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Remote sensing technology can rapidly provide spatial information on crop growth status, which ideally
could be used to invert radiative transfer models or ecophysiological models for estimating a variety of
crop biophysical properties. However, the outcome of the model inversion procedure will be influenced by
the timing and availability of remote sensing data, the spectral resolution of the data, the types of models
implemented, and the choice of parameters to adjust. Our objective was to investigate these issues by
inverting linked radiative transfer and ecophysiological models to estimate leaf area index (LAI), canopy
weight, plant nitrogen content, and yield for a durum wheat (Triticum durum) study conducted in central
Arizona over the winter of 2010–2011. Observations of crop canopy spectral reflectance between 268 and
1095 nm were obtained weekly using a GER 1500 spectroradiometer. Other field measurements were regu-
larly collected to describe plant growth characteristics and plant nitrogen content. Linkages were developed
between the DSSAT Cropping SystemModel (CSM) and the PROSAIL radiative transfer model (CSM-PROSAIL)
and between the DSSAT-CSM and an empirical model relating NDVI to LAI (CSM-Choudhury). The PEST
parameter estimation algorithm was implemented to adjust the leaf area growth parameters of the CSM by
minimizing error between measured and simulated NDVI or canopy spectral reflectance. A genetic algorithm
was implemented to identify the optimum combination of remote sensing observations required to optimize
simulations of LAI through model inversion. The relative root mean squared error (RRMSE) between mea-
sured and simulated LAI was 24.1% for the CSM-PROSAIL model, whereas the stand-alone PROSAIL and
CSM models simulated LAI with RRMSEs of 40.7% and 27.8%, respectively. Wheat yield was simulated with
RRMSEs of 12.8% and 10.0% for the lone CSM model and the CSM-PROSAIL model, respectively. Optimized
leaf area growth parameters for CSM-PROSAIL were different among cultivars (pb0.05), while those for
CSM-Choudhury were not. Only two observations, one at mid-vegetative growth and one at maximum
vegetative growth, were required to optimize LAI simulations for CSM-PROSAIL, whereas CSM-Choudhury
required four observations. Inverting CSM-PROSAIL using hyperspectral data offered several advantages as
compared to the CSM-Choudhury inversion using a simple vegetation index, including better estimates of
crop biophysical properties, different leaf area growth parameter estimates among cultivars (pb0.05), and
fewer required remote sensing observations for optimum LAI simulation.

Published by Elsevier Inc.
1. Introduction

Remote sensing instruments are routinely used to monitor agri-
cultural fields from tractor-mounted, airborne, and satellite platforms
(Davies, 2009; Xie et al., 2008). Typically, these instruments measure
the amount of light reflected from the crop scene after incoming radi-
ation has interacted with the crop canopy and underlying soil back-
ground. A remaining challenge for agricultural and remote sensing
scientists is to understand how this information can be effectively
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utilized to characterize biophysical properties of the crop canopy,
forecast crop yield, and guide agricultural resource management for
water and nitrogen fertilizer. One approach is to use the remote sens-
ing observations for inversion of physical or ecophysiological simula-
tion models.

A numerical model for a given system is typically designed to con-
vert system attributes to observable quantities. For example, the
PROSAIL radiative transfer model uses plant canopy attributes and
solar geometry to simulate canopy spectral and bidirectional reflec-
tance at a given time (Jacquemoud et al., 2009). Model inversion uti-
lizes an optimization algorithm to do the reverse, using the observed
data to infer the system attributes. Several studies have used ob-
served canopy spectral reflectance to invert the PROSAIL model and
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Table 1
Nitrogen fertilizer application schedule (kg ha−1) for the five nitrogen rate treatments
in the 2010–2011 wheat experiment.

Date N1 N2 N3 N4 N5

Jan 18 0 18 36 65 94
Feb 9 0 13 24 36 48
Mar 25 0 24 36 48 71
Apr 11 0 24 36 48 71
Total 0 79 132 197 284
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estimate crop biophysical properties, such as leaf chlorophyll content
(Botha et al., 2007, 2010) and leaf water content (Yang & Ling, 2004).
Also, Goel and Strebel (1983) demonstrated the inversion of the Suits
model to estimate leaf area index (LAI) based on infrared canopy
reflectance. Although model inversion offers a reasonable way to
estimate system attributes from remote sensing observations, the
procedure is not without challenges and risks. One concern is that
due to incomplete knowledge of system processes, simplifications in
model design, and input parameter error, different configurations of
a model may provide equally reasonable results, a condition known
as equifinality (Luo et al., 2009). Such problems have been reported
for inversions of many simulation models, including PROSAIL
(Jacquemoud, 1993; Jacquemoud et al., 1995). To address this con-
cern, Combal et al. (2003) showed that PROSAIL model inversions
could be improved with adequate model constraint using known,
prior information. In this study, we aim to provide such constraint
using results from an ecophysiological model that simulates the inter-
relationship between crop growth processes and the environment.

The complementary nature of remote sensing and ecophysiologi-
cal modeling has been known since their inception (Wiegand et al.,
1979). Maas (1988) has demonstrated how satellite remote sensing
data could be used to invert a sorghum (Sorghum bicolor (L.) Moench)
growth model and greatly improve the simulated yield. However,
remote sensing and ecophysiological modeling technologies have
largely been developed independently from each other. For example,
the Cropping Systems Model (CSM), as provided in the Decision
Support System for Agrotechnology Transfer (DSSAT), is an ecophys-
iological model that simulates crop growth and development pro-
cesses and the effects of soil water and nutrient status on crop yield
(Jones et al., 2003). However, the model does not simulate any pro-
cesses related to the interaction of radiation within the crop canopy.
Likewise, although PROSAIL can simulate crop canopy spectral and
bidirectional reflectance, the model does not simulate any processes
related to crop, water, or nutrient dynamics. More recently, radiative
transfer models have been explicitly linked to ecophysiological models
through common state variables, particularly the LAI (Guerif & Duke,
2000; Koetz et al., 2005; Prevot et al., 2003). This approach has resulted
in more comprehensive models capable of simulating the temporal
canopy spectral reflectance response as well as the underlying crop,
water, and nutrient processes of the cropping system.

