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ARTICLE INFO ABSTRACT

Keywords: The REDD + mechanism of UNFCCC was established to reduce greenhouse gases emissions by means of financial
Time series incentives. Of importance to the success of REDD + and similar initiatives is the provision of credible evidence of
Colombian Amazon reductions in the extent of land change activities that release carbon to the atmosphere (e.g. deforestation). The
Land cover criteria for reporting land change areas and associated emissions within REDD + stipulate the use of sampling-
Deforestation based approaches, which allow for unbiased estimation and uncertainty quantification. But for economic
Landsat pp ’ v 4a
PCC compensation for emission reductions to be feasible, agreements between participating countries and donors
Estimation often require reporting every year or every second year. With the rates of land change typically being very small
relative to the total study area, sampling-based approaches for estimation of annual or bi-annual areas have
proven problematic, especially when comparing area estimates over time. In this paper, we present a metho-
dology for monitoring and estimating areas of land change activity at high temporal resolution that is compliant
with international guidelines. The methodology is based on a break detection algorithm applied to time series of
Landsat data in the Colombian Amazon between 2001 and 2016. A biennial stratified sampling approach was
implemented to (1) remove the bias introduced by the change detection and classification algorithm in mapped
areas derived from pixel-counting; and (2) provide confidence intervals for area estimates obtained from the
reference data collected for the sample. Our results show that estimating the area of land change, like defor-
estation, at annual or bi-annual resolution is inherently challenging and associated with high degrees of un-
certainty. We found that better precision was achieved if independent sample datasets of reference observations
were collected for each time interval for which area estimates are required. The alternative of selecting one
sample of continuous reference observations analyzed for inference of area for each time interval did not yield
area estimates significantly different from zero. Also, when large stable land covers (primary forest in this case,
occupying almost 90% of the study area) are present in the study area in combination with small rates of land
change activity, the impact of omission errors in the map used for stratifying the study area will be substantial
and potentially detrimental to usefulness of land change studies. The introduction of a buffer stratum around
areas of mapped land change reduced the uncertainty in area estimates by up to 98%. Results indicate that the
Colombian Amazon has experienced a small but steady decrease in primary forest due to establishment of
pastures, with forest-to-pasture conversion reaching 103 + 30kha (95% confidence interval) in the period
between 2013 and 2015, corresponding to 0.22% of the study area. Around 29 *= 17 kha (95% CI) of pas-
tureland that had been abandoned shortly after establishment reverted to secondary forest within the same
period. Other gains of secondary forest from more permanent pastures averaged about 12 + 11 kha (95% CI),
while losses of secondary forest averaged 20 = 12kha (95% CI).

1. Introduction human activities whereas intact tropical primary forests sequester an
equal amount (Achard et al., 2014; Goetz et al., 2015; Harris et al.,

Current tropical deforestation has been estimated to account for 2012; Houghton et al., 2012). However, recent research suggests that a
7-14% of the annual CO, emissions released into the atmosphere by reduction in carbon density of tropical primary forest due to
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disturbance exceeds the emissions from deforestation, with the result
that tropical forests are becoming a net source of carbon to the atmo-
sphere (Baccini et al., 2017). The need for a reduction of emissions is
thus more urgent than ever. Efforts to reduce global deforestation have
led to the establishment of international frameworks like the United
Nations Programme on Reducing Emissions from Deforestation and
Forest Degradation (UN-REDD, 2016) that stipulate financial incentives
to countries for reducing carbon emissions from tropical deforestation
and forest degradation. For such frameworks to be successful, robust
approaches that provide estimates of carbon emissions and removals
with proper uncertainty metrics are required (IPCC, 2003). Methods to
estimate carbon emissions and removals in the tropics typically rely on
a gain/loss approach in which emission factors (i.e. carbon content per
unit area per land cover type) and area of land change activities (i.e.
areal extent of human activities that cause emission or removal of
carbon such as deforestation, also called activity data) are multiplied
(GFOI, 2016). Depending on the quantity of information required, and
the degree of analytical complexity, the Intergovernmental Panel on
Climate Change (IPCC) guidelines classifies the methodological ap-
proaches into three different Tiers: Tier 1, or the “default method”,
relies on default emission factors data while Tier 2 requires country-
specific emission factors; at Tier 3, higher-order methods typically in-
clude models and data that address national circumstances, and pixel-
or stand-level tracking of land change activity over time (IPCC, 2003;
GFOI, 2016). For representation of land areas and changes in area and
condition, the IPCC identifies three approaches: Approach 1 does not
include any direct data on land activities but simply country-scale area
estimates of land categories at different times; Approach 2 requires a
land change matrix, but without a spatial representation of the change;
while Approach 3 requires a spatially and temporally explicit re-
presentation of land categories and conversions (GFOI, 2016). Fol-
lowing the Cancun Agreement of the United Nations Framework Con-
vention on Climate Change (UNFCCC), countries that wish to report
carbon emissions and removals under the requirements of IPCC
guidelines need to create a system for Measurement, Reporting and
Verification (MRV) for communication of the mitigation procedures
and estimation approaches (UNFCCC, 2018). The national MRV system
includes approaches for national forest monitoring in accordance with
the IPCC Tier system (IPCC, 2006).

