 7a and b. It is important to note that the
model inversions were performed on the available GLAS data, which
were acquired during ‘leaf-off’ conditions (February), while ALS frac-
tional cover is made during a ‘leaf-on’ period (August). Quantitative
comparison for fractional cover is not appropriate therefore, other
than to note the results show an expected lower value for leaf-off,
and no significant correlation. Since the conditions are very differ-
ent to those assumed in the LUT (bare ground, ‘leaf-on’) this provides
a challenging test for model inversion for other structural parame-
ters. It is interesting to note that canopy maximum height derived
from GLAS by model inversion was nevertheless estimated as close
to the 1:1 line, with MAE of only 3.35 m. The R2, MAE and Bias for all
solution-set sizes are summarised in Table 9.

4.2.3. Norunda
The final study site, Norunda, was subject to a considerable dif-

ference in time between the acquisition of the GLAS data (2003)
and the airborne LiDAR data (2011). Fig. 8b shows most points
have lower values in height parameter retrieval from GLAS, com-
pared to the later ALS data. These are likely due to growth occurring
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Fig. 1. Chi-Square parameter estimates against FLIGHT model input parameters for simulated dataset with n = 10: a) Fractional cover, b) Maximum height, and c) Canopy
vertical radius, d) Slope. Circles represent the mean of possible set of size n solutions, and error bars represent the uncertainties related to the model inversion and are given by
the standard deviation of the set of n possible solutions.

between the two data set acquisition dates. Land cover differences
through natural disturbance, growth or forestry activities such as
clear felling and thinning also explain a number of overestimated

outlier points for both height and fractional cover. As a result the
MAE in height is somewhat higher for this comparison (5.13 m) than
the first two examples. Fractional cover estimates show reasonable

Table 6
Simulated: Chi-Square summary statistics of the simulated data set with added noise for leaf and soil reflectance and for leaf size, for solution size n = 10.

Parameter Default Noise

Leaf spec. Leaf spec. Soil spec. Soil spec. Leaf dia. Combined

(−10%) (+10%) (−10%) (+10%) (0.01–0.1 m)

R2 0.77 0.74 0.78 0.76 0.66 0.77 0.68
Ez MAE 0.96 0.99 0.96 0.84 1.26 0.96 1.03

Bias (m) 0.41 0.37 0.49 0.13 0.87 0.42 0.51
R2 0.77 0.74 0.78 0.76 0.66 0.77 0.68

Fc MAE 6.30 6.52 7.16 10.45 8.75 6.34 7.64
Bias 2.03 −0.42 4.65 9.52 −5.23 1.94 0.47
R2 0.91 0.89 0.91 0.92 0.81 0.91 0.88

Htop MAE 1.30 1.38 1.30 1.11 2.08 1.29 1.49
Bias (m) 0.69 0.79 0.68 0.12 1.55 0.71 0.92
R2 0.93 0.94 0.93 0.93 0.94 0.94 0.93

Sy MAE 1.23 1.20 1.26 1.25 1.24 1.20 1.26
Bias (deg.) −0.02 −0.19 0.21 −0.10 0.34 −0.03 0.10
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Table 7
Simulated: Chi-Square summary statistics of the simulated data set for the three LAD
classes, for solution sizes n = 10.

Parameter Spherical (default) Erectophile Planar

R2 0.91 0.90 0.92
Htop MAE 1.30 1.39 1.15

Bias (m) 0.69 0.84 0.41
R2 0.77 0.72 0.80

Fc MAE 6.30 6.79 9.77
Bias 2.03 −0.80 9.10
R2 0.77 0.72 0.80

Ez MAE 0.96 1.02 0.88
Bias (m) 0.41 0.52 0.02
R2 0.93 0.94 0.93

Sy MAE 1.23 1.21 1.21
Bias (deg.) −0.02 0.00 0.07

MAE (0.23), but low coefficient of determination, suggesting noise
is high compared to within-site variability. Although making eval-
uation of retrieval accuracy more difficult, the large number of
explained outlier points compared to other two sites, which did
not experience significant growth or management, suggest that the
method may be well suited to monitoring changes in height and veg-
etation cover over time. The R2, MAE and Bias for all solution-set sizes
are summarised in Table 10.

5. Discussion

The inversion of the waveform LiDAR model using the LUT
method provided estimates for the maximum canopy height for the
Forest of Dean, Saskatchewan and Norunda sites. MAE was deter-
mined to be: 3.80 m, 3.35 m, 5.13 m, respectively. ALS derived height
estimate uncertainty bounds are well within those found using this
method. An ability to detect the available within-site variability is
shown by the R2 values of: 0.74, 0.07, 0.30, respectively.

Maximum height was best estimated at the Forest of Dean and
Saskatchewan sites but degraded at the Norunda site. This was likely
due to the temporal difference between GLAS and ALS data sets, and
forestry related activity at this site. Using Swedish NFI data, the GLAS
were filtered to only allow footprints located in stands that were at
or near maturity and had not been subject to forestry activities. The
filtering resulted in only three remaining points and so was not con-
sidered to be a robust sample. However, Bias and MAE for height was

found to be 0.92 m and 2.75 m, respectively — a clear improvement.
Accuracy for maximum canopy height was surprisingly good at the
Saskatchewan site, considering the height retrieval was made using
GLAS data acquired during ‘leaf-off’ conditions, where a decrease in
returned energy is likely to lower the estimated maximum canopy
height (Wasser et al., 2013).