Establishing links between radiative transfer and ecophysiological
models offer several advantages for model inversion applications that
involve remote sensing observations. The radiative transfer model
aids ecophysiological model parameterization and permits model
inversion by providing a direct link to easily observable reflectance
characteristics of the crop canopy. Simulation results from the ecophys-
iological model can then be used to constrain the input parameters of
the radiative transfer model and permit estimation of crop yield and
other biophysical variables that cannot be estimated with radiative
transfer model inversion alone. The ecophysiological model also per-
mitsmodel inversion based on time series remote sensing observations,
rather than static, point-in-time measurements.

In designing a model inversion strategy for linked radiative trans-
fer and ecophysiological models, a plethora of procedural questions
arise, including which model parameters to adjust, which parameters
to constrain, which spectral wavelengths to use, and which time
series remote sensing observations to incorporate. First, ecophysio-
logical models are typically complex with many input parameters
available for adjustment. We hypothesize that the model inversion
scheme should focus on adjusting parameters that directly affect the
crop states shared between the ecophysiological and radiative trans-
fer model. Second, increasing availability of hyperspectral instrumen-
tation permits collection of narrow-band spectral reflectance data
(Green et al., 1998; Rodriguez et al., 2011). However, it is unclear
whether the additional spectral information offers an advantage for
model inversion problems as compared to common broad-band
vegetation indices, such as the normalized difference vegetation
index (NDVI). Finally, the timing and availability of remote sensing
observations will affect the performance of model inversion proce-
dures and the accuracy of the estimated crop biophysical properties.
Few studies have investigated these aspects of model inversion
based on canopy spectral reflectance data.

The overall objective of this work was to investigate the use of
model inversion procedures to estimate crop biophysical properties
through linked ecophysiological and radiative transfer models. We
focus on estimation of LAI, canopy weight, plant nitrogen content,
and yield for a durumwheat (Triticum durum) crop in central Arizona.
Estimates of these crop properties with the inverted, linked models
are compared with those from inversions of the stand-alone radiative
transfer models (for LAI only) and from simulations with the stand-
alone ecophysiological model (DSSAT-CSM). Secondarily, we assess
the added value of hyperspectral information for model inversion
by testing two radiative transfer models: one simulates full spectrum
reflectance (PROSAIL) and another is based on NDVI (Choudhury
et al., 1994). Finally, we investigate the issue of remote sensing data
availability by implementing a genetic algorithm to find the set of
remote sensing observations that optimally estimates LAI using our
model inversion approach.

2. Materials and methods

2.1. Field experiment

A wheat experiment was conducted at the University of Arizona's
Maricopa Agricultural Center (MAC) near Maricopa, Arizona
(33.067547°N, 111.97146°W) over the winter of 2010–2011. A split
plot design with four replications of six wheat cultivars as main treat-
ments and five nitrogen fertilizer applications rates as sub-treatments
was used for the experiment. Wheat cultivars included Duraking,
Topper, Kronos, Havasu, Orita, and Ocotillo. Wheat was planted on
December 15, 2010 with a row spacing of 19.05 cm. Urea nitrogen
fertilizer was applied at the rates given in Table 1 using a portable fer-
tilizer spreader. A Sudan grass cover crop was grown in the summer
of 2010 to remove excess nitrate from the soil. The entire experimen-
tal area was flood irrigated to avoid water deficits. The total depth of
irrigation water was 951 mm, applied in 9 irrigation events from
December 15, 2010 to May 4, 2011. Irrigation water provided approx-
imately 5 kg ha−1 of nitrate at each irrigation event. Precipitation
amounted to 29.3 mm over the growing season. The soil texture at
the site was predominantly sandy loam and sandy clay loam, as deter-
mined by textural analysis of soil samples collected after planting.

2.2. Biomass and yield measurements

Wheat plants were destructively sampled from the 120 experi-
mental plots on four dates: January 18, February 24, March 22, and
April 7 of 2011 (Table 2). Plants in two 0.5 m row lengths within
each plot were cut at the soil surface and immediately placed in
coolers. Within 24 h, wheat plants were dissected into component
plant parts, including leaves, stems, and boots. The total leaf area
of each sample was measured using an area meter (model 3100,



Table 2
Means of plantmeasurements, including leaf area index (LAI), canopyweight (biomass;
Mg ha−1), and plant nitrogen (N, %), among wheat cultivars for the five nitrogen rate
treatments on four sampling dates. Mean grain yield (Mg ha−1) among wheat cultivars
is also given for each nitrogen rate treatment.

Date N1 N2 N3 N4 N5

LAI Jan 18 0.06 0.08 0.07 0.05 0.06
LAI Feb 24 0.33 0.67 0.91 1.15 1.39
LAI Mar 22 1.07 1.83 2.25 1.91 3.64
LAI Apr 7 1.21 2.01 2.48 3.08 3.83
Biomass Jan 18 0.12 0.13 0.12 0.12 0.12
Biomass Feb 24 0.64 1.03 1.15 1.43 1.78
Biomass Mar 22 2.13 3.61 4.77 5.46 6.03
Biomass Apr 7 3.48 6.27 8.19 8.97 10.14
Plant N Jan 18 3.16 3.25 3.33 3.25 3.16
Plant N Feb 24 1.95 2.14 2.39 2.71 3.16
Plant N Mar 22 1.12 1.08 1.29 1.36 1.39
Plant N Apr 7 0.56 0.70 0.78 0.84 1.12
Yield Jun 2 1.69 3.60 4.91 6.54 7.02

226 K.R. Thorp et al. / Remote Sensing of Environment 124 (2012) 224–233
Li-Cor, Lincoln, Nebraska), and LAI was calculated from these mea-
surements. Plant biomass was oven dried to obtain the dry weight
of each sample. The dried biomass was then finely ground, and
samples were prepared for analysis of nitrogen content. A Carlo
Erba elemental analyzer (model NA1500 N/C, Carlo Erba Instruments,
Milan, Italy) was used to obtain the percent nitrogen content of each
plant sample. The mature crop was harvested with a plot combine on
June 2, 2011. A sample of grain was oven dried to estimate dry grain
weight for each plot.

2.3. Radiometric measurements

Leaf area index was also measured on a weekly basis using a Li-Cor
Plant Canopy Analyzer (model LAI-2000, Li-Cor, Lincoln, Nebraska).
Since the instrument requires diffuse conditions for accurate read-
ings, the measurements were typically collected either in the early
morning or late afternoon hours and an umbrella was used to block
the direct solar beam. Five below-canopy readings were taken be-
tween two above-canopy readings.