While tropical deforestation and associated carbon emissions have
been extensively studied during the last three decades (Achard et al.,
2002; Baccini et al., 2012; Brown, 1997; DeFries et al., 2002; FAO,
1993; Hansen et al., 2013), the last couple of years have witnessed
remarkable developments in environmental remote sensing. The
opening of the Landsat archive in 2008 (Woodcock et al., 2008) has
allowed for production of global maps of forest cover change (Hansen
et al., 2013; Kim, 2010) and time series analysis of satellite data to
study changes on the land surface (see for example Kennedy et al.,
2010; Verbesselt et al., 2010; Zhu and Woodcock, 2014a, 2014b). New
missions with global acquisition strategies and free data policies are
already in orbit (Sentinel-2A, -2B and Landsat-8) and more are forth-
coming (Landsat-9, -10 and Sentinel-2C, -2D). In addition, statistical
protocols for unbiased estimation of area have become an integral part
of forest and land cover monitoring (McRoberts, 2011; Olofsson et al.,
2013; Stehman, 2013). Together, these advancements enable a more
comprehensive analysis of land change that meets the highest re-
quirements of IPCC for land representation. Still, there are relatively
few studies in the scientific literature focused on the use of these
methods for advancing operational forest monitoring in MRV systems.
Notable exceptions are the Guyana MRV system that conforms to the
IPCC Approach 3 for multiple land cover classes (GFOI, 2016); the
national forest monitoring system of Peru that employs Landsat-based
time series analysis and unbiased estimation of forest cover change
(Potapov et al., 2014); the PRODES system of Brazil (Instituto Nacional
de Pesquisas Espaciais (INPE), 2016) based on manual interpretation of
Landsat imagery; and the Mexican MAD-MEX system (Gebhardt et al.,
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2014) that uses time-series analysis, segmentation and approaches for
statistical inference. Colombia has experienced an increase in forest
monitoring capacity with a Government agency (Instituto de Hi-
drologia, Meteorologia y Estudios Ambientales, IDEAM) dedicated to
the establishment of a forest monitoring system (IDEAM, 2016). The
Colombian system is built upon good practices in remote sensing and
sampling-based estimation, including stratified estimation and im-
plementation of new algorithms that make use of the Landsat archive.
The aforementioned forest monitoring systems are impressive and have
provided valuable information on the state of tropical forests. Still,
what is missing is a system that tracks the conversions between the six
IPCC land categories, including the dynamics of post-disturbance
landscapes, at high temporal and spatial resolution, coupled with un-
biased estimation protocols for provision of biennial estimates of ac-
tivity data.

In this paper we test a methodology for continuous monitoring and
estimation of areas of land cover and land change that is compliant with
IPCC Approach 3 for representation of land. The methodology builds on
recent advancements in the field of environmental remote sensing,
using algorithms for time series analysis (Zhu and Woodcock, 2014a)
and estimation protocols (Olofsson et al., 2014; Stehman, 2013). The
performance of the methodology is tested for the Colombian Amazon
between 2001 and 2016.

2. Study area

The study area corresponds to the Colombian Amazon region as
defined by the Sinchi Amazonic Institute of Scientific Research (Instituto
Amazonico de Investigaciones Cientificas) (Fig. 1). The area, which is
mostly covered by tropical rainforest, makes up more than two thirds of
the forest area of Colombia (Galindo et al., 2014). The Colombian
Amazon contains substantial carbon stocks and is one of the most
biodiverse regions in the world (Asner et al., 2012; Duivenvoorden,
1996; Olson and Dinerstein, 2002; Orme et al., 2005).