The most commonly used height metric to derive vegetation
height from GLAS LiDAR data is waveform extent, defined as the
height difference between the first and last elevation at which the
waveform energy exceeds a threshold, usually set as 4.5 times back-
ground noise (Lefsky et al., 2005, 2007). Results using the method
described in our study compare well to those using the former
method, presented by Los et al. (2012) and Rosette et al. (2009). Los et
al. (2012) also additionally employ a number of filters such that up to
75% of points were removed in tropical forest study sites, and validat-
ing against aircraft derived height data to achieve r = 0.67 and RMSE
≈8 m. Rosette et al. (2009) use the same Forest of Dean GLAS and air-
borne LiDAR data as described in this study to obtain R2 = 0.68 and
MAE = 4.4 m for maximum canopy height when using GLAS data
products.

A number of the height overestimates were due to the tested
metric fitting noise in a GLAS waveform to a comparably sized veg-
etation peak in a FLIGHT waveform representing very low fractional
cover or LAI. Alternative metrics may increase the accuracy of the fit-
ting of very low intensity portions of the GLAS waveform, improving
vegetation signal start and end point estimations. However height
estimates generally agreed with field measurements acquired by
Rosette et al. (2008b), with results close to the 1:1 line.

Fractional cover was comparably well estimated for the com-
bined dominant cover classes Forest of Dean site, (R2 = 0.50 and
MAE = 0.10). Again, ALS derived uncertainty bounds are well inside
those found using the presented method. For the Norunda site, the
time difference between GLAS and airborne data acquisition dates
prevented a more realistic parameter estimate from being obtained.
When the data set was filtered, a total of three GLAS footprints
remained. From these, MAE was determined to be 0.13. For the decid-
uous Southern Old Aspen site, the availability of only ‘leaf-off’ winter
GLAS data meant that it was not possible to assess fractional cover
estimates.

Slope beneath canopy was retrieved for the Forest of Dean
site, where within-footprint elevation changes were significant, and
found to have a R2 of 0.56 compared to airborne LiDAR measure-
ments, but with a positive bias of 3.78◦; this overestimate of slope
would be expected to lead to an underestimate of canopy height
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Fig. 2. Simulated: Chi-Square metric waveform fit examples, showing best LUT fit against examples of simulated GLAS waveforms.
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Fig. 3. Forest of Dean: Chi-Square waveform fit examples, showing best LUT fit against Forest of Dean GLAS waveform examples.
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Fig. 4. Southern Old Aspen: Chi-Square waveform fit examples, showing best LUT fit against Southern Old Aspen GLAS waveform examples.

equivalent to ≈ 3–4 m to explain the same total waveform extent.
This was tested over an inland water surface in Norunda, where the
FLIGHT LiDAR return shows a narrower return peak than the GLAS

waveform, requiring an equivalent slope of 3–5◦ to match. The rea-
son for the widened GLAS ground peak in real waveform returns
compared to modelled is unclear. A finer granularity slope parameter
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Fig. 5. Norunda: Chi-Square waveform fit examples, showing best LUT fit against Norunda GLAS waveform examples.
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Fig. 6. Forest of Dean: Chi-Square parameter estimates against airborne LiDAR
derived parameters: a) Fractional cover, b) Maximum height, and c) Slope. Circles
represent the mean of possible set of size n solutions, and error bars represent the
uncertainties related to the model inversion and are given by the standard deviation
of the set of n possible solutions.

Table 8
Forest of Dean: Chi-Square summary statistics for solution sizes n = 1, 10, 100.

Parameter Chi-Square

n = 1 n = 10 n = 100

R2 0.71 0.74 0.70
Htop MAE 4.00 3.80 3.71

Bias (m) −3.53 −3.40 −3.26
R2 0.51 0.50 0.52

Fc MAE 0.10 0.10 0.10
Bias (m) 0.02 0.02 0.01
R2 0.57 0.56 0.54

Sy MAE 3.74 3.78 4.19
Bias (deg.) 3.29 3.34 3.87

range may improve the slope estimation, where quantisation in the
LUT leads to a ‘binning’ effect (see Fig. 1d) but would not correct bias.
A possible reason for the systematic slope mismatch could be due
to small scale surface roughness detected by GLAS but not modelled
in FLIGHT. A second potential explanation for the slope underesti-
mate is due to an apparent small but systematic underestimate in
modelled waveform temporal width which is based on published
instrument parameters.

Choice of optimum solution set size n was not clear from the sites
investigated and varied between parameter and site. It was observed
that solution set medians remained relatively similar as n increased.
However, variances about the means of the solution sets were found
to increase as n increased. For this study, a value n = 10 was cho-
sen over n = 1 so that an indicator of solution uncertainty could
be determined, while also minimising uncertainty around the esti-
mated parameter. Furthermore, high values of n (e.g. n > 1000)
significantly impact the speed of the calculations.

