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An accurate temporal and spatial characterization of errors is required for the efficient processing, evaluation,
and assimilation of remotely-sensed surface soil moisture retrievals. However, empirical evidence exists that
passive microwave soil moisture retrievals are prone to periodic artifacts which may complicate their application
in data assimilation systems (which commonly treat observational errors as being temporally white). In this
paper, the link between such temporally-periodic errors and spatial land surface heterogeneity is examined. Both
the synthetic experiment and site-specified cases reveal that, when combined with strong spatial heterogeneity,
temporal periodicity in satellite sampling patterns (associated with exact repeat intervals of the polar-orbiting
satellites) can lead to spurious high frequency spectral peaks in soil moisture retrievals. In addition, the global
distribution of the most prominent and consistent 8-day spectral peak in the Advanced Microwave Scanning
Radiometer — Earth Observing System soil moisture retrievals is revealed via a peak detection method. Three
spatial heterogeneity indicators — based on microwave brightness temperature, land cover types, and long-term
averaged vegetation index — are proposed to characterize the degree to which the variability of land surface is
capable of inducing periodic error into satellite-based soil moisture retrievals. Regions demonstrating 8-day
periodic errors are generally consistent with those exhibiting relatively higher heterogeneity indicators. This
implies a causal relationship between spatial land surface heterogeneity and temporal periodic error in remotely-
sensed surface soil moisture retrievals.

1. Introduction 2014; Crow et al., 2009; Komma et al., 2008) and both continental

(Crow and Zhan, 2007; Walker and Houser, 2004) and global-scale

Within the past two decades, extensive efforts have been aimed at
enhancing remote estimation of surface soil moisture. Currently, several
global space-borne soil moisture products are available from a series of
satellite-based passive and/or active microwave sensors. The accurate
characterization of global satellite-derived soil moisture products is
crucial for multiple hydrological (Srivastava et al., 2013; Wagner et al.,
2007a), meteorological (Koster et al., 2004; Seneviratne et al., 2010),
agricultural (Bolten et al., 2010; Engman, 1991; Lakhankar et al.,
2009a), and natural hazardous (Lacava et al., 2005) applications.
Especially in hydrological data assimilation community, the inclusion
of satellite-based soil moisture observations has drawn great attention
for the purposes of catchment rainfall-runoff (Alvarez-Garreton et al.,

(Reichle and Koster, 2005; Reichle et al., 2004, 2007) land surface
modeling.

Recently, Su et al. (2013a, 2015) presented a spectrally-based ap-
proach for evaluating satellite-derived soil moisture retrievals which
builds upon a semi-empirical water balance model and operates in the
frequency domain. Based on this approach, they identified periodic
error components in passive microwave retrieved soil moisture Level 3
(gridded) retrieval products acquired from both the Advanced Micro-
wave Scanning Radiometer — Earth Observing System (AMSR-E) and the
Soil Moisture and Ocean Salinity (SMOS) missions, suggesting the need
to consider the presence of temporally-periodic errors when using and/
or evaluating such products. Most land data assimilation approaches
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are based on an assumption of temporally-white and Gaussian-dis-
tributed errors forms (Burgers et al., 1998). Therefore, a thorough ex-
amination of soil moisture retrieval error structure is crucial for not
only properly describing their error characteristics but also their po-
tential implementation within a land data assimilation system (Crow
and Van den Berg, 2010).

Gridded satellite-based soil moisture retrievals are based on the
sampling of adjacent footprints within the same orbital overpass. Three
commonly used interpolation algorithms are: drop-in-bucket, nearest
neighbor, and inverse-distance-squared methods (Chan et al., 2012).
The choice of interpolation algorithm affects the effective antenna
pattern of the spatial support associated with a particular grid box. For
the Soil Moisture Active Passive (SMAP) mission, the averaged half-
power beam-width field-of-view (FOV) size of the inverse-distance-
squared approach is about 40 km. In addition, radiation outside the
half-power beam-width can contribute to the signal — suggesting that
the gridded signal may include significant radiance contributions from
emitters outside the grid (Jackson et al., 2010). For polar-orbiting sa-
tellites with an exact repeat cycle there are periodic variations in the
spatial support of individual grids (due to day-to-day variations in the
exact footprint-averages underlying each grid cell). Over highly het-
erogeneous regions, the impact of this periodic sampling may become
more pronounced and periodic errors may arise which are related to the
periodicity of the sampling pattern.

Additionally, passive microwave observations are potentially con-
taminated by man-made radio frequency interference (RFI). RFI can
obscure (relatively weaker) geophysical emission associated with land
source variables like soil moisture (Daganzo-Eusebio et al., 2013; Njoku
et al., 2005). In addition to the spatial heterogeneity in natural land
surface signals, RFI sources observed over land areas are typically fixed
in space (Njoku et al., 2005) which may lead to periodic errors in sa-
tellite-based retrievals as these sources are re-sampled periodically.
From this point of view, a satellite-derived soil moisture product with
consideration of the contributing factor of RFI should be analyzed to
expose the origins of periodic errors.

In practice, a simple ad hoc low pass filter (i.e., a 5-day moving
average) adopted by Wagner et al. (2007b) and Draper et al. (2009) has
been shown to slightly improve the quality of satellite-based soil
moisture retrievals. Nonetheless, this empirical method is arbitrary and
only effective for dampening very short-term fluctuations (i.e., 2-day
periodic errors). Recent experimental studies have shown that ana-
lyzing the soil moisture time series in the frequency domain can provide
supplementary insights with regard to its conjugate time domain (Katul
et al., 2007). For example, Du (2012) used the high-pass Fourier filter to
keep small temporal scale soil moisture signals in the directly observed
emissivity time series, while filtering out the mixture signals of vege-
tation phenology in the low frequency component (Moody and
Johnson, 2001; Scharlemann et al., 2008) and long-term soil moisture
trends. However, such a method requires not only the accurate ex-
traction of high-frequency soil moisture signals from sensor direct ob-
servations, but also the availability of an accurate long-term clima-
tology from land surface models or existing satellite-based soil moisture
product. On the other hand, Su et al. (2013a) applied a band-stop filter
to remove the identifiable stochastic and systematic errors in high-
frequency regime and then a low-pass Wiener filter for preserving the
long-term temporal mean and variance. This approach is more physi-
cally realistic and based on the rationale that small time scale soil
moisture dynamics can be simplified into incoming precipitation and
water loss process with brown-like spectrum (Katul et al., 2007; Su
et al., 2013a).

However, the application of any filter comes at the risk of in-
formation loss. For example, when blindly applying the band-stop filter,
high-frequency signal components related to rapid soil moisture
changes following intense rainfall events can also be attenuated.
Therefore, the accurate a priori identification of land surface conditions
associated with spurious high frequency resonances is beneficial for
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efficient and flexible application of the band-stop filter.

To examine the plausible reasons behind the existence of high-fre-
quency peaks and improve our understanding of errors in the satellite-
derived soil moisture time series, this study will focus primarily on the
most prominent and consistent periodicity (8-day) existing in an AMSR-
E soil moisture retrieval product. The spatial distribution of such a
periodic error will be inter-compared to measures of land surface spa-
tial heterogeneity. Section 2 presents the satellite-derived soil moisture
product from the passive microwave AMSR-E sensor via the Land
Parameter Retrieval Model (LPRM) retrieval algorithm, the spectral
analysis of soil moisture, and our peak detection method. Three
straightforward heterogeneity indicators, based on: microwave bright-
ness temperature, land cover types, and long-term averaged Normalized
Difference Vegetation Index (NDVI), are then proposed for character-
izing spatial variability along the land surface. Section 3 evaluates the
spectral characteristics of soil moisture retrievals and explains their
relationship with these heterogeneity indicators. Further discussion of
concerns and potential implications is provided in Section 4, and final
conclusions are presented in Section 5.