While no regional maps of the dynamics and patterns of conversion
between multiple land categories over time are being produced in
Colombia, a few studies have attempted to identify general patterns of
land use. Sanchez-Cuervo et al. (2012) documented vegetation recovery
in the Andes and a significant loss of woody vegetation in the northern
boundary of the Amazon region between 2001 and 2010. Sy et al.
(2015) attributed smallholder crop and mixed agriculture as the main
drivers of deforestation, and underlined the importance of other
wooded lands in the process. These are important findings that high-
light the relevance of monitoring secondary forests and the fate of the
post-disturbance landscape. Armenteras et al. (2006) and Etter et al.
(2006b) identified colonizing agriculture (colonizacién agricola) in the
Colombian Amazon, characterized by pasture establishment and cattle
ranching along the deforestation frontier as the main cause of eco-
system change in the region. Etter et al. (2006a) found that areas that
experienced deforestation were partially offset by regenerating vege-
tation between 1999 and 2002, which was further corroborated by Aide
et al. (2013), again, emphasizing the separation of primary and sec-
ondary forest, and the monitoring of post-disturbance landscapes. These
practices increase the forest fragmentation and make land cover pat-
terns more “patchy”, spontaneous and unplanned than those docu-
mented in the neighboring countries of Brazil and Ecuador (Armenteras
et al., 2006). This, combined with the fact that the rate of deforestation
is less than in Brazil and Ecuador (FAO, 2010), makes the Colombian
Amazon a complex but relevant landscape to test the presented meth-
odology.

3. Methodology
3.1. Time series analysis of land conversion

All available terrain-corrected (L1T), surface reflectance images
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Fig. 1. Study area and Landsat scenes processed. The Landsat WRS-2 path and row are displayed for each scene. The total area of study region is 46,822 kha.
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Fig. 2. Time series of short-wave infrared observations (the SWIR1 band) acquired by Landsat -5, 7 and -8 of a pasture in the Colombian Amazon. A clear gap in

available observations can be seen between 1992 and 1997. Landsat WRS-2 path 7, row 59; coordinates 73.9290 W, 1.9687 N.

from the TM, ETM +, and OLI sensors onboard Landsat-5, -7 and -8 with
a cloud cover of < 80% were downloaded from the EROS Center
Science Processing Architecture (ESPA) website (USGS, 2010) for the
25 Landsat path and rows covering the study area (Fig. 1). Because of a
data gap around the mid-1990s (Fig. 2), only data acquired after 1997
were used. This yielded a total of 5184 images that were stacked
chronologically to create time series of surface reflectance.

A Python implementation of the Continuous Change Detection and
Classification (CCDC) algorithm was applied to each Landsat pixel in
each of the 25 Landsat path and rows from 1997 to 2016. CCDC (and
YATSM, the Python implementation used in this study) searches for
“breaks” in a time series by monitoring for change in the residuals of
the forecast from statistical models (Holden, 2016a; Zhu et al., 2012;

Zhu and Woodcock, 2014a). The models predict the surface reflectance
for any given date, and if the difference between observed and pre-
dicted reflectance across multiple bands is sustained for a certain
number of consecutive observations, a change is flagged by the algo-
rithm. After a change is detected, this process is repeated for the re-
maining observations in the time series iteratively. The time segments
are subsequently classified in a supervised manner using a random
forest classifier (Breiman, 2001) with time series model coefficients as
input features, and training data. This approach enables identification
of land categories before and after land change activities are detected.
Two masking procedures were applied to reduce the number of cloudy
observations in the data. The first procedure filters cloudy observations
as flagged by Fmask (Zhu and Woodcock, 2012). The second procedure
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Fig. 3. Time series of observations of SWIR1 surface reflectance measured by Landsat TM, ETM +, OLI band 5 (blue dots; upper) and snippets of Landsat composites
in NIR-SWIR1-RED band combination (lower). CCDC predictions of surface reflectance are plotted as solid lines and detected breaks as vertical black lines. (Landsat
path-row 6-59, pixel coordinates: 72.1795W, 1.4725 N, corresponding to the center of each snippet). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

uses two multi-temporal methods similar to the Tmask procedure (Zhu
and Woodcock, 2014b) that search for noise and remove it during the
model-fitting phase.