Ground-based radiometric measurements were collected weekly
over each experimental plot using a portable field spectroradiometer
(GER 1500, Spectra Vista Corp., Poughkeepsie, New York). Additional
measurements were collected over a bare soil area within the exper-
imental field. Information was collected in 512 narrow wavebands
from 268 to 1095 nm with bandwidth ranging from 1.5 to 2.1 nm.
The instrument was equipped with an 18° field-of-view fiber optic.
A wand constructed from PVC tubing was used to position the fiber
optic at a nadir view angle approximately 1.8 m above the soil sur-
face. Spectral measurements typically occurred in the morning
around the time of a 57° solar zenith angle, which insured consistent
canopy bidirectional reflectance effects over the course of the entire
growing season. Frequent radiometric observations of a calibrated,
0.6 m2, 99% Spectralon panel (Labsphere, Inc., North Sutton, New
Hampshire) were used to characterize solar irradiance throughout
the data collection period. Canopy reflectance factors in each
waveband were computed as the ratio of the canopy radiance over
the corresponding time-interpolated value for solar irradiance. Reflec-
tance factors from three radiometric measurements over each experi-
mental plot were averaged to estimate the canopy spectral reflectance
of the plot on each measurement date.

2.4. Radiative transfer models

Two radiative transfermodels, including themethod of Choudhury
et al. (1994) and the PROSAIL model (Jacquemoud et al., 2009), were
used to link the canopy spectral reflectance data to DSSAT-CSM simu-
lations of wheat growth.
2.4.1. Choudhury method
The method of Choudhury et al. (1994) is based on the well-

known normalized difference vegetation index (NDVI). Fractional
vegetation cover (f) is computed from NDVI using:

f ¼ 1− NDVImax−NDVI
NDVImax−NDVImin

� �1=ζ
ð1Þ

where NDVI measurements are rescaled according to the bare soil
index (NDVImin) and the full vegetation cover index (NDVImax). The
parameter ζ is a function of canopy leaf angle distribution with values
near 1.4 for erectophile canopies and near 0.8 for planophile canopies.
Leaf area index (LAI) is computed from (f) according to:

LAI ¼ ln 1−fð Þ
−β

ð2Þ

where β is a second function of leaf angle distribution that ranges
from 0.42 to 0.91. To parameterize the Choudhury model, ζ and β
were adjusted to minimize error between model-estimated and
field-measured LAI. The resulting parameter values, 1.78 for ζ and
0.66 for β, were used for all subsequent Choudhury model calcula-
tions in this study.

2.4.2. PROSAIL
The PROSAIL canopy reflectance model was developed by linking

the PROSPECT leaf optical properties model and the SAIL canopy bidi-
rectional reflectance model (Jacquemoud et al., 2009). PROSAIL uses
14 input parameters to define leaf pigment content, leaf water con-
tent, canopy architecture, soil background reflectance, hot spot size,
solar diffusivity, and solar geometry. Leaf pigment content is defined
by the chlorophyll a and b content (Cab; μg cm−2), carotenoid content
(Ccr; μg cm−2), and brown pigment content (Cbp). Leaf water content
is defined as the equivalent water thickness (Cw; cm). Canopy archi-
tecture is defined using four parameters, including the leaf dry matter
content (Cm; g cm−2), leaf structural coefficient (N), leaf area index
(LAI), and average leaf inclination angle (θl; degrees). Solar geometry
is characterized by the solar zenith, observer zenith, and solar azi-
muth angles. Based on these inputs, the model calculates canopy bidi-
rectional reflectance from 400 to 2500 nm in 1 nm increments.

For stand-alone PROSAIL inversion and for linkage to the ecophys-
iological model, we focused primarily on the Cab and LAI parameters.
All other parameters were either held constant or specified from
measurements (Fig. 1). The Ccr and Cbp parameters were fixed at
20.0 μg cm−2 and 0.0, respectively. Equivalent water thickness was
fixed at 0.02 cm based on the work of Botha et al. (2010) for wheat
in Canada. Leaf dry matter content was fixed at 0.006 g cm−2 based
on our biomass measurements. The structural parameter, N, and the
average leaf inclination angle were manually adjusted to improved
PROSAIL inversion results for LAI. Resulting parameter values, 1.35
for N and 59° for θl, were within the ranges given by Botha et al.
(2010) and Jacquemoud (1993) and were used for all subsequent
PROSAIL simulations in this study. The soil background reflectance
parameter was determined from bare soil reflectance observations on
each measurement date. The solar diffusivity parameter was fixed at
15% based on observations of a shaded versus sunlit Spectralon panel
during the field study. The hot spot size parameter was fixed at 1.0.
By implementing the solar position algorithm of Reda and Andreas
(2004), solar zenith angles were calculated from the timestamp of
each radiometric observation in the field. Observer zenith and solar
azimuth angles were both fixed at 0°.

2.5. Ecophysiological model

The DSSAT Cropping System Model (CSM; ver. 4.5.1.005) is an
ecophysiological model that programmatically synthesizes current
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Fig. 1. Model inversion using a linked ecophysiological model (DSSAT-CSM) and radiative transfer model (PROSAIL). The Parameter ESTimation (PEST) algorithm was used for
adjusting the DSSAT-CSM parameters for leaf area growth potential (P1, P2, and P3) to minimize error between measured and simulated canopy spectral reflectance. DSSAT-
CSM simulated LAI and plant nitrogen (N) provided information to PROSAIL for spectral reflectance simulations.
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knowledge of cropping system processes (Jones et al., 2003). The
model utilizes mass balance principles to simulate the carbon, nitro-
gen, and hydrologic processes and transformations that occur within
a cropping system. Simulations of crop development and growth for
over 25 crop species are possible, but we implemented only the
CSM-CROPSIM-CERES-Wheat model to simulate wheat growth and
development for the experimental conditions of our field study. The
CSM calculates cropping system processes within a homogeneous
area on a daily time step, and certain subprocesses are computed
hourly. Crop development proceeds through a series of growth stages
based on heat unit accumulation from planting to harvest. Photosyn-
thesis is computed using a radiation use efficiency approach in CSM-
CROPSIM-CERES-Wheat. Assimilated carbon is partitioned to various
plant parts, including leaves, stems, roots, and grain. Simulated
plant growth responds to variation in management practices, cultivar
selection, soil properties, and meteorological conditions (Fig. 1). Man-
agement inputs required for model execution include plant popula-
tion, row spacing, seed depth, planting dates, fertilizer application
amounts and dates, and irrigation application amounts and dates.
Cultivar parameters define day length sensitivity, heat units needed
to progress through growth stages, and growth potentials for specific
plant parts. Soils are defined by their water retention and conductiv-
ity characteristics, bulk density, pH, and initial conditions for water,
inorganic nitrogen, and organic carbon. We implemented the FAO-
56 option for evapotranspiration calculations, which requires daily
inputs for minimum and maximum temperature, solar radiation,
wind speed, and dew point temperature. The model simulates plant
stress effects from deficit and excess soil water conditions and from
deficit soil nitrogen conditions, which feedback on the daily plant
growth simulation.