In addition to uncertainties due to instrument and model errors,
a significant source of error was attributed to the combination of
returns from both vegetation and ground elevations, that occur due
to the size of the illuminated footprint and as a function of ground
slope (Harding and Carabajal, 2005). Ancillary topographic informa-
tion (e.g. SRTM or ASTER DEM) may provide a means to preselect
LUT waveforms to significantly increase the accuracy and efficiency
of retrieval (Mahoney et al., 2014). Furthermore, where this LUT used
fixed values for ground and canopy reflectance, a more comprehen-
sive LUT implementation might vary these parameters and then use
methods (Armston et al., 2013; Chen et al., 2014) to derive these
reflectance parameters directly from the LiDAR waveform, again for
the purpose of preselecting LUT waveforms.

A third source of error can be directly attributed to the LUT
design. Inspection of the waveform fit plots revealed that original
choice of canopy parameters in some cases was not sufficient to span
the full range found in the study sites, in particular where a lower
canopy stratum could result in confusion with a ground return. Koetz
et al. (2007) also report that the good performance of their model
inversion was likely due to a two strata canopy simulation within
their formulation. However the approach presented here allows flex-
ible specification of structure, allowing a wider range of parameters
or easily permitting more complex structures such as row-crop or
two-strata canopy structures in a LUT.

6. Conclusion

This study has developed and evaluated a new method for
parameter retrieval from satellite waveform LiDAR based on inver-
sion of the three-dimensional FLIGHT radiative transfer model. A
lookup table approach is developed allowing complex canopy opti-
cal properties and multi-scale structure, instrument laser emitted
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Fig. 7. Southern Old Aspen: Chi-Square estimated parameters against airborne LiDAR derived parameters: a) Fractional cover, and b) Maximum height. Circles represent the mean
of possible set of size n solutions, and error bars represent the uncertainties related to the model inversion and are given by the standard deviation of the set of n possible solutions.

Table 9
Southern Old Aspen: Chi-Square summary statistics for solution sizes n = 1, 10, 100.
Parameter Sy was left out of analysis as elevation change within the GLAS footprint
was insignificant.

Parameter Chi-Square

n = 1 n = 10 n = 100

R2 0.00 0.01 0.07
Htop MAE 4.36 3.97 3.35

Bias (m) −4.23 −3.70 −3.25
R2 0.34 0.17 0.10

Fc MAE 0.22 0.21 0.20
Bias −0.19 −0.18 −0.18

signal and its return detection, to provide a physically-based simul-
taneous retrieval of forest structural parameters, terrain slope and
their uncertainty. A sensitivity study suggested potential accuracy of
retrieval of forest height from GLAS data of ≈1.5 m, and fractional
cover of 8%.

Testing using real GLAS waveforms over three forest sites demon-
strated that the method for forest canopy parameter retrieval from
satellite waveform LiDAR was robust to cover type (Table 8). For the
Forest of Dean site which had the nearest fitting GLAS and ALS cov-
erage (Oct 2005 vs Oct 2006), three parameters were estimated to
a high level of accuracy with height: MAE = 3.71 m; R2 = 0.74,
fractional cover: MAE = 0.10; R2 = 0.50 and ground slope: MAE =
3.78◦; R2 = 0.56. This showed improvement over previous retrieval
for this site using the same data as input (Rosette et al., 2009). Other
sites showed good height retrieval (MAE = 3.3–5.1 m) but lower R2

due in part to lower within-site variability compared to retrieval
errors.

Results are in part dependent on the use of an appropriate LUT
for the canopy being measured, although the canopy height retrieval
appeared relatively robust to leaf-on/leaf off conditions and snow vs
bare ground. The method could include available ancillary informa-
tion such as ground slope or vegetation type in order to optimise
performance where these are known. The results suggest that the
method used in this study is at least comparable to existing tech-
niques and also offers the further advantage of being able to retrieve
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Fig. 8. Norunda: Chi-Square estimated parameters against airborne LiDAR derived parameters: a) Fractional cover, and b) Maximum height. Circles represent the mean of possible
set of size n solutions, and error bars represent the uncertainties related to the model inversion and are given by the standard deviation of the set of n possible solutions.
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Table 10
Norunda: Chi-Square solutions summary statistics for solution sizes n = 1, 10, 100.
Parameter Sy was left out of analysis as elevation change within the GLAS footprint
was insignificant.

Parameter Chi-Square

n = 1 n = 10 n = 100

R2 0.16 0.28 0.24
Htop MAE 6.00 5.22 5.13

Bias 2.77 3.75 3.39
R2 0.10 0.09 0.13

Fc MAE 0.23 0.23 0.24
Bias −0.20 −0.20 −0.22

multiple parameters simultaneously, including sub-canopy terrain,
and readily adaptable to future planned spaceborne LiDAR instru-
ments (Dubayah et al., 2014; Montesano et al., 2015).
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