Of importance to the stated objectives is the ability of the algorithm
to track post-disturbance landscape dynamics; an example is provided
in Fig. 3 which shows a pixel located along the deforestation frontier of
the Colombian Amazon. Fig. 3 shows an example of colonizing agri-
culture which is common along the deforestation frontier: Primary
Forest, present from the start of the time series, is converted to Pasture in
2005 which in turn is abandoned a year or two after its creation and
Secondary Forest is allowed to regenerate. The regeneration is evident
by the decreasing trend in the time series of shortwave infrared re-
flectance, but in 2011, the regenerated forest is again converted to
Pasture which appears to be the prevailing land use until the end of the
time series. The situation in Fig. 3 is a rather common example of the
landscape dynamics in the region. It is included to showcase the ability
of the algorithm to detect the activities on the land surface including
the timing, and importantly, to identify the condition of post-dis-
turbance landscapes. It is important because: 1) these dynamics have a
profound impact on the terrestrial carbon budget and will, if not
identified correctly, result in erroneous estimates of carbon emissions
and removals; and 2) many current forest monitoring systems in the
tropics are limited to mapping and estimating forest loss and gain
(Espejo and Jonckheere, 2017) without the ability to provide a com-
plete picture of the landscape dynamics. An underlying hypothesis of
the presented research is that CCDC, as illustrated in Fig. 3, will be able
to map land conversions and post-disturbance landscapes across the
study area such that the resulting map data can be used to stratify the
landscape in a way that allows for sufficiently precise estimation of
activity data at annual or bi-annual frequency.

Given the low density of satellite data in the study area, only sim-
plified time series models could be used for change detection. The time
series models included one harmonic to account for annual variability,
which is the only major seasonal fluctuation observed in this area. The
Red Near- and Infrared bands were used to detect changes in the time
series. The time series segments were required to have at least nine

valid observations, and five consecutive observations were required to
flag a change when the prediction differed from the observed. Training
data were collected manually over ten Landsat paths and rows to ac-
count for the natural variability in each of the land categories, parti-
cularly in the Forest category. Training data were identified using
Landsat imagery and the TSTools plugin for QGIS (Holden, 2016b; QGIS
Development Team, 2009). In total, 420 training polygons were col-
lected, with the total number of training pixels per land category being
approximately proportional to the mapped area of the category, based
on initial test maps produced and refined iteratively. Training data
were obtained for the six IPCC land categories: Forest, Grassland, Urban,
Pastures/Crops, Water and Other (mostly river sandbanks and rocky
surfaces), plus a seventh category: Secondary Forest. The term Secondary
Forest is used for the remainder of the manuscript to describe vegetation
that exhibited a clear temporal pattern of regeneration but without
having fully recovered to the state of a primary forest. It should be
noted that even though we use the term “secondary”, the forest might
have been disturbed more than once. Grassland and Pasture were de-
fined as separate map classes because the former is mostly natural while
the latter is the result of direct human intervention and the most
common post-deforestation land category. An additional map class
denominated All-classes-to-unclassified was assigned for pixels where the
time series presented a break with a labeled segment prior to it, but no
segment fitted afterwards. Training polygons labeled Forest were mostly
collected in areas where the presence of stable primary forest with a
closed homogenous canopy forest was evident and thus required no
formal definition. This decision was corroborated by looking at the
individual pixel time series, which displayed a stable, flat trend cen-
tered on surface reflectance around 0.15 in the Landsat SWIR1 band, as
seen in Fig. 5. Polygons labeled Secondary Forest were collected using a
similar approach, only selecting pixels with segments that showed a
clear negative slope with reflectance around 0.20 in the SWIR1 band
following a disturbance event. A single classifier created from the
training dataset across the study area was applied to the time series
segments for creation of land cover annual maps from 2001 to 2016 for
each Landsat scene. This allowed for an initial training and stabilization
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period between the start of the time series in 1997 and the beginning of
the analysis to find change, in 2001. Annual maps were mosaicked in
sequential order from low to high WRS-2 path and row number (i.e.
north to south, east to west), discarding the relatively small overlap
zones of each previous scene in order to simplify the process.

3.2. Area estimation

Areas retrieved by pixel-counting in maps will be incorrect because
of classification errors. Therefore, areas and their confidence intervals
need to be estimated by applying unbiased estimators to sample data of
reference observations of land surface conditions (GFOI, 2016; Olofsson
et al., 2013; Stehman, 2000). A sample-based approach to area esti-
mation is emphasized by the IPCC Good Practice Guidelines for re-
porting within the UNFCCC treaty (IPCC, 2003, preface; GFOI, 2014, p.
25): “inventories for the land use, land-use change and forestry sector
that are neither over- nor underestimates so far as can be judged, and in
which uncertainties are reduced as far as practicable”. In statistical
terms, the first criterion is related to bias; an estimator is characterized
as unbiased if it produces a parameter estimate such that the mean
value taken over all possible samples is equal to the population para-
meter (Cochran, 1977). Still, if several random samples are selected, the
estimates obtained from each of the samples will be different because of
the randomization of the selection, even if using an unbiased estimator.
This uncertainty is characterized by construction of a confidence in-
terval, which relates to the second IPCC criterion.