All crop management inputs for crop planting, irrigation, and
nitrogen fertilizer applications were specified as performed during
the field investigation. Initial soil water content was set near the
lower limit due to the arid conditions of our field site, and initial
soil nitrogen contents were low due to cover crop usage in the sum-
mer preceding the field experiment. Soil water retention and hydrau-
lic parameters were specified based on a textural analysis of soil
samples at the site. The Rosetta pedotransfer functions (Schaap
et al., 2001) were used to calculate the required soil input parameters
from textural information. Meteorological data were obtained from
an Arizona Meteorological Network (AZMET; http://ag.arizona.edu/
azmet/) station approximately 100 m from the field site. For baseline
simulations with the CSM, several cultivar parameters were manually
adjusted to improve simulated crop growth and development as
compared to field observations. These parameters were set based on
the average condition of all six cultivars in the field study. The vernal-
ization (P1V) and day length sensitivity (P1D) parameters were
adjusted to values of 30 and 35, respectively, to improve simulations
of anthesis date as compared to observed. The interval between
successive leaf tip appearances (PHINT) parameter was adjusted to
100 °C d to improve simulations of leaf number as compared to ob-
served. Also, the kernel number (G1) and kernel size (G2) parameters
were adjusted to 26 kernels and 26.5 mg, respectively, to minimize
error between measured and simulated yield for the highest (non-
stressed) fertilizer rate treatment.

2.6. Model linkages

As described by Thorp et al. (2010), the CSM-CROPSIM-CERES-
Wheat model calculates LAI as an area-based output variable after
first calculating crop states at the scale of individual plants. Thus, the
linkage of the CSM to each radiative transfer model was established
immediately after calculating LAI from total plant leaf area. The
Choudhury et al. (1994) model was implemented by programming
CSM to back-calculate NDVI from its LAI state variable using Eqs. (1)
and (2). This permitted the CSM to calculate NDVI as an output on
each timestep (CSM-Choudhury). Both the CSM and PROSAIL have
been developed in the Fortran programming language, which simpli-
fied their linkage. The Fortran code for CSM and PROSAILweremerged
and compiled as a single executable file (CSM-PROSAIL). The link from
CSM to PROSAIL was established by using CSM's LAI and leaf nitrogen
state variables to specify the LAI and Cab parameters in PROSAIL
(Fig. 1). Based on data given in Evans (1983), the CSM leaf nitrogen
state variable (g cm−2) was converted to Cab (μg cm−2) using a mul-
tiplication factor of 233,000. This permitted the CSM to simulate
canopy bidirectional reflectance between 400 and 2500 nm on a
daily basis given that other required PROSAIL model parameters
were also specified.

2.7. PEST algorithm

Model inversion procedures were conducted using the Parameter
ESTimation (PEST) software developed by Doherty (2005). PEST was
used to adjust CSM's leaf area growth potentials to minimize error
between measured and simulated canopy spectral reflectance for
the CSM-PROSAIL model (Fig. 1). Model inversion procedures were
similar for the CSM-Choudhury model, with the exceptions that the
Choudhury et al. (1994) model replaced PROSAIL and that PEST min-
imized error between measured and simulated NDVI. Three cultivar
parameters govern the leaf area growth potential in CSM-CROPSIM-
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CERES-Wheat, including the area of the standard first leaf (LA1S,
cm2), the vegetative phase leaf area adjustment factor (LAFV), and
the reproductive phase leaf area adjustment factor (LAFR). We set
PEST to optimize LA1S and LAFV, while LAFR was tied to LAFV such
that their resulting optimized parameter values were identical. LA1S
was allowed to vary between 0.5 and 2.5 cm2. LAFV was allowed to
vary from 0.01 to 3.00. Limits for these parameters were chosen
using a sensitivity analysis to assess their impact on simulated LAI.
We also attempted to adjust other CSM parameters, such as the
plant population, the potential specific leaf weight, the growth stage
durations, and the soil fertility factor. However, preliminary PEST
results demonstrated that the leaf area growth potentials were the
most effective CSM parameters for this optimization problem. There-
fore, we finally focused on optimizing only the three parameters that
define the leaf area growth: LA1S, LAFV, and LAFR.

2.8. Genetic algorithm

Inversion of the CSM-Choudhury and CSM-PROSAIL models and
accuracy of the estimated crop biophysical properties were expected
to be heavily influenced by the timing and availability of remote sens-
ing observations. Field outings with the GER 1500 spectroradiometer
resulted in 16 observations of canopy spectral reflectance in each
plot, which were collected on a near weekly basis. Observations
were available on the following days after planting: 30, 34, 42, 48,
54, 61, 69, 71, 77, 83, 91, 97, 105, 113, 119, and 125. To assess the
impact of observation timing and availability, a genetic algorithm
was implemented to find the set of remote sensing observations
that optimally estimated LAI through inversion of CSM-Choudhury
and CSM-PROSAIL. We focused on selecting the observations that op-
timized LAI, because it was likely the most fundamental state variable
affected by adjusting the leaf area growth parameters during model
inversion.

To set up the genetic algorithm, a chromosome with 16 1-bit
genes was established, one gene for each remote sensing observation
date. Each bit indicated whether the remote sensing observation from
its respective date should or should not be included in the PEST opti-
mization (Fig. 1). A two-point crossover method was used with a
crossover rate of 0.90, and a bit flip mutation method was used
with a mutation rate of 0.06. The population size was 47. For further
constraint, the algorithm was seeded with the optimum results of
model inversions based on all possible combinations of one, two,
and three remote sensing observations. The algorithm was allowed
to run for 100 generations, although the optimum set of remote sensing
observations was usually found within 5 generations. Results for CSM-
Choudhury and CSM-PROSAIL are reported for the set of remote sensing
observations that achieved the optimum LAI simulation results.