2. Materials and methods

A long-term soil moisture product is necessary in order to robustly
investigate periodic errors in satellite-derived soil moisture time series.
Among various microwave sensors and missions, the AMSR-E sensor
onboard the National Aeronautics and Space Administration (NASA)
Aqua provides the longest currently-available source of soil moisture
data (i.e., from June 2002 to October 2011) from a single sensor and is
therefore the primary focus of this study.

2.1. AMSR-E soil moisture product and LPRM retrieval model

2.1.1. AMSR-E basic information

The AMSR-E sensor was a six-frequency dual-polarized passive mi-
crowave radiometer, onboard the NASA Aqua satellite with a 16-day
exact repeat cycle. With a sun-synchronous orbit at an altitude of
705 km, AMSR-E scans the Earth's surface at 1:30 a.m. (descending)/
1:30 p.m. (ascending) local equator overpass time and an incidence
angle of 55°. AMSR-E provided a nearly nine-and-a-half-years long-term
measurement time series from June 2002 to October 2011. Among its
six microwave frequency bands, the spatial resolutions of footprint
measurements at 6.9 GHz (C-band), 10.7 GHz (X-band), and 36.5 GHz
(Ka-band) were 74 X 43 km, 51 X 30 km, and 14 X 8 km, respectively
(Njoku et al., 2003).

Several soil moisture retrieval algorithms have been developed for
AMSR-E brightness temperature (Tp) data. Here, surface soil moisture
(~2cm) and vegetation optical depth are retrieved simultaneously
from C-band Ty via the LPRM (see below for further details). In areas
with significant RFI such as the contiguous United States (CONUS),
Japan, and India, LPRM switches to X-band. Fig. 1a and b shows the
distribution maps of bands that have been utilized for soil moisture
retrieval. Regardless of the band used, AMSR-E ascending and des-
cending half-orbits are separately re-sampled from their original foot-
print resolution to a regular quarter degree grid and then processed
through LPRM to retrieve soil moisture (see below).

2.1.2. Land parameter retrieval model

LPRM uses a forward modeling optimization procedure to solve a
radiative transfer equation without the need for parameter calibration
and other biophysical measurements. The physically-based LPRM (De
Jeu and Owe, 2003; Meesters et al., 2005; Owe et al., 2001) has been
successfully applied to retrieve surface soil moisture from space-borne
passive microwave observations including AMSR-E (Owe et al., 2008)
and SMOS (De Jeu et al., 2009; Van der Schalie et al., 2015; Van der
Schalie et al., 2016). Moreover, the AMSR-E LPRM product has been
well-validated with in situ campaigns (Brocca et al., 2011; De Jeu et al.,
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Fig. 1. Spatial distribution maps of applied bands for AMSR-E LPRM soil moisture retrieval (upper row) and fraction of in-filled data for the period 2003-2011 (bottom row): (a) and (c)

for descending; (b) and (d) for ascending overpasses, respectively.

2008; Draper et al., 2009; Su et al., 2013b) and thoroughly assessed in
previous studies (Al-Yaari et al., 2014; Dorigo et al., 2010; Draper et al.,
2012; Rebel et al., 2012). Here, version 5 of the AMSR-E LPRM soil
moisture product is collected from January 2003 to October 2011.

The LPRM algorithm can simultaneously retrieve surface soil
moisture and vegetation optical depth (VOD) from passive microwave
observations using both horizontally- and vertically-polarized Ty data.
The retrieval scheme is based on solving a radiative transfer model (Mo
et al., 1982) via a nonlinear iterative optimization procedure. The ra-
diation emission T, measured over a land surface with vegetation ca-
nopy can be described as

They = Tserpply + (1 — )T =) + (1 — expy)(A — 0)Te (1 — Iy,
(@)

where the subscript P is H for horizontal or V for vertical polarization,
Ts the thermodynamic soil temperature, e.p) the rough surface emis-
sivity, I'y the vegetation transmissivity, o the single scattering albedo,
and T¢ the canopy temperature. The above equation represents three
terms: the radiation emanated from the underlying soil as attenuated by
the canopy, the upward radiation directly from the overlying vegeta-
tion, and the downward radiation from the vegetation (reflected by the
soil and further attenuated by the vegetation).

The rough surface emissivity is calculated for both polarizations
using the emissivity model developed by Wang and Choudhury (1981)

eran =1 — (1 — Q)R + QRyqry)eeos® @)

where Q and h are the polarization mixing factor and empirical
roughness, respectively, and both are dimensionless parameters. The
smooth surface reflectivity R; is a function of dielectric constant k and
satellite observational incidence angle u and is calculated using the
Fresnel equations. Furthermore, the dielectric constant k is estimated
via the Wang-Schmugge dielectric mixing model (Wang and Schmugge,
1980). Eq. (2) is written for H polarization emissivity. For V polariza-
tion results, the polarization signs should be switched.

The vegetation transmissivity I'y is defined in terms of the VOD 7y
and incidence angle u as

_ —
T =ex (cos(u)) @)

The VOD 7y is directly related to the canopy density, or more spe-
cifically, the vegetation water content. Derived by Meesters et al.
(2005), the VOD is a function of k and the Microwave Polarization

Difference Index (MPDI)

Thovy — Ty
Ty + Than ()]

MPDI =

where MPDI is calculated directly from observed brightness tempera-
tures. By normalizing for temperature dependence, the MPDI becomes
more highly-related to the dielectric properties of the radiating body
including both the canopy and soil emissions (Owe et al., 2008).

Regarding the thermodynamic conditions of vegetation and soil, a
further assumption in the LPRM algorithm is that the soil temperature
and canopy temperature are in isothermal equilibrium.

Ts =T, =T=aly +b. )

For AMSR-E, T is derived from the accompanying Ka-band T}, at V
polarization (Holmes et al., 2009). Atmospheric contributions to sa-
tellite observed Ty are also taken into account following Owe et al.
(2008).

2.2. Ancillary dataset

2.2.1. International Soil Moisture network

The International Soil Moisture network (ISMN) has assembled over
50 operational and experimental soil moisture networks worldwide,
providing a global in situ soil moisture database with uniform data
format and pre-processing quality flags (Dorigo et al., 2013). While
most of the networks are located in northern America and Europe,
limited sites in Asia and Australia are also available. Detailed in-
formation about the ISMN is reported in Dorigo et al. (2011) and
Gruber et al. (2013). The ISMN dataset can be downloaded from http://
ismn.geo.tuwien.ac.at.

For direct comparison with AMSR-E LPRM soil moisture product,
these sparsely distributed in situ soil moisture records are analyzed in
the frequency domain as well. The ISMN soil moisture is originally
recorded along with Coordinated Universal Time (UTC) time and has
been converted to local solar time. To be consistent with the overpass
time of AMSR-E, records are extracted at 02:00 p.m. and 01:00 a.m. for
ascending and descending half-orbits, respectively. Observations are
masked using the quality flag (identified as ‘good’ with ‘G’) and stations
located within the same quarter degree box are averaged for simplicity.
For example, there are 55 stations from three networks collocated
within a quarter degree grid (latitude: 38.375° N, longitude: 120.875°
W), namely COSMOS, FLUXNET-AMERIFLUX, and SOILSCAPE.
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However, only three stations provided measurements during our study
period and are averaged accordingly. Note that the point-scale soil
moisture observation cannot fully represent the footprint satellite re-
trieval and the sampling depth may also introduce differences.
Strategies have been proposed for minimizing the systematic differ-
ences between ground-based measurement and satellite-based re-
trievals, such as computing anomalies through subtracting a moving
window averaging-based climatology (Dorigo et al., 2015; Gruber et al.,
2013). However, since the in situ soil moisture is used only to help
identifying spectral peaks in AMSR-E LPRM soil moisture retrievals,
these strategies have not been applied here.