In this study, a stratified design and estimation approach (Cochran,
1977; Olofsson et al., 2013) were implemented. Stratified random
sampling was chosen to target the sampling of areas exhibiting land
change activity, which as informed by the maps, were a very small
proportion of the study area. Further, the stratified estimator has
proven efficient when applied to categorical observations (GFOI, 2016).
The stratification contained six stable land strata and five land change
strata representing mapped land dynamics between 2001 and 2016
(Table 1). The All-classes-to-unclassified class was included in the stra-
tification, but its area was not estimated. A buffer stratum corre-
sponding to mapped forest in close proximity (< 90m) to mapped
transitions from Forest-to-Pasture was added to the stratification and
used as a part of the sampling design to diminish the impact of omission
errors. The buffer stratum was added because the Forest stratum occu-
pied 86% of the study area, and any pixels in this stratum identified in
the reference classification as exhibiting land change activity (i.e.
omission errors of change activities in the map) will carry a large area
weight and dramatically reduce the precision in area estimates of land
change activities.

The total sample size was determined using the stratified variance

Table 1
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estimator solved for n as described in Cochran (1977) with a target
standard error of 0.3% (equivalent of 1.6 Mha, or a 95% confidence
interval of + 3.1 Mha) of the Forest-to-Pasture class, which had a
mapped area of 0.87% (4.5Mha) of the total area between 2001 and
2016. In other words, the sample size was selected to achieve a margin
of error of 60% if using the stratum area as an indication of the area
estimate. While a margin of error (defined here as the half width of the
95% confidence interval divided by the estimate) of 60% seems high, it
must be recognized that estimating an area that is assumed to be < 1%
of the study area is inherently difficult. For example, targeting a margin
of error of 25% would have resulted in a sample size of almost 6000
sampling units. Hence, the motivation behind these numbers was
mainly practical and a compromise between precision and available
human resources. Targeting a 60% margin of error gave a total sample
size of 1050 sample units that were allocated to strata following “good
practices” for estimation of area of change (Olofsson et al., 2014): 50
and 75 units were allocated to the smaller strata and the remaining
400 units were allocated to the larger Forest stratum. The sampling
assessment unit was a 30 m X 30 m Landsat pixel, which was chosen to
coincide with the minimum mapping unit.

A reference observation was provided for each unit in the sample by
examining a time series of Landsat observations of surface reflectance
using the TSTools plugin for QGIS (Holden, 2016b; QGIS Development
Team, 2009). Examples of pixels labeled as forest in the reference
sample can be seen in Fig. 5. The legend of reference observations
(Table 1) was based on the stratification legend to facilitate estimation
of area, and was recorded along with time of change (if any). Multi-
temporal very-high resolution imagery was used if available, and the
following measures were taken to increase the interpretation con-
fidence: the interpreters were carefully trained to understand and
identify the land dynamics in the region; strata information was not
made available to the interpreter during the collection of reference
observations; and the reference label was assigned one of three levels of
confidence. Labels with the lowest confidence, or labels on which in-
terpreters disagreed, were double-checked at a later stage and modified.
A stratified estimator was applied to the sample data for estimation of
area with 95% confidence intervals following Olofsson et al. (2013). To
assess the effectiveness of the buffer stratum to contain omission errors,
areas with 95% confidence intervals were also estimated without using
the buffer stratum (i.e. by combining the buffer and Stable Forest map
classes and using the resulting class as the Forest stratum in the calcu-
lations). An overview of this workflow can be seen in Fig. 4.

Central to reporting of trends in carbon emissions and removals
from land surface activities is the ability to provide estimates at high
temporal frequency. The UNFCCC requires reporting at annual or bi-
annual time intervals (GFOI, 2016), which complicates the estimation

Strata names and their description, strata weight (Wj, [%]) based on the map of stable and change classes between 2001 and 2016, and number of sample units
allocated (ny,). The areas of the All to unclassified and Buffer strata were not estimated. The term “stable” implies the presence of a single land cover class during the

entire period being analyzed.