To summarize, we used the genetic algorithm to select which
remote sensing observations to include in the model inversion proce-
dure (Fig. 1). Actual adjustment of the model parameters to minimize
error between measured and simulated NDVI or canopy spectral
reflectance was accomplished with the PEST optimization algorithm,
described in the previous section.

2.9. Analysis

The Choudhury et al. (1994) and PROSAIL radiative transfer
models provided a link between CSM-simulated LAI and canopy spec-
tral reflectance, such that we could use model inversion to optimize
leaf area growth simulations based on remote sensing observations
of wheat canopy spectral reflectance. We assessed the value of this
approach for estimating key crop biophysical properties, including
LAI, canopy weight, plant nitrogen content, and crop yield (Fig. 1).
We also compared results between the linked models and their
stand-alone components. The following assessments were made
using data for each treatment in the field study:
• Choudhury alone — The ζ and β parameters in the Choudhury et al.
(1994) model were adjusted to minimize error between model-
estimated and field-observed LAI. The NDVI was calculated by aver-
aging GER 1500 canopy spectral reflectance observations within the
Landsat TM wavebands for red (630 to 690 nm) and near-infrared
(760 to 900 nm) radiation. This approach only provided an estimate
of LAI.

• PROSAIL alone — PEST was implemented to invert the PROSAIL
model by adjusting the LAI and Cab parameters to minimize error
between simulated and observed canopy spectral reflectance from
400 to 900 nm. This approach provided an estimate of LAI and Cab.

• CSM alone — Stand-alone CSM simulations provided baseline esti-
mates for LAI, canopy weight, plant nitrogen content, and wheat
yield without any PEST optimization. Only the manual parameter
adjustments described previously were incorporated in these simu-
lations. Leaf area growth potentials were left at default values, and
the model was not parameterized to simulate any cultivar differ-
ences. Only fertilizer management differences were simulated.

• CSM-Choudhury — PEST was implemented to invert the CSM-
Choudhury model by adjusting CSM's leaf area growth potentials
to minimize error between measured and simulated NDVI through
the Choudhury et al. (1994) model linkage. Observed NDVI was
calculated by averaging the GER 1500 canopy spectral reflectance
observations within the Landsat TM wavebands for red (630 to
690 nm) and near-infrared (760 to 900 nm) radiation. The genetic
algorithmwas implemented to find the set of remote sensing obser-
vations that optimally estimated LAI through model inversion.

• CSM-PROSAIL — PEST was implemented to invert the CSM-PROSAIL
model by adjusting CSM's leaf area growth potentials to minimize
error between measured and simulated canopy spectral reflectance
observations from 400 to 900 nm through the PROSAIL linkage
(Fig. 1). The genetic algorithm was implemented to find the set of
remote sensing observations that optimally estimated LAI through
model inversion.

Results for LAI were evaluated by calculating the relative root
mean squared error (RRMSE) between measured and simulated LAI
on dates with LAI-2000 Plant Canopy Analyzer measurements. For
canopy weight and plant nitrogen content, the RRMSE between mea-
sured and simulated values was calculated on biomass collection
dates. The RRMSE between measured and simulated yield was also
computed. The R statistical software (www.r-project.org) was used
to conduct an analysis of variance and Tukey's multiple comparisons
test on the optimized leaf area growth parameters resulting from
inversion of CSM-Choudhury and CSM-PROSAIL.

3. Results and discussion

3.1. LAI observations

Since LAI was a key variable in this study, we measured it using
two field methods, one based on readings from the Li-Cor LAI-2000
Plant Canopy Analyzer and the other based on processing of biomass
samples. A primary advantage of the Li-Cor LAImeterwas its relatively
quick and easymeasurement protocol, whereas processing of biomass
sampleswas quite labor-intensive and time-consuming.Wewere able
to estimate LAI on a weekly basis with the Li-Cor LAI meter, whereas
biomass samples were collected and processed only four times
throughout the growing season. Since the Li-Cor LAI data were more
plentiful, we used these data to evaluate the model simulations.
Fig. 2 compares LAI observations from the Li-Cor meter and from bio-
mass sampling for the four days when estimates of LAI from biomass
samples were available. The RMSE between LAI observations for
these two field methods was 0.52. We concluded that the Li-Cor LAI-
2000 Plant Canopy Analyzer could reasonably estimate LAI and could
be used for further evaluation of model simulations.

http://www.r-project.org
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Fig. 2. Leaf area index (LAI) measured with the Li-Cor LAI-2000 Plant Canopy Analyzer
versus the LAI estimated through processing of wheat biomass.

Table 3
Relative root mean squared error (%) between measured and modeled leaf area index
(LAI), canopy weight (biomass), plant nitrogen (N), and wheat yield.

Choudhury
alone

PROSAIL
alone

CSM
alone

CSM-
Choudhury

CSM-
PROSAIL

LAI 29.4 40.7 27.8 24.8 24.1
Biomass – – 18.6 13.4 14.4
Plant N – – 50.7 38.1 36.8
Yield – – 12.8 12.4 10.0
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3.2. Estimating LAI

Relationships betweenmeasured and simulated LAI for each of the
five modeling scenarios is given in Fig. 3. The stand-alone Choudhury
model provided reasonable LAI estimates over the entire growing
season (Fig. 3a) with a 29.4% RRMSE between measured and modeled
LAI (Table 3). Relative to the othermodeling scenarios, the Choudhury
et al. (1994) model performed well, although its usefulness is limited
only to LAI estimation. The stand-alone PROSAIL model inversion
performed relatively poorly and had a tendency to overestimate LAI
in the early season (LAIb2) and underestimate LAI in the mid to late
season (LAI>2) (Fig. 3b). As corroborated by Botha et al. (2010), the
overestimation of LAI in the early season may be related to PROSAIL's
assumption of canopy homogeneity. The RRMSE between measured
and modeled LAI was 40.7% for PROSAIL alone (Table 3). Simulations
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Fig. 3. Modeled versus measured leaf area index (LAI) for the a) Choudhury model alone, b
PROSAIL linked model.
of LAI with the stand-alone CSM model were reasonable with a
RRMSE of 27.8% (Table 3). However, the model tended to underesti-
mate LAI observations between 1.5 and 2.5 (Fig. 3c). This issue was
remediated using remote sensing data to adjust the leaf area growth
potentials through the radiative transfer model linkages (Fig. 3d
and e).