2.2.2. Land cover—GlobeLand30

Several global land cover maps derived from multiple satellite
sensors are currently available. The sensitivity of microwave emissivity
to soil moisture varies with different land cover variables — in parti-
cular, vegetation optical depth. High spatial resolution surface land
cover maps can thus provide sub-pixel heterogeneity information for
coarse resolution soil moisture products. However, the isolation of
highly mixed land cover types is cumbersome and beyond the scope of
this study. Therefore, the 30-meters high resolution GlobeLand30 da-
taset, based on Landsat data (Chen et al., 2015) is utilized solely for the
visual interpretation of sub-grid spatial heterogeneity finer than the
quarter degree resolution AMSR-E LPRM soil moisture retrievals. Ac-
cording to previous independent accuracy assessments, the Globe-
Land30 has demonstrated an overall accuracy of over 80% (Brovelli
et al., 2015). It can be downloaded from http://globallandcover.com.

2.2.3. Normalized difference vegetation index (NDVI)—MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS)
monthly NDVI (MOD13C2) product is obtained from January 2003 to
December 2011. To be consistent with AMSR-E LPRM soil moisture
retrievals, it has been spatially-aggregated from its original 0.05° grid to
a regular 0.25° resolution. A long-term averaged global NDVI dis-
tribution map is then generated by averaging all quarter-degree
monthly data. The MOD13C2 dataset can be acquired from https://
Ipdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mod13c2.

2.2.4. Land cover type—MODIS

In addition to the high resolution land cover from the GlobeLand30
product, a dominant land cover type map at lower spatial resolution
(0.05°) is acquired from the MODIS yearly Land Cover Type Climate
Modeling Grid (MCD12C1) product in 2011. This product also provides
the sub-grid frequency distribution of land cover types. Three classifi-
cation schemes are included and the primary International Geosphere
Biosphere Programme (IGBP) land cover scheme is selected for further
analysis. IGBP contains 17 land cover classes and has been re-classified
into 9 classes before spatially-aggregated to regular quarter degree
(0.25°). They are: Water, Forest, Shrublands, Grasslands, Cultivated
Land, Wetlands, Artificial Surfaces, Permanent Snow and Ice, and
Bareland. Percentages of difference land cover types are summed for
each quarter-degree box and normalized to [0,100]. The MCD12C1
dataset can be downloaded from https://lpdaac. usgs.gov/dataset_
discovery/modis/modis_products_table/mecd12cl.

2.3. Spectral frequency analysis and peak detection method

2.3.1. Power spectral density estimation

The dynamics of soil moisture is an outcome of interactions between
incoming precipitation, canopy interception, evapotranspiration, sur-
face runoff, lateral flow and groundwater. The near-surface soil
moisture time series consists of both a long-term climatology (low
frequency) and short-term anomaly (high frequency) components
(Entin et al., 2000). The long-term climatology originates from sea-
sonally varying precipitation and solar radiation and can be affected by
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the vegetation phenology, climate change, and instrument drift for sa-
tellite observations. In contrast, the short-term anomalies represent the
process of rainfall instances and dry-down events and are valuable for
analyzing short-term weather extremes (Katul et al., 2007; Wu and
Dickinson, 2004). However, this short-term information is usually
contaminated by observational noises and systematic errors. Here, we
focus on the periodic error in the high-frequency regime which may be
introduced by the satellite orbiting pattern and/or gridding approach.

Following the approach of Su et al. (2013a, 2015), the power
spectral density (PSD, in unit of m®/m® 24 h/rad) of AMSR-E LPRM soil
moisture retrievals at a given grid is estimated using the Welch's
averaged modified periodogram method. This method computes a
modified periodogram for each temporal segment separated by a
moving Hamming window and averages over all estimates to produce a
single PSD. Note that the size of Hamming window can play a role in
determining the PSD estimation. Wider Hamming windows tend to
produce higher spectral resolution in the estimated PSD but greater
uncertainty in the amplitude estimation, while shorter windows pro-
vide coarser spectral resolution but with lower uncertainty in ampli-
tude. The impact of Hamming window size on key results will be
clarified when describing the peak detection method in Section 2.3.4.

Another issue with PSD estimation is satellite overpass time. AMSR-
E has an ascending half-orbit at 1:30 p.m. and descending half-orbit at
1:30 a.m. Considering that the FOV and near-surface thermal condi-
tions (more specifically, the temperature contrast across the soil-vege-
tation-air interface) are quite different for these two half-orbits, soil
moisture retrievals from ascending and descending overpasses have
been separately analyzed with periodic temporal sampling along a 24 h
interval.

In applying the Fourier transform to stationary time series, most
standard PSD estimation algorithms — including Welch's method - re-
quire an evenly sampled dataset in time. However, temporal data gaps
in passive microwave satellite-derived soil moisture product are in-
evitable — primarily due to the satellite orbits, dense vegetation, RFI
contamination, and masking for frozen soil conditions. In this particular
case, AMSR-E LPRM soil moisture retrievals are masked if the com-
plementary VOD levels exceeded 0.8—a level at which the soil radia-
tion is substantially masked out by the canopy (Owe and Holmes, 2008;
De Jeu et al., 2008; Parinussa et al., 2011). Further masking has been
conducted for grids with significant RFI contamination (Li et al., 2004)
and for frozen soil conditions. In order to produce evenly-spaced data
after the application of this masking, the 1-D Discrete Cosine Transform
(DCT) method (Garcia, 2010) is applied for infilling missing values in
the AMSR-E LPRM soil moisture time series. In this study, only grids
with less than 365 observations during the 9-years experiment period
(11%) are omitted to preserve sufficient spatial coverage for global
analysis with indication of highly in-filled regions. The impact of ap-
plying a more stringent minimum coverage threshold is discussed
below. Fig. 1c and d show the fraction of in-filled data in the AMSR-E
LPRM soil moisture product for both descending and ascending re-
trievals. Due to the generally warmer surface conditions during the
ascending (01:30 p.m.) half-orbit (Holmes et al., 2015), the fraction of
data gaps in descending overpasses is slightly higher than their as-
cending counterparts. Additional discussion and an assessment of the
infilling method can be found in Section 4.2 and section A of the sup-
porting materials.

2.3.2. Spectrum characteristics of soil moisture time series

Fig. 2 shows the AMSR-E LPRM and ISMN in situ soil moisture time
series from January 2003 to October 2011 for a single 0.25° grid (la-
titude: 38.375° N, longitude: 120.875° W). Corresponding PSDs are
estimated with two Hamming window sizes (i.e., 1.0 and 8.8 in units of
year).

According to Katul et al. (2007), the soil water balance model dic-
tates that the soil moisture time series exhibits a Brownian spectrum
with more energy at lower frequency and a decrease in power with
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Fig. 2. The soil moisture time series (a and b) and corresponding power spectral density (PSD, ¢ and d) of both ISMN in situ and AMSR-E LPRM soil moisture data at the ascending
overpass time (01:30 p.m.). The infilling fractions of soil moisture data are shown in the brackets and the Hamming window sizes for PSD estimation inside the brackets are in units of
year. From left to right, the dotted vertical lines represent periods at 4-day (blue), 8-day (red), 16-day (green), and 365-day (black). (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)

increasing frequency (Fig. 2¢). Comparing the PSDs of footprint AMSR-
E LPRM soil moisture retrievals and point-scale in situ observations,
significant discrepancies exist at high frequencies. In particular, the
relatively flat power distributions of AMSR-E LPRM soil moisture for
T < 10%h reflect high-frequency noise, which can be introduced by
various short-term stochastic processes contributing to retrieval errors
(Su et al., 2013a). Note that — based on a thorough exploration over
various grids with in situ soil moisture observations — the grid de-
monstrated here is representative for a spectral comparison between
ground-based measurements and satellite-derived soil moisture re-
trievals.