Stratum name Description Wh n,

Stable forest Stable forest. 85.70 400
Stable grassland Stable natural grassland. 281 75
Stable Urban + Stable other Areas that show stable urban cover, as well as other bright surfaces like exposed rock and sand. 0.08 50
Stable pasture-cropland Stable human introduced pasturelands and croplands. 491 75
Stable secondary forest Areas that show sustained vegetation regrowth over the course of two years or more. 1.06 50
Stable water Stable water bodies. 1.29 50
Forest to pasture Areas that experienced conversion from forest to pastures or croplands. 1.40 50
Forest to secondary forest Areas that experienced a brief conversion to pastures or croplands that were abandoned shortly thereafter and display a regrowing trend. 0.26 50
Gain of secondary forest Areas that experienced a conversion from pastures, grasslands, urban, water and other to secondary forest. 0.11 50
Loss of secondary forest Areas of secondary forest that were converted to any other class (except to forest). 0.23 50
Other to other Other transitions that are not relevant. 0.45 50
All to unclassified Areas of classes other than forest and secondary forest that experienced a disturbance but have no class label afterwards. 0.35 50

Buffer Areas of stable forest that were assigned to a ‘buffer’ stratum surrounding the Forest to pasture stratum. 1.37 50
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Fig. 4. Overview of the workflow used to estimate areas, accuracies and uncertainty using maps created from time series of Landsat imagery as a source of

stratification and manually collected reference data.

of land change activities as the areas are often very small at such short
intervals. In this study, the most common activity was the conversion of
forest to pastures, which was mapped as occupying 0.87% of the study
area over 16 years. At annual intervals, the area of this activity would
average less than a tenth of a percent. Even at a bi-annual intervals, the
area will be small from an estimation perspective. The situation of es-
timating small areas in the presence of large strata of stable land cover
is a complicated issue in many national forest monitoring systems
aimed providing area estimates of land change activity data for re-
porting within the REDD + mechanism (Espejo and Jonckheere, 2017).

To explore solutions and to provide better guidance on this issue,
two approaches were investigated for area estimation. The first ap-
proach uses only one sample for all sixteen years of the study period
that is analyzed such that area estimates are obtained for bi-annual
intervals. The analysis is based on the construction of a ratio estimator
and indicator functions as described in Stehman (2014); code and
documentation are provided in a GitHub repository https://github.
com/parevalo/workflow. While this approach requires only a single
sample, it requires continuous reference observations for the entire
2001-2016 time period at each sample location. We introduce the term
“continuous reference observations” to distinguish from observations at
only one point in time or at shorter time interval. In this case, the re-
ference observations were collected in biennial intervals. The second
approach is based on the selection of a sample for each time interval for
which area estimates are required; for bi-annual reporting, seven in-
dependent samples were required and obtained from each biennial
strata map (annual reporting would have required fifteen samples
which we did not have the resources to provide). Stratified estimators
were constructed for each sample such that independent estimates were
provided for each two-year period. We selected seven samples of equal

size and allocation by stratified random sampling using the design de-
scribed above (i.e. 1050 units allocated to the study area according to
the recommendations in Olofsson et al. (2014) and shown in detail in
Appendix 2). We hypothesize that the single-sample-approach will save
time and cost as the collection of sample data is often a time-consuming
process but result in less precise estimates. We hypothesize a lesser
precision because the stratification of the study area is based on the
change map 2001-2016, which makes strata are less likely to corre-
spond to the targeted land change activities at any given bi-annual
interval. The result is an increased likelihood of having very few, or
even zero, reference observations of land change activities (Forest-to-
Pasture for example) for certain bi-annual intervals, especially in the
beginning of the study period. Whether estimates obtained using the
single-sample-approach have similar or better precision than those
obtained from the multiple-samples-approach (i.e. smaller standard
errors), and whether the single-sample-approach results in such large
uncertainty that independent samples are required for each time in-
terval, were key questions to be answered in this research.

4. Results

The products generated in this study were: (i) a map of land cate-
gories and conversions for the time period 2001-2016 (Fig. 6); (ii)
annual map products of the IPCC land categories and biennial maps of
stable categories and their conversions; and (iii) biennial area estimates
with 95% confidence intervals of activity data, i.e. the IPCC land ca-
tegories of the most prevalent activities involving conversions to and
from Forest, Secondary Forest and Pasture.

Central to this study are the bi-annual area estimates with 95%
confidence intervals of stable land categories and conversions shown in
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Fig. 5. Examples of stable forest in time series of Landsat SWIR1 surface reflectance for a pixel in a) an area of intact primary forest, b) the edge between forest and
shrublands and c) a riparian forest next to natural grasslands. Landsat subsets in RGB NIR-SWIR1-RED band combination are shown for dates near the beginning and
end of the time series, respectively. High-resolution imagery (zoomed) of the example pixels from Bing Maps are shown to the right of the Landsat images.