Simulations of LAI with the inverted CSM-Choudhury model were
good with a RRMSE of 24.8% (Table 3). Similar results were obtained
with the inverted CSM-PROSAIL model, which estimated LAI with a
RRMSE of 24.1%. Scatter plots of measured and simulated LAI from
both the inverted CSM-Choudhury model and the inverted CSM-
PROSAIL model fit well to the one-to-one line (Fig. 3d and e). Notably,
the inversion of CSM-PROSAIL estimated LAI better than either CSM
or PROSAIL alone. Likewise, the inversion of CSM-Choudhury estimat-
ed LAI better than either CSM or the Choudhury model alone. This
demonstrated the usefulness of the linkages between the radiative
transfer and ecophysiological models. The temporal LAI simulation
from CSM provided constraint to the PROSAIL model that was not
available for inversions of PROSAIL alone. Likewise, PROSAIL provided
the physical model necessary for adjusting CSM's leaf area growth
parameters based on canopy spectral reflectance information. To-
gether, the models were able to estimate LAI with greater accuracy
than either model alone.

3.3. Estimating canopy weight

Canopy weight was estimated with RRMSEs of 18.6%, 13.4%, and
14.4% for the stand-alone CSM model, the CSM-Choudhury inversion,
(c)(c)(c)(c)(c)
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and the CSM-PROSAIL inversion, respectively (Table 3). Again,
inverting the linked radiative transfer and ecophysiological models
provided better estimates of canopy weight than simulations with
CSM alone. The stand-alone CSM model used identical cultivar pa-
rameters to simulate all the treatments in the study, as demonstrated
by the lack of variability in modeled results (Fig. 4a). By using remote
sensing data to adjust the leaf area growth parameters for each
unique treatment, we were able to account for cultivar differences
that we did not simulate with CSM alone (Fig. 4b and c). The model
inversion proceduremay have also compensated for error in the spec-
ification of applied fertilizer rates for each nitrogen treatment. Use of
remote sensing observations to adjust CSM's leaf growth parameters
led to improved simulations of LAI (Fig. 3), and this improvement
subsequently led to better estimates of canopy weight (Fig. 4) even
though canopy weight was not explicitly used to constrain the radia-
tive transfer model (Fig. 1). This further highlights an advantage of
linking DSSAT-CSM with the radiative transfer models.

3.4. Estimating plant nitrogen content

Plant nitrogen contentwas simulatedwith RRMSEs of 50.7%, 38.1%,
and 36.8% for the stand-alone CSMmodel, the CSM-Choudhury inver-
sion, and the CSM-PROSAIL inversion, respectively (Table 3). Simula-
tions of plant nitrogen content with the stand-alone CSM model
were quite poor (Fig. 5), especially in the early growing season
when observed plant nitrogen contents were greater than 2%. Simula-
tions of plant nitrogen content tended to reach a minimum threshold
in the early season, which may be attributable to the tendency of the
stand-alone CSM model to overestimate canopy weight at values less
than 2 Mg ha−1 (Fig. 4a). Since plant nitrogen content is the ratio of
plant nitrogen mass over canopy weight, overestimation of canopy
weight at a given level of nitrogen uptake resulted in a minimization
of plant nitrogen content. By using remote sensing data to adjust the
simulations of LAI, improvements in the canopy weight simulations
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Fig. 5. Modeled versus measured plant nitrogen (N) content for the a) CSM alo
also improved themodel's ability to simulation plant nitrogen content
(Fig. 5b and c).

The coefficient of determination (r2) between the leaf-level chlo-
rophyll content (Cab) from stand-alone PROSAIL model inversion
and field-measured plant-level nitrogen content was 0.07 (not
shown). To assess the reason for this poor relationship, we compared
the Cab from PROSAIL model inversion with the Cab calculated from
CSM-PROSAIL simulations of leaf nitrogen content using the relation-
ship of Evans (1983). Results demonstrated an issue with the stand-
alone PROSAIL model inversion procedure, similar to what has been
reported elsewhere (Jacquemoud et al., 1995). Approximately 20%
of the PROSAIL model inversions resulted in an optimized Cab param-
eter value of 150 μg cm−2 (Fig. 6), which was the upper limit im-
posed for parameter optimization at outset. Increasing this upper
limit would result in optimized Cab parameter values much higher
than realistically anticipated. Decreasing the upper limit would likely
cause a higher percentage of Cab parameter values to be optimized to
the upper limit value, which reduces the value of inverting PROSAIL.
When inverting the linked CSM-PROSAIL model, the Cab parameter
was restrained by the physics of crop growth and nitrogen processes
contained in the CSM. This resulted in Cab parameter values that were
more stable and realistic around 59 μg cm−2 (Fig. 6).

3.5. Estimating wheat yield

A primary benefit of the linkage between radiative transfer and
ecophysiological models is the ability to estimate (and ideally predict)
crop yield based on remote sensing observations throughout the grow-
ing season. Our results showed that the radiative transfer model link-
ages did improve CSM simulations of wheat yield with RRMSEs of
12.8%, 12.4%, and 10.0% for the stand-alone CSM model, the CSM-
Choudhury inversion, and the CSM-PROSAIL inversion, respectively
(Table 3). Since the stand-alone CSM model was calibrated for yield
simulations of the highest, non-stressed nitrogen treatment,
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Table 4
Treatment means for the optimized leaf area growth parameters (LA1S, LAFV, and
LAFR) from inversion of CSM-Choudhury. Letters indicate statistically significant
groups at the 0.05 significance level. Results for LAFV and LAFR are identical, because
we linked these parameters in the PEST optimization.