Importantly, several distinct resonant peaks with periods ranging
between 2 and 16 days are sitting on the AMSR-E flat noise floor
(Fig. 2d). Given the lack of known physical processes capable of pro-
ducing such harmonics, these peaks are likely spurious signals char-
acterized by periodic increases in power with these time intervals.
Without consideration of the long-term satellite orbit drift, the repeat
cycle of AMSR-E is 16 days which means that the sensor observes ex-
actly the same region every 16 days. Within this 16-day period, there
are periodic variations in the locations of antenna footprints sampled to
capture a grid-cell mean (as shown in Fig. 3). Our hypothesis is that this
kind of periodic sampling pattern can generate spectral peaks within
highly heterogeneous regions. If true, it implies that spectral peaks can

be connected to strong — and temporally stable — patterns of land sur-
face heterogeneity.

2.3.3. Examining the occurrence of periodic errors

To further facilitate the physical interpretation of the occurrence of
high-frequency peaks, a simplistic synthetic experiment monitoring the
periodic sampling pattern of satellite swaths over different land cover
characteristics has been conducted following the approach illustrated in
Fig. 4. In particular, an Antecedent Precipitation Index (API) model is
applied to generate synthetic soil moisture SM, ; (mm, in a dimension of
water depth) for each sub-grid i at time ¢t

SM[,i = ySlel,i + B i=1, ..,n (6)

where y is a dimensionless API loss coefficient and assumed to be a
constant value as 0.95; n is the total number of sub-grids which is set to
9 (3-by-3), and P, (mm) represents the daily accumulation depth of
random rainfall expressed in dimensions of water depth and generated
from the exponential distribution with mean of 25 mm.

In total, there are five synthetic scenarios (see Fig. 4). The synthetic
“True” soil moisture is generated directly through the API model
without any assumed observational error, while mean-zero Gaussian
distributed random observational error with a standard deviation of
10 mm is added to the other four cases. With the consideration of

t t+2 t+14 t+16 Time

L ] 1 >
1 1 1

+ } +

33°30'N : B 33030'N
33°15'N# 33°15'N
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N N D . | | |
Bareland Crop Forest Grassland Shrubland Urban Water Wetland Footprint with centroid  0.75°x0.75° grid 0.25°x0.25° grid

Fig. 3. An illustration of the time-varying effective spatial support for a single quarter degree grid (centered at 33.125° N, 86.375° W and outlined with a black square) where multiple
adjacent footprints (yellow dotted ellipses) within the same orbital overpass are averaged. The background land cover maps are projected in World Geodetic System (WGS) 1984
Universal Transverse Mercator (UTM) zone 16 North system. Comparing time t and t + 16, the satellite observes exactly the same region. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. Flowchart of synthetic experiments which examine
the combined impact of land surface heterogeneity and
periodic orbital sampling pattern on producing spectral
harmonics.

Ne Observational

€1ror

Land cover
heterogeneity

Periodic
sampling pattern

Periodic
sampling pattern

True Case 1

spatial heterogeneity, a long-term bias in soil moisture within the 3-by-
3 grid box is set up as a random pattern from a mean-zero normal
distribution with a standard deviation of 20 mm. This long-term bias is
meant to represent the systematic land cover and/or soil physical
property variations. Furthermore, the periodic sampling pattern of sa-
tellite footprints is constructed by repeating equally-weighted aver-
aging with different combinations of sub-grids (to account for the drop-
in-bucket method use in the AMSR-E LPRM product). In accordance
with AMSR-E, the repeat cycle is set to 16-days. Through the combi-
nation of these two conditions, four experiments are generated (see
Fig. 4). Here, the differences in mean and standard deviation settings
among precipitation, soil moisture observational error and long-term
bias only represent their scaling differences and proportionally re-
scaling these statistical moments does not affect presented results. Be-
fore the spectral frequency analysis, five synthetic soil moisture time
series (four Cases and “True”) are normalized respectively from their
original climatology to be mean-zero with a standard deviation of one.
These synthetically-generated results will be used to enhance our

t=t+1
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understanding of peak-generating processes within our real-data ana-
lysis. Results from these synthetic experiments will be presented in
Section 3.1.

2.3.4. Detection of 8-day periodic error

With a Brownian spectrum of soil moisture, the increase in power
with decreasing frequency may hinder detection of 16-day peaks in
cases where the true soil moisture signal is stronger than the 16-day
resonance. In addition, spectral peak features in higher frequencies can
be difficult to be distinguished from the high-frequency noise.
Therefore, despite the fact that AMSR-E LPRM soil moisture retrievals
demonstrate several spectral resonances, we will focus on 8-day peaks
as they represent the most prominent and consistent periodic signal.
Detailed peak detection procedures are described below.

To start, the PSD estimations of AMSR-E LPRM soil moisture pro-
duct are conducted using the Welch's method with different Hamming
window sizes. As stated earlier, the window size determines the am-
plitude accuracy and frequency resolution of the PSD. To reach a
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compromise between these two factors, and provide sufficient support
for detecting periodicity in high frequency, the window size is varied
between 270 and 360 days at 10-day intervals. Thus, for each grid,
there are ten separate estimates of PSD. These PSDs and corresponding
frequency series are then transformed into logarithm space for further
analysis. Polynomial interpolation is used to remove the background
Brownian shape of PSD, allowing for more accurate detection of the
peaks. For detecting the most prominent and consistent 8-day peaks,
two thresholds are employed: a) the minimum peak height is no less
than 3-sigma (standard deviation) of the de-trended PSD estimations;
and b) the 8-day peaks are repeatedly detected by at least 5 times (out
of the 10 Hamming window sizes considered at each grid). In addition,
the same peak detection approach is applied for AMSR-E brightness
temperature Tg-derived parameters as described in the following
Section 2.4.1.

2.4. Land surface heterogeneity indicator

The land surface characteristics are extremely variable in both space
and time. Our strategy is based on applying the best available global
descriptions of land surface characteristics from both microwave and
visible/near-infrared remote sensing and comparing these patterns to
maps of 8-day spectral peak presence. Naturally, all heterogeneity de-
scriptions have resolution limitations which prevent them from cap-
turing all sub-pixel scale heterogeneity (Lakhankar et al., 2009b).