Fig. 7. As expected, it was found that the multiple-samples-approach of
collecting sample data that represented each time interval yielded more
precise estimates than the single-sample-approach (Fig. 7, Appendices 1
and 3). With the single-sample-approach, several bi-annual area esti-
mates of land change activities were highly uncertain and at times not
significantly different from zero (Appendices 1 and 3). The margins of

error, calculated as the half width of the 95% confidence interval di-
vided by the area estimate (Fig. 8 and Appendix 3), were in general
smaller with the multiple-samples-approach for the area estimates of
the land change activities. Although a few individual area estimates
were not significantly different from zero even with bi-annual sample
data, the precision of estimates was considerably higher and sufficient
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Fig. 6. Map of IPCC land categories including conversions between 2001 and 2016 detailing: A) areas of conversion from forest to pasture, and B) areas with evidence

of secondary forest and heterogeneous land changes.

to construct temporal trajectories of the more important and prevalent
activities, including Forest-to-Pasture and Forest-to-Secondary Forest.
Note however that even with the multiple-samples-approach, the
Forest-to-Pasture estimate for 2003-2005 was highly uncertain and the
2001-2003 and 2009-2011 periods were not significantly different
from zero.

The use of a buffer stratum was highly effective at diminishing the
impact of omissions of observed deforestation activities present in the
Forest stratum. For example, the standard error of the bi-annual area
estimates of Forest-to-Pasture decreased between 54% and 98%. The
effect on other land change activities, which were also substantial with
the exception of Gain-of-Secondary-Forest, can be seen in Table 2. Note
the use of a buffer stratum does not decrease the precision in area es-
timates.

The overall accuracy of the map 2001-2016 was 94.1% ( = 0.81%).
Class-specific accuracies of biennial area estimates were highly variable
(Tables 3 and 4). Not surprisingly, higher accuracies were obtained for
larger map classes including stable land categories and lower accuracies
for the change classes.

5. Discussion

The analysis provided evidence of a small but steady decline in
primary forest driven by conversion to pasture. Although subtle and
low, the rate of this conversion was estimated to have increased during
the period (excluding the very uncertain area estimate for 2003-2005).
Overall, these results are consistent with the official national estimates
of forest cover loss (Cabrera et al., 2011) and with the spatial patterns
of land cover change reported in previous studies (Armenteras et al.,
2006; Etter et al., 2006b, 2006a). To properly model the carbon

emissions and removals, estimating the rate of primary forest to pasture
is important but not sufficient — the fate of the post-disturbance land-
scape will determine if, when, and how the carbon emitted by the forest
conversion activity is offset by secondary activities such abandonment
and forest regeneration that remove atmospheric carbon. We found that
the area of primary forest that was converted to pasture, but that re-
verted back to forest during the study period (i.e. Forest-to-Secondary-
Forest), never reached above 60kha per period — in comparison, the
area estimates of Forest-to-Pasture were never below 60 kha per period.
If treating the conversion of forest to pastures as “forest loss” and not
accounting for the post-disturbance dynamics involving pasture aban-
donment and secondary forest regeneration, the implications of land
change activities on terrestrial carbon dynamics would be mis-
characterized.

Along with the establishment of pasture, illicit cropland is an im-
portant driver of deforestation in the Colombian Amazon. According to
Government statistics, coca plantations affect a much smaller area than
forest to pasture conversion in the Colombian Amazon (UNODC, 2016)
but our observations indicate that coca plantations are more likely to be
abandoned. Pasture and coca were not separated but the latter was
included in the pasture category. The decision to not distinguish coca
from pasture was driven by the focus of this study on the mapping and
estimation of IPCC land categories — both coca and pasture were con-
sidered as belonging to the IPCC Cropland category (GFOI, 2016) — and
because of the similarity in spectral signature between coca and pas-
ture. However, because of the observed difference in the post-dis-
turbance dynamics between coca and pasture, an article exploring the
drivers and patterns of the land change dynamics in the region is cur-
rently in preparation in which separate area estimates are provided for
coca and pasture.
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Fig. 7. Bi-annual area estimates with 95% confidence intervals (dashed lines) for stable and change classes, estimated from the reference data using the multiple-
samples-approach. Cross markers represent values that are statistically different from zero (i.e. confidence interval does not include zero). The red continuous line
represent areas obtained directly from the map by pixel-counting. The years on the x-axes represent the middle of each bi-annual period for visualization purposes
(02 for 2002, 04 for 2004 and so on). The y-axes were set to aid in the visualization of the areas (but kept similar in rows where the same scale was sensible) given the
large differences in magnitude. The panel for the Other-to-other class was removed, as it did not contain any relevant information. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

In addition to the dynamics of conversion between forest and pas-
ture, individual rates of gain and loss of Secondary Forest were mon-
itored and estimated. These dynamics are typically a result of conver-
sion from pastures to secondary forest, and vice versa. Except for a dip
from 2010 to 2012, the combined effect of Secondary Forest dynamics
resulted in a stable area of Secondary Forest without any obvious trend
throughout the study period (Fig. 7, h-j).