LA1S LAFV LAFR

Cultivar
Duraking 1.228 a 0.330 a 0.330 a
Topper 1.100 a 0.490 a 0.490 a
Kronos 1.289 a 0.368 a 0.368 a
Havasu 0.931 a 0.491 a 0.491 a
Orita 1.034 a 0.445 a 0.445 a
Ocotillo 1.142 a 0.496 a 0.496 a

Nitrogen rate
N1 1.318 a 0.249 a 0.249 a
N2 1.067 a 0.374 ab 0.374 ab
N3 1.281 a 0.435 abc 0.435 abc
N4 0.995 a 0.534 bc 0.534 bc
N5 0.942 a 0.593 c 0.593 c
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improvements in yield estimation using the radiative transfer model
linkages were most apparent for the lower nitrogen rate treatments
(Fig. 7). Improvements in the LAI simulation (Fig. 3), canopy weight
simulation (Fig. 4) and the plant nitrogen simulation (Fig. 5) by
adjusting leaf area growth parameters using remote sensing observa-
tions ultimately guided the model to improved simulations of wheat
yield (Fig. 7).

3.6. Estimating leaf area growth potential

Further insights into the inversion of CSM-Choudhury and CSM-
PROSAIL were obtained by analyzing the leaf area growth parameters
resulting from PEST optimization. A common problem of model inver-
sion is aberrant optimized parameter values that tend to remain at the
upper or lower boundaries imposed at the outset (Jacquemoud et al.,
1995). This can result in non-normal histograms, similar to that
obtained by inverting the stand-alone PROSAIL model to estimate
Cab (Fig. 6). Out of 60 model inversion exercises for CSM-Choudhury
and CSM-PROSAIL in this study (6 cultivars by 5 nitrogen rates for
each model), 7 (12%) resulted in an optimized leaf area growth pa-
rameter remaining at an upper or lower bound. All of these 7 resulted
from the initial leaf size parameter (LA1S, cm2) remaining at the lower
bound. Six of these occurred for CSM-PROSAIL model inversions at the
lowest two nitrogen rates. The inversion procedure likely pushed the
LA1S parameter down to account for growth reductions at the lower
nitrogen rates.

Statistical analysis of the optimized parameter values demonstrat-
ed differences depending on the wheat cultivar and nitrogen rate. For
CSM-Choudhury, there were differences in LAFV and LAFR among the
(a)
(a)(a)

(a) (b)

0

2

4

6

M
o

d
el

ed
 Y

ie
ld

 (
M

g
 h

a-1
)

(a)
(a)(a)

(a) (b)
(a)

(a)

0 20 2 4 6 8
Measured YMeasured Yield (Mg ha-1)

(a)

a) b)8

Fig. 7. Modeled versus measured wheat yield for the a) CSM alone, b)
nitrogen rates (pb0.05); however, there were no differences in LA1S
(Table 4). No differences were found for any of the three parameters
among the wheat cultivars. This means the inversion of CSM-
Choudhury mainly adjusted for error in the nitrogen simulation rath-
er than accounting for any cultivar differences. Highlighting the
added value of using the full canopy reflectance spectrum, the LAFV
and LAFR parameters optimized for CSM-PROSAIL were statistically
different among several of the wheat cultivars (pb0.05, Table 5). Dif-
ferences in canopy spectral reflectance among the cultivars allowed
the inversion procedure to find unique parameters for Duraking and
Kronos cultivars as compared to Topper and Ocotillo. Given that we
used the inversion procedure to adjust three cultivar parameters in
the model, the finding of statistically different parameters based on
crop cultivar is encouraging. However, no differences were found for
the LA1S parameter with CSM-PROSAIL. Among the nitrogen rates, all
three parameters showed differences with CSM-PROSAIL (pb0.05). In
particular, parameters for the lowest and highest nitrogen rate treat-
ments were statistically different for all three parameters.

Further statistical analysis focused on the combined set of optimized
parameters for CSM-Choudhury and CSM-PROSAIL. This showed statis-
tically significant parameter values for LA1S, LAFV, and LAFR among the
two model types (pb0.05, Table 6), and no statistical differences were
found between cultivars and nitrogen rates in this case. LA1S defines
the initial potential leaf size, whereas LAFV and LAFR define fractional
increase in potential leaf size during the vegetative and reproductive
growth phases, respectively. For CSM-Choudhury, the initial potential
leaf size was higher than for CSM-PROSAIL. However, the fractional
increase in potential leaf size was higher for CSM-PROSAIL than for
CSM-Choudhury. Thus, although the leaf potential size was initially
smaller for CSM-PROSAIL, it had greater potential to increase as the
growing season progressed. Although the model inversion procedure
resulted in two different parameter sets for CSM-Choudhury and
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CSM-Choudhury linked model, and c) CSM-PROSAIL linked model.



Table 5
Treatment means for the optimized leaf area growth parameters (LA1S, LAFV, and
LAFR) from inversion of CSM-PROSAIL. Letters indicate statistically significant groups
at the 0.05 significance level. Results for LAFV and LAFR are identical, because we linked
these parameters in the PEST optimization.

LA1S LAFV LAFR

Cultivar
Duraking 0.868 a 0.550 a 0.550 a
Topper 0.726 a 0.861 b 0.861 b
Kronos 0.935 a 0.553 a 0.553 a
Havasu 0.683 a 0.746 ab 0.746 ab
Orita 0.772 a 0.662 ab 0.662 ab
Ocotillo 0.591 a 0.842 b 0.842 b

Nitrogen rate
N1 0.536 a 1.285 a 1.285 a
N2 0.672 ab 0.589 b 0.589 b
N3 0.849 ab 0.533 b 0.533 b
N4 0.809 ab 0.565 b 0.565 b
N5 0.946 b 0.541 b 0.541 b
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CSM-PROSAIL (Table 6), the simulation result for LAI was essentially the
same (Fig. 3, Table 3). This is an example of equifinality. Future work
should focus on refining the optimization protocol to minimize this
kind of problem. For example, the choice of parameters to optimize,
the upper and lower limits for these parameters, the type of remote
sensing information used, and the dates of observations relative to
crop growth stage are all factors that could influence the performance
of the optimization and lead to nonuniqueness of parameter estimates.