2.4.1. Tg-derived heterogeneity indicator

The AMSR-E Ty data are re-sampled onto regular quarter degree
grid using a drop-in-bucket approach. Quarter degree grid-scale
averages are acquired by averaging all footprints — across various scans
and swath cycles — whose geographic centers fall within a grid box for a
given day. Thereby, the spatial coverage of the effective radiating body
can extend beyond the boundaries of each grid box. In fact, according to
Jackson et al. (2010), the main contribution of radiation can come from
a 0.75° x 0.75° box centered at each quarter degree grid. Therefore,
mirroring the land surface parameterization of the LPRM algorithm, a
Tp-derived heterogeneity indicator (TB-HI) is proposed to characterize
the spatial heterogeneity of the underlying land surface (within a cen-
tered 0.75° X 0.75° box) for several adjoining satellite footprints within
the same orbital overpass

HiZy = HYEPT + HYYE + H5E™ @)
where
1 TS, — TS,
HMPPL = std [log(MPDI); j1 = std|log —Zﬁlw i,j
N Tswy,: + T, L
~(1,2,3) (8)
1 < Tg H
HYYE = std[log(MWE);;] = std | log| — Y —P4 | | i, j~(1,2,3)
N t=1 TB(V)J ij
(C)]
HIENP s[d[log(iz[’leggw) ] i, j~(1,2,3)
N ij (10

and std[~] represents the mathematic operation of calculating standard
deviation for a 3 X 3 box (i.e., 0.75° x 0.75°). In Egs. (8)—(10), i and j
are the grid index within the 3 x 3 box, and N is the total number of
sampled time steps. Hs » 3™ is calculated based on the AMSR-E C-
band Ty data and can be a reflection of both the soil and canopy in-
formation (Owe et al,, 2001). Moreover, the effective emissivity
(MWE = Tgpy/T) is used in Eq. (9) to capture the heterogeneity in
emissivity while the Ka-band Ty at V represents the effective surface
temperature T. The spatial variation of temperature is also taken into
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account using Eq. (10). For simplicity, fixed values of MPDI, MWE, and
TB(V)K“ are assigned to water bodies: MPDI = 0.2 (Chen et al., 2011),
MWE = 0.5 (Grody, 1993; Weng, 2010), TB(V)K" =220 (Lin et al., 1998).
The ranges of these heterogeneity components are slightly different,
thus global normalization has been conducted for each component and
Hs . 3™ (unit-less) is further normalized into [0,100] after arithmetic
summation. Note that this heterogeneity indicator is computed directly
from the AMSR-E observed Tp data without any other auxiliary bio-
physical information sources and can be adapted to other microwave
satellite or retrieval algorithms as well. For example, C-band TB(p)C
could be replaced with L-band Ty acquired from the SMOS and
SMAP missions, while surface temperature data could also potentially
be derived from land surface model output.

2.4.2. NDVI-derived heterogeneity indicator

Vegetation canopy plays an important role in observing and re-
trieving soil moisture from space-borne platforms (Jackson et al.,
1982). NDVI is a simple index of vegetation density which can be ap-
plied for depicting the land surface characteristics. To take into account
the canopy, a straightforward NDVI-derived heterogeneity indicator
(VI-HI) is proposed with a form similar to TB-HI

1
HL, = std (—Z}LNDVL)
N L

] i, j~(1,2,3)

an
where the standard deviation (std[~]) of NDVI is calculated for a 3 x 3
box centered at each quarter degree grid. This indicator characterizes
the spatial variability of vegetation density over the average main-beam
FOV of AMSR-E.

2.4.3. Land cover-derived heterogeneity indicator

Different land cover types can demonstrate distinct physical char-
acteristics with varying temporal climatology. Regions with various
land cover types can be quite heterogeneous with regard to satellite-
based soil moisture retrieval. Therefore, a land cover-derived hetero-
geneity indicator (LC-HI) is defined as the number of individual land
cover types contained within a single 0.75° X 0.75° box for each quarter
degree grid

HiG = I((LG 2 10) U (10 > LCygR, > 0))yl k~(1,9) i, j~(1,2,3)

12)
Perc

where |~| denotes the cardinality operator, LC," *" represents the grid
area in percent classified as land cover type k (out of nine classes), and
LCwaeer “is the percentage classified as Water. Open water, with its
high dielectric constant, has a profound impact on the microwave
emission and even small fractions of open water may greatly alter the
Tg observations (Loew, 2008). In this case, LC-HI will increase 1 if there
is open water within the 3 X 3 box. The other land cover classes are
only taken into account when their percentages are larger than 10%.

3. Results

Our main interest is examining the most prominent and consistent
spectral peaks generated from AMSR-E's periodic sampling pattern and
the relationship between theses peaks and the spatial heterogeneity of
the corresponding land surface. To physically explore the occurrence of
high frequency spectral peaks, we begin by presenting both a simple
synthetic experiment (see Section 2.3.3) and a detailed site-specified
analysis using real observations. Subsequently, the global distribution
of the 8-day periodic errors, and their relationship with the spatial
heterogeneity indicators introduced in Section 2.4, is presented.

3.1. Synthetic experiments

Fig. 5 demonstrates the PSD estimations of five synthetic soil
moisture time series (as described in Section 2.3.3). Compared to the
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Fig. 5. High-frequency PSD for soil moisture time series generated by the synthetic “True” case and the synthetic “satellite-based” Cases 1-4. The Hamming window size is set equal to
365 days. The entire PSDs (including lower-frequency components) are shown in the upper left corner. From left to right, the colored dashed vertical lines represent 4-day, 8-day, 16-day,
and 365-day periods. Note that the PSDs of the “True” case and Cases 1-3 are virtually indistinguishable.

“True” scenario, both Case 1 and Case 3 show quite similar spectral
characteristics suggesting that the land cover heterogeneity alone
cannot lead to high-frequency peaks without periodic sampling pattern.
While both Case 2 and Case 4 exhibit a moderate noise floor over the
“True” soil moisture for periods between 2- and 4-days. Particularly,
significant frequency peaks are exposed when the periodic sampling
pattern is combined with spatial heterogeneity in Case 4. The results
suggest that, in the absence of either the spatial heterogeneity or per-
iodic sampling patterns, high frequency peaks cannot be produced.

Additionally, the influence of different re-gridding methods on the
occurrence of spectral peaks has been explored. All PSD estimations of
three re-gridded soil moisture time series have shown notable spectral
peaks, indicating that the peaks are result for a combination of periodic
sampling patterns and stable spatial heterogeneity — regardless of exact
re-gridding method applied (see section B of the supporting materials
for further discussion).

3.2. Site-specified analysis

Fig. 6a and f show land cover maps for two arbitrary 0.75° x 0.75°
grids within North America (hereafter referred as to Sites A and B). Also
shown are the enlarged 3-year time series (from January 2004 to De-
cember 2006) for AMSR-E LPRM soil moisture and corresponding
spectral analysis within each 0.25° X 0.25° grid located at the center of
these 0.75°x 0.75° grids — as outlined by the black boxes. Both sites in
Fig. 6 represent highly heterogeneous land surface conditions. From the
GlobeLand30 land cover map of Site A (latitude: 38.875° N, longitude:
121.125° W), a highly heterogeneous satellite orbit overpassing region
can be observed with large portions of forest and urban land cover.
Meanwhile, the fractions of water bodies, crop, grassland, and shrub-
land land cover types are also non-trivial with a relatively clear spatial
pattern (Fig. 6a). In particular, the urban area is mainly located in the
lower-left corner, while forest covers upper-right corner. Grassland is
mixed with crop, shrubland and water bodies. A strong negative trend
in vegetation density from upper-right to lower-left can be observed.

The soil moisture time series for Site A (Fig. 6b and c¢) demonstrates
a relatively strong seasonal climatology with values varying from 0.01
to 0.5 (m3/m>). AMSR-E LPRM soil moisture retrieval for each quarter
degree grid is generated based as the mean of all swath data whose
footprint centers fall within that particular grid (Owe et al., 2008). The
soil moisture record manifests several significant spectral resonances —
including a significant 8-day peak. Moreover, 4-day and 16-day peaks
are also conspicuous for both overpasses. Given their uses in LPRM
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retrievals, the Tp-derived MPDI and MWE are also analyzed in fre-
quency domain. Similarly, an 8-day peak in MPDI appears in both half-
orbits — suggesting that the spectral peaks in soil moisture retrievals can
be traced back to the MPDI. However, the probability of occurrence and
the relative amplitude of spectral peaks in soil moisture and MPDI are
not exactly the same for each peak. On the other hand, the PSDs of
MWE also show 8-day and 4-day spectral peaks for the ascending
overpass (Fig. 6e) and a 4-day peak for the descending overpass
(Fig. 6d). Therefore, within Site A, strong spatial heterogeneity in land
cover appears capable of generating soil moisture spectral peaks asso-
ciated with the satellite orbiting cycle.