5.1. Comparison of sampling approaches

Of importance to this study and future potential applications of the
presented methods is the estimation protocol. While maps are essential
for stratifying the study area to guide the sampling, the results com-
municated to decision makers within frameworks and treaties such as
REDD+ and UNFCCC are not obtained directly from maps but

estimated from sample data. As explained earlier, even the most so-
phisticated classification approach will not generate map products that
are free of errors, which necessitates a sampling-based approach to area
estimation. The importance of sampling-based estimation in a remote
sensing context has been explained and illustrated in several articles
(e.g. McRoberts, 2011; Olofsson et al., 2014; Stehman, 2013) and in-
ternational guidance documents (GFOIL, 2016, 2014), but few studies
have explored methods for providing a time series of estimates. A no-
table exception is Cohen et al. (2016), who provided annual estimates
of forest disturbance across the U.S. by two-stage cluster sampling with
primary sampling units stratified by forest area. Also, Potapov et al.
(2017) presented annual area estimates of forest cover loss in Bangla-
desh using a single sample with continuous reference observations.
Because international treaties and climate negotiations require annual
or bi-annual reporting (GFOI, 2016), the topic of estimating areas at
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estimates obtained by multiple-samples-approach (with the Buffer stratum) and
single-sample-approach.

high temporal frequency will need further exploration by the remote
sensing community. The collection of sample data is often an arduous
task and approaches that relieve practitioners of the burden of col-
lecting such data are needed. Therefore, we tested a single-sample-ap-
proach similar to that of Cohen et al. (2016) and Potapov et al. (2017)
in which only one sample is selected but reference conditions on the
land surface are observed for the entire study period. Such an approach
provides sample data for any point in time during the study period,
which - in theory — allows for estimation of area for any time interval
using a ratio estimator and indicator functions (Stehman, 2014). But as
originally hypothesized, we found that only a few or no sample units at
annual and bi-annual intervals were located in areas of the land change
activities of interest, partly because of their very small area. As a result,
several bi-annual estimates of Forest-to-Pasture and Forest-to-Secondary
Forest were not significantly different from zero (i.e. area estimates had
negative lower confidence bounds) or displayed large levels of un-
certainty. The approach of using sample data representing each time
interval generated more precise estimates but required examination of
1050 sample units in each of the seven samples selected (i.e. 1050 x 7
sample units). Even with such a large amount of sample data, some bi-
annual area estimates of land change activities were not significantly
different from zero. This finding is different from that of Cohen et al.
(2016) and Potapov et al. (2017) who were able to use a single sample
for annual estimation. However, the former study used a very large
sample of 7200 units, and the latter used only sample units mapped as
forest cover loss for estimation of annual change dynamics, thus not
including omissions of forest loss in the forest and non-forest strata,
which, as evident by this study, often has a detrimental impact on
precision of estimates. Still, the results presented here should not be

Remote Sensing of Environment xxx (xxxx) Xxxx

taken as evidence that the single-sample-approach will not work for
providing a time series of estimates. Our result is just one example and
others have already shown its utility (Potapov et al., 2017; Stehman,
2014). As discussed further below, of importance to the lack of success
of the single-sample-approach is the sheer size of the land categories of
interest — even the most prevalent activity, Forest-to-Pasture, was just a
tenth of a percent of the study area annually. In a situation where the
area of the land change of interest is larger, as is often the case, we
recommend an investigation into the feasibility of the single-sample-
approach. Also, in a comparison of the margins of error between the
approaches of single and multiple samples, the single-sample-approach
yielded smaller errors for two out of seven years (Tables 6 and 7 in
Appendix 3). With an increased focus on the reporting of activities at
high temporal frequency, more research is needed to explore these
types of approaches to inference of time series of area estimates.

Finally, a word about the issue of cost of sampling approaches
discussed above. An underlying assumption of the discussion is that cost
is synonymous with time and directly related to sample size. As a result,
the single-sample-approach is assumed less costly simply