3.7. Observation availability

Maximizing the number of remote sensing observations did not
lead to the best crop property estimates from model inversion proce-
dures. Results of the genetic algorithm demonstrated that only four
and two observations were needed to optimize the LAI simulation
with CSM-Choudhury and CSM-PROSAIL, respectively. For CSM-
Choudhury, the four optimum observations were collected at 77, 97,
113, and 125 days after planting. These dates corresponded to
wheat development from terminal spikelet to the beginning of grain
fill on approximately a two week basis. At 77 days after planting,
the wheat crop was at terminal spikelet with approximately seven
leaves initiated. Ninety-seven and 113 days after planting roughly
marked maximum vegetative growth and anthesis (flowering), re-
spectfully. At 125 days after planting, the wheat had just begun filling
grain. For CSM-PROSAIL, the two observations required for optimum
Table 6
Treatment means for the optimized leaf area growth parameters (LA1S, LAFV, and
LAFR) resulting from inversion of both the CSM-Choudhury and CSM-PROSAIL models.
Letters indicate statistically significant groups at the 0.05 significance level. Results for
LAFV and LAFR are identical, because we linked these parameters in the PEST
optimization.

LA1S LAFV LAFR

Model
CSM-Choudhury 1.121 a 0.437 a 0.437 a
CSM-PROSAIL 0.762 b 0.703 b 0.703 b

Cultivar
Duraking 1.048 a 0.440 a 0.440 a
Topper 0.913 a 0.675 a 0.675 a
Kronos 1.112 a 0.461 a 0.461 a
Havasu 0.807 a 0.619 a 0.619 a
Orita 0.903 a 0.554 a 0.554 a
Ocotillo 0.866 a 0.669 a 0.669 a

Nitrogen rate
N1 0.927 a 0.767 a 0.767 a
N2 0.870 a 0.481 a 0.481 a
N3 1.065 a 0.484 a 0.484 a
N4 0.902 a 0.549 a 0.549 a
N5 0.944 a 0.567 a 0.567 a
LAI simulations were collected at 77 and 105 days after planting,
thus both models required an observation at 77 days after planting.
This day corresponded to roughly half of maximum LAI for the high
nitrogen rate treatment (Fig. 8). At 105 days after planting, the
wheat was one week beyond peak vegetative growth and one week
prior to anthesis. Clearly, remote sensing observations at mid-
vegetative and maximum vegetative growth were key. Saturation of
NDVI early in the season was a likely reason for CSM-Choudhury re-
quiring twice as many remote sensing observations as CSM-PROSAIL.
At 77 days after planting, the NDVI had already reached 94% of its
maximum value, while LAI had only reached 51% of its maximum
(Fig. 8). The additional information available in the full spectrum
scan permitted fewer required remote sensing observations for
model inversion as compared to NDVI.

3.8. Spectral considerations

Inversion of CSM-PROSAIL offered several advantages as compared
to inversion of CSM-Choudhury. Although the results were not substan-
tially different, CSM-PROSAIL estimates of LAI, plant nitrogen, and yield
were closer to measurements than that for CSM-Choudhury (Table 3).
Only for canopy weight were the CSM-PROSAIL estimates worse than
CSM-Choudhury. Also as mentioned above, CSM-PROSAIL inversion
led to statistically significant estimates of leaf area growth potential
among wheat cultivars (Table 5), where as CSM-Choudhury did not
(Table 4). Since leaf area growth potentials are cultivar parameters in
the CSM model, ability to estimate differences among several crop
cultivars using model inversion is a positive finding. Finally, CSM-
PROSAIL required half as many remote sensing observations as CSM-
Choudhury to achieve these better results. These examples demonstrate
positive advantages of using full spectrum data for model inversion as
compared to simple vegetation indices.

Despite this favorable result, there is still need for further investi-
gation into the nature of the CSM-PROSAIL linkage as well as the pro-
tocol for using hyperspectral information for model inversion. For
example, we have previously discussed the fact that CSM simulates
plant nitrogen content (g cm−2) whereas PROSAIL requires Cab
(μg cm−2). The two quantities are related (Evans, 1983), but this
aspect of the linkage is not as explicit as that for LAI. There is also
opportunity to expand the number of parameters that CSM provides
to PROSAIL. For simplicity, we constrained the CSM-PROSAIL linkage
to the two parameters for which we had field measurements. How-
ever, CSM could likely also provide PROSAIL an estimate of leaf dry
LAI
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matter content (Cm; g cm−2), and it may be possible to estimate leaf
water content or leaf inclination angle from CSM's water stress simu-
lation. CSM-PROSAIL model inversions may also be enhanced by
using a strategic subset of spectral wavelengths in the PEST optimiza-
tion or by incorporating a multivariate analysis of the spectral data
prior to model inversion. Future work should focus on identifying
key spectral wavelengths and assessing how various spectral band
combinations would influence the inversion process.

4. Conclusions

Several past studies have shown that model inversion based on
remote sensing observations can improve estimates of LAI and crop
yield. Many of these studies focused on using simple vegetation indi-
ces for inversion of simple crop growth models. We show that model
inversion can also be advantageous through linkages of more complex
radiative transfer and ecophysiological models, such as PROSAIL and
the DSSAT-CSM respectively. Inversion of these linked models based
on remote sensing observations can lead to better estimates of leaf
area index (LAI), canopy weight, plant nitrogen content, and crop
yield as compared to either model alone. In particular, we highlight
that our model inversion approaches were able to improve simula-
tions of the plant nitrogen balance and leaf chlorophyll content,
since most earlier studies have focused on LAI and yield rather than
nitrogen.

A minimum of two remote sensing observations provided opti-
mum model inversions for some cases. One observation at mid-
vegetative growth and another betweenmaximum vegetative growth
and anthesis was enough to optimize LAI for the inversion of CSM-
PROSAIL based on full spectrum data. However, additional measure-
ments may be required if simpler vegetation indices are used. Since
our remote sensing data set was limited to 16 dates, there is opportu-
nity for further investigation into how timing and availability of
observations affect the model inversion performance.

Use of hyperspectral observations offers several advantages for
model inversion, including better estimation of most crop biophysical
properties, statistically different cultivar parameter estimates, and
fewer required remote sensing observations. Further efforts are needed
to understand how to optimally utilize the hyperspectral data, particu-
larly how selection of alternative waveband combinations might affect
the model inversion performance.

Future studies should also focus on exploration of alternative
protocol for model inversion. We chose to maintain simplicity by
adjusting only three parameters that govern the leaf area growth pro-
cess. However, LAI is certainly also affected by the parameters that
govern the crop development simulation. A more comprehensive
model inversion procedure might independently adjust parameters
that affect both the magnitude and the timing of LAI growth. Better
approaches for setting the upper and lower bounds on these parame-
ters are also needed, since model inversion performance can be quite
sensitive to this.
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