Likewise, Site B (latitude: 34.125° N, longitude: 87.125° W) exhibits
strong spatial land cover heterogeneity (Fig. 6f). Specifically, forest
covers the north-western regions and is mixed with crops and grass-
lands. Small patches of urban and water bodies are sparsely distributed
throughout the scene. The soil moisture time series values range from
0.01 to 0.7 (m®/m?). Despite a lack of strong large-scale spatial varia-
tion, this site also demonstrates heterogeneous land surface character-
istics with different land cover types thoroughly mixed with each other.
Both the ascending and descending soil moisture time series contain 8-
day peaks in the frequency domain (Fig. 6i and j) with the ascending
peak more prominent. For the descending overpass, the more equiva-
lent thermodynamic conditions are beneficial for applying the LPRM
soil moisture retrieval algorithm. A significant 8-day peak in the des-
cending MPDI does not lead to a comparable peak in the soil moisture
retrievals (Fig. 6i). Also, fewer peaks are observed in the PSDs of MWE
compared to Site A. Other factors such as the vegetation density and soil
and canopy effective temperatures in the retrieval process can play a
role in determining the retrieved soil moisture. Specifically, the mi-
crowave radiation emitted from water bodies is quite different from
other land cover types and can strongly impact soil moisture retrievals
(Gouweleeuw et al., 2012).

In contrast to the relatively heterogeneous sites examined in Fig. 6,
Fig. 7 looks at two spatially homogeneous sites (Sites C and D). The two
sites are dominated by grassland and crop cover, respectively. The
coverage fractions of other land cover types are relatively negligible.
Both soil moisture time series depict a relatively small seasonal clima-
tology compared to Fig. 6 without the orbiting cycle-related spectral
peaks. Also, no prominent peaks are observed from the PSDs of both Tp-
derived MPDI and MWE.

By investigating four different sites with various spatial coverages of
land cover types, a possible link between spectral peaks of retrieved soil
moisture and the directly observed Tp can be inferred. The spatial
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Fig. 6. Site-specified demonstrations of high resolution land cover (a and f), descending (b, d, g, and i) and ascending (c, e, h, and j) AMSR-E LPRM soil moisture and brightness
temperature (T). Each land cover map depicts a 0.75° x 0.75° grid centered at different locations (Sites A and B) with the black box outlines the 0.25° X 0.25° grid. Maps are projected in
WGS 1984 UTM coordinate system and latitudes and longitudes of sites are shown as well. Enlargements of the 3-years (from January 2004 to December 2006) time series of soil moisture
retrievals are included for each site and the infilling fractions are shown in the brackets. The spectral analyses are conducted for AMSR-E LPRM soil moisture retrievals and Ts-derived
Microwave Polarization Difference Index (MPDI) and Microwave Emissivity (MWE). The Hamming window sizes for PSD estimations are indicated by units of year in the brackets. Dotted

vertical lines represent three periods at 4-day, 8-day, and 16-day.

heterogeneity combined with systematic orbiting cycle can lead to the
spectral peaks in MPDI and thus soil moisture retrievals.

3.3. Global distribution of spectral peaks

While interesting, results in Figs. 6 and 7 are clearly anecdotal in
nature. In order to examine more general tendencies, global distribu-
tions of the 8-day spectral peaks in LPRM AMSR-E soil moisture re-
trievals are plotted in Fig. 8 for both descending and ascending over-
passes. Regions with high (over 50%) infilling fractions (Fig. 1c and d)
are indicated with different color settings for grids with or without 8-
day spectral peaks.

Generally speaking, the spatial distribution of spectral peaks is si-
milar for both half-orbits. However, relatively more peaks are found in
the ascending half-orbit — 20% versus 17% of the total land grids over
the globe. Both descending and ascending overpasses have demon-
strated notable spectral peaks over densely-vegetated areas of Eastern
CONUS. On the other hand, there exist moderately different distribu-
tions of peaks over Western CONUS. Note that significant discrepancies
of near-surface (soil, canopy and air) vertically thermal profiles can be
observed between the AMSR-E nighttime descending (01:30 a.m.) and
daytime ascending (01:30 p.m.) overpasses. During nighttime, near-
surface isothermal conditions benefit the retrieval of soil moisture from
brightness temperature observations with higher accuracy (Jackson
et al., 2010), yielding fewer spurious spectral peaks in the descending
overpass.

Comparing regions with high infilling fractions (blue and dark
brown in Fig. 8) to those with low infilling fractions (red and light
brown), indicates that the frequency of peak is lower for areas with a
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larger amount of infillings (i.e., 12% versus 24%, and 13% versus 20%
for ascending and descending overpasses, respectively). With increased
infilling fractions, more in-filled data are included for the peak detec-
tion, which leads to an increase in the missed detection of peaks (please
refer to section A of the supporting materials for more details). As a
result, there is no indication that peaks are spuriously created by the
infilling process. Instead, the infilling actually appears to obscure the
expression of peaks.

Additionally, comparing Figs. 8 and 1a or b, the presence of RFI may
impact the occurrence of spectral peaks. See Section 4.1 for additional
discussion on this point.

Fig. 9 shows results for a comparable peak analysis conducted for
the Tg-derived MPDI and MWE. As depicted, both descending (Fig. 9a
and c) and ascending (Fig. 9b and d) half-orbits have a similar spatial
distribution pattern with regard to MPDI or MWE. Overall spatial pat-
terns of 8-day peaks in MPDI are comparable with that in soil moisture
retrievals. However, 8-day peaks in MPDI are relatively more common
than soil moisture peaks in Fig. 8. Comparing to (relatively dynamic)
soil moisture values, MPDI is more likely to respond to temporally-
stable land surface elements, such as land cover type and vegetation
density.

In contrast, MWE maps in Fig. 9 demonstrate relatively fewer peaks
than soil moisture in Fig. 8. MWE as a function of several varying
variables, including water content and soil salinity, changes rapidly
over land surface (Prigent et al., 2006). More specifically, the intensity
and duration of precipitation events modulate the land surface emis-
sivity (Ferraro et al., 2013). Consequently, MWE does not generally
show strong and persistent land surface heterogeneity over the 16-day
exact repeat cycle of AMSR-E sensor. Taken as a whole, Fig. 9 suggests



Remote Sensing of Environment 205 (2018) 85-99

F. Lei et al.
Landcover (30 m) Descending (01:30 a.m.) Ascending (01:30 p.m.)
) ) Site C: Latitude: 30.875° S Longitude: 127.875° E
o1 : —_—_—__,,, S | e
(a) 208 (b) [—LPRM SM in-filled (0.34) —LPRM SM| ,,E - 1(c) [—LPRM SM in-filled (0.32) —LPRM SM|
0.6 {1 Tose 1
Zo04 Zo04
@ 2 (). Bl 204 -
el | .50 ,50
8 =02}
2 20 Z i k.. ", A
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Dec Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Dec
=3 Date S Date
=
2 : g 10° T ; : ERTS T - .
o Fiwm. F £ (d) [_LPRM(8.8) —LPRM(1.0)—MPDI(1.0) —MWE(0)]| £ (e) [_LPRM(8.8) —LPRM(1.0) —MPDI(1.0) — MWE(1.0)]
2 g 10°f : p T 1 S0 : ! B il
~ | 4 M"‘*"' r ~
- o2 Wb, ; Yo %
Eao E 5 i E i i
v T = . : i 2. : H H
LBP4SE  1S0E g 62.1 4d 8d 16d g1 62d 4d 8d 16d
]I Period T (hr) Period T (hr)
Bareland Crop Forest Grassland
Site D: Latitude: 36.125° S Longitude: 142.625° E
Shrubland Urh:‘m Water . Wetland S o
(f) 2 051 (®) [—LPRM SM in-filled (0.30) —LPRM SM]| g osl(h) [—LPRM SM in-filled (0.31) —LPRM SM]|
g0 ghsr
] -
20.6f :
i =
‘ Zoaf i
@ 5]
§_ v+ | =02
L - = =
Z 3 P 0 (5P I P
Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Dec Jan Apr Jul Oct Jan Apr Jul Oct Jan Apr Jul Oct Dec
- Date — Date
- 'g 10* - : - 'g 10° = T . -
@ § = (i) [~ LPRM(8.8) —LPRM(1.0) —MPDI(1.0)  MWE(L.0)]| = i (]) [~ LPRM(8.8) —LPRM(1.0) —MPDI(1.0) — MWE(1.0)|
E [ 5 10 : N o o aad FI0T ' ' b
cE i ] ‘GE
- o ST
g 1 &
| £ a a
142°30'E 142°45'E A B

that MPDI heterogeneity represents the primary source of periodicity in

LPRM soil moisture retrievals.

(a) Descending (01:30 a.m.): 8-day peaks

Period T (hr)

Fig. 7. Same with Fig. 6 except for Sites C and D.

Period T (hr)

3.4. Relating the 8-day periodic error to spatial heterogeneity

To explore the relationship between the presence of an 8-day

spectral peak in

soil moisture retrievals and the land surface spatial

heterogeneity, three heterogeneity indicators are computed for each
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Fig. 8. Global distribution maps of 8-day spectral peaks in the
AMSR-E LPRM soil moisture product for both (a) descending and
(b) ascending half-orbits. Regions with in-filled data below 50%
(89%: over 365 observations during the 9-years experiment
period) are shown in light (dark) brown. Accordingly, grids with
peaks are indicated in blue or red. The percentages of grids with/
without 8-day peaks in regard to the total grids for both des-
cending and ascending overpasses are computed, respectively.
(For interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this article.)
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quarter degree grid (see Section 2.4 above). Fig. 10 shows global maps
of these three heterogeneity indicators, namely TB-HI, VI-HI, and LC-
HI. For each map, larger values indicate larger amounts of land surface
spatial heterogeneity although the valid ranges are different for each
indicator (see Table 1 for details).

The three maps emphasize different aspects of spatial heterogeneity
which results in different distributions of indicator values.
Nevertheless, the spatial distribution of high heterogeneity indicators is
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Table 1

Global means and medians of three heterogeneity indicators under two conditions: with
or without 8-day peaks identified in soil moisture retrievals. Statistics for both descending
(01:30 a.m.) and ascending (01:30 p.m.) half-orbits are calculated. Data in parentheses
are computed for regions with infilling fraction smaller than 50%.

Indicator Descending Ascending Valid range
Yes No Yes No
Mean
TB-HI 15.30 5.70 12.98 6.18 [0 100]
(13.01) (4.89) (11.45) (4.91)
VI-HI 0.06 (0.05) 0.03 0.05 (0.05) 0.03 [0 0.4]
(0.03) (0.03)
LC-HI 2.09 (2.07) 1.66 1.97 (1.94) 1.70 [16]
(1.62) (1.63)
Median
TB-HI 7.29 (6.91) 3.20 6.38 (6.21) 3.22 [0 100]
(3.09) (3.01)
VI-HI 0.04 (0.04) 0.02 0.03 (0.03) 0.02 [0 0.4]
(0.02) (0.02)
LC-HI 2(2) 1) 2(2) 2 (1) [16]

generally consistent with the occurrence of 8-day peaks in the AMSR-E
LPRM soil moisture product (Fig. 8). Regions such as the Amazon and
the Tibetan Plateau have demonstrated a significant relationship that
grids with 8-day peaks have extremely high TB-HI (Fig. 10a). Likewise,
in western CONUS, South America, South Africa, and India, a relatively
close link can be observed. Along the west coast of South America and
over West Central Africa, a comparable distribution of high VI-HI and
grids with 8-day peak is observable (Fig. 10b). LC-HI also shows some
high values for central Southern Africa (Fig. 10c) where 8-day peaks are
frequently detected.

Both VI-HI and LC-HI fail to capture the information over non-ve-
getated landscapes, e.g., North Africa and the Arabian Peninsula. These
two indicators are based solely on relatively coarse-resolution land
cover characteristics and cannot fully represent the land surface
variability. Instead, other factors not captured in the indices, such as
soil texture and roughness, may play a primary role in determining the
heterogeneity for low-vegetated regions.

Table 1 shows the global mean and median values for each of the
three indicators, both for grids with and without 8-day peaks. Under all
circumstances, grids with the 8-day peak are generally associated with
relative higher mean and median values of the heterogeneity indicators.
This further suggests that the occurrence of spectral peaks can be
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Fig. 11. Histograms of three heterogeneity indicators for grids with or without 8-day peaks. Descending and ascending overpasses are separately processed over the globe.

related to the land surface spatial heterogeneity. In addition, Fig. 11
shows the normalized histograms (to [0,100]) of three indicators over
the globe for grids with or without 8-day peaks. Descending and as-
cending overpasses are separately processed and the statistical hy-
pothesis test (Wilcoxon-Mann-Whitney test) has been performed for six
scenarios. All test results indicate that the median of the indicator for
grids with peaks is greater than that for grids without peaks at a 0.001
significance level. This suggests a statistically significant capability for
the three heterogeneity indicators to characterize regions with strong
land surface variability.

For grid cells without peaks, nearly half has the lowest level of
spatial heterogeneity indicators. For example, 61.54% (61.00%) of
grids without peaks in descending (ascending) overpass has a TB-HI
smaller than 4 (Fig. 11a and 11). Conversely, over 74% (71%) of grids
with peaks in descending (ascending) overpass has a TB-HI larger than
4. Similar contrasts can be found for the other indicators. Overall, grids
with higher values of the heterogeneity indicators are more likely to
contain 8-day peaks in soil moisture retrievals.

4. Discussion

The accurate characterization of errors in remotely sensed soil
moisture products is important for satellite calibration/validation ac-
tivities and the development of optimized assimilation approach for
integrating retrievals with hydrologic modeling. In contrast to the
common assumption of temporally white errors, Su et al. (2013a) de-
monstrated that AMSR-E and SMOS gridded soil moisture products over
Australia depict spectral resonances suggesting the existence of periodic
errors. Here, we expanded the time series spectral analysis in Su et al.
(2013a) to a global domain and explored the physical origins of these
periodic errors.

Through the synthetic experiments, the periodic errors can be linked
to the combination of the periodic sampling patterns and the land
surface spatial heterogeneity (Fig. 5). Results of AMSR-E LPRM soil
moisture product further presented a link of spectral peaks existing in
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Tp-derived MPDI and soil moisture retrievals. More specifically, that
spatial heterogeneity within the satellite's field-of-view can lead to the
periodicity in MPDI estimates which are then transmitted into soil
moisture retrievals. As demonstrated in Fig. 8, LPRM soil moisture
derived from both ascending and descending overpasses demonstrate
significant 8-day spectral peaks along coastal areas and some regions
with water bodies, e.g., the Amazon floodplain and areas of central
Australia with ephemeral salt lakes. In addition, regions with spatially-
heterogeneous land cover (e.g., eastern CONUS, South America, Wes-
tern Europe, Peninsular India, and southern China) appear more likely
to have the 8-day peaks.

4.1. Potential role of radio frequency interference

The AMSR-E LPRM soil moisture product is a combined product
which has utilized both C- and X-band Tj to retrieve soil moisture. The
C-band frequency, which is theoretically more sensitive to variations in
soil moisture, is treated as the primary data source. However, over
regions with high RFI contaminations, the retrieval method switches
from C- to X-band (shown in Fig. 1a and b). This strategy can largely
mitigate the influence of strong and spatio-temporally constant RFI.
Fig. 6 shows an illustration of RFI impact at two heterogeneous sites
with contrasting land surface characteristics. For Site A, urban area
covers a large portion of the 0.75°x 0.75° grid and only X-band T has
been utilized for retrieving soil moisture. While the RFI impact has been
eliminated to a great extent, spectral peaks are detected from the cor-
responding soil moisture retrievals (Fig. 6d and e). In contrast, without
significant RFI at Site B, C-band Tp has been applied and periodic errors
still exist (as shown in Fig. 6i and j). This suggests that the periodicity
found in AMSR-E LPRM soil moisture product cannot be attributed to
RFI alone.

On the other hand, in addition to the Tp-derived heterogeneity in-
dicators, another two indicators which are computed from independent
MODIS vegetation index and land cover type information will not re-
flect RFI information. As depicted in Fig. 11, VI-HI and LC-HI have
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demonstrated statistically significant skills in characterizing land sur-
face heterogeneity. Via a pre-defined threshold for each heterogeneity
indicator, VI-HI and LC-HI can partially differentiate grids with peaks
from those without peaks indicating the causal relationship between
spatial variability of natural land surface and the occurrence of peaks.

Nevertheless, similarities between RFI map (Fig. 7a in Njoku et al.,
2005) and ascending spectral peak map (Fig. 8b) can be observed, for
example over CONUS and the western Arabian Peninsula. Note that the
RFI detection method is based on the spectral difference between the
6.9 and 10.7 GHz channels and a threshold should be assigned to de-
termine whether RFI exists or not (Li et al., 2004). Consequently, if RFI
is of low-level or spatially/temporally intermittent (which is often the
real case), it might escape the detection. Moreover, regions with RFI
contaminations are often close to urban areas, where transitions in
architecture and building density, vegetation, and anthropogenic ac-
tivity are thoroughly mixed (Cadenasso et al., 2007). Under such cir-
cumstance, a high heterogeneity of land surface characteristics (in-
cluding both natural and artificial features) can be observed over these
regions and thus lead to more spectral peaks in soil moisture retrievals.
Therefore, RFI can intensify the land surface heterogeneity and increase
the probability of occurrence of spectral peaks in satellite-derived soil
moisture retrievals.

4.2. Impact of the infilling method

To conduct the spectral analysis, the 1-D infilling method was per-
formed to achieve evenly-spaced observations. Given that the infilling
method is based on statistics sampled from the entire time series, the
results retain the autocorrelation structure of soil moisture in the high
frequency domain but in-filled values are smoothed with low frequency
climatology for significant gaps (Wang et al., 2012). Comparing Fig. 1c
or d with Fig. 8, no obvious spatial correlation between the infilling
fraction and existence of 8-day peak can be observed — suggesting that
our infilling approach does not lead to the spurious production of
spectral peaks. Aside from high latitudes near the pole where the in-
terpolation fraction is extremely large and there is less chance of having
8-day peaks, in most regions with small infilling fractions, such as
Western Europe, South America, Africa, and Australia, there is no evi-
dence that the gap infilling has an impact on the frequency of peak
occurrence.

In order to further examine this point, a synthetic control test has
been conducted to explore the impact of infilling fraction. Details can
refer to section A in the supporting materials. The results demonstrated
that, as expected, the accuracy of in-filled soil moisture time series
gradually decreases with increasing infilling fractions. However, no
spurious spectral peaks will be introduced by the infilling method,
suggesting that any spectral peaks detected in the in-filled soil moisture
data are present in the original time series. Further studies may explore
alternative PSD estimation approaches such as the Lomb-Scargle peri-
odogram (Lomb, 1976; Scargle, 1982) or wavelet transform-based
method (Foster, 1996) which do not require evenly-spaced observa-
tions.

4.3. Potential applications

Results in Fig. 8 identified significant periodic error components in
existing soil moisture remote sensing product and globally mapped
their distribution. Removing such systematic error components is a
critical goal of satellite calibration activities and could potentially aid in
the development of optimized gridding and processing procedures. A
global identification map of such periodic errors would also be bene-
ficial for identifying highly heterogeneous regions for the targeted ap-
plication of a band-stop filter (Su et al., 2013a, 2015) for removing the
systematic periodic errors in short-term satellite-derived soil moisture
products.

For short-term available satellite-based soil moisture products, the
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baseline of applying the band-stop filtering is to apply it indis-
criminately to every grid cell. In this case, the majority of grids without
significant frequency peaks can be over-smoothed (because over 80% of
global grid cells lack 8-day soil moisture peaks). Moreover, spatial
heterogeneity may similarly affect other satellite-based products, par-
ticularly when they have similar orbital configurations and retrieval
inputs as AMSR-E LPRM. For satellite records which are too short for
PSD estimation, one option is to utilize a peak distribution map gen-
erated from the long-term (9 + year) AMSR-E soil moisture time series
as the criterion for identifying heterogeneous regions in which to apply
a band-stop filter.

5. Conclusions

Via a synthetic experiment imitating the periodic sampling pattern
of polar-orbiting satellite swaths over various land cover character-
istics, the combination of spatial land surface heterogeneity and peri-
odic orbital sampling pattern are linked to periodic errors in remotely-
sensed soil moisture retrievals (Fig. 5). In data real cases utilizing
AMSR-E LPRM soil moisture retrievals, site-specific studies demonstrate
that the satellite repeat cycle can generate a periodicity in the Tp-de-
rived MPDI and corresponding LPRM soil moisture retrievals (Figs. 6
and 7). By applying the peak detection method, global distribution
maps of 8-day peaks in AMSR-E LPRM soil moisture retrievals and Tp-
derived MPDI and MWE can be generated. Comparisons between these
maps show strong evidence that the satellite orbiting cycle-related
spectral peaks are more likely to occur in highly-heterogeneous land
regions (Figs. 8 and 9). The conclusion is intuitive to understand. The
re-gridding method of satellite observations is usually based on a se-
lection of all footprints within the same orbital overpass covering the
given grid. Due to the progression of the satellite orbit, the track
changes from day to day with an exact repeat cycle and thus introduces
the periodic errors into the sampling over regions with large land sur-
face heterogeneity.

The global identification of the periodic error is of importance for
the data assimilation community and will also support the development
of improved soil moisture re-gridding and post-processing methods. To
globally correlate the occurrence of such spectral peaks with hetero-
geneity in land surface characteristics, three heterogeneity indicators
have been proposed and shown their statistically significant capability
in detecting high-heterogeneous regions with 8-day peaks (Fig. 10,
Fig. 11, and Table 1). The association between heterogeneity indicators
and the occurrence of 8-day periodic errors is compelling evidence of
the causal link between land surface spatial heterogeneity and the
periodic errors in satellite-based re-gridded soil moisture product.

While these heterogeneity indicators have demonstrated statistically
significant skills at a global scale, they do not predict all peaks (and
predict some peaks which to not occur). As a result, further refinement
of these indicators is necessary to make them of immediate value in an
operational retrieval and/or data assimilation context. Nevertheless,
results presented here represent an important first step in this direction
as both synthetic and real data results provide clear evidence of a
general link between land surface spatial heterogeneity and the oc-
currence of periodic errors in AMSR-E soil moisture retrievals.
Additionally, other PSD estimation approaches and soil moisture pro-
ducts using different retrieval algorithms (Kim et al., 2015), such as the
JAXA product retrieved by Japan Aerospace Exploration Agency,
should be included in follow-on analyses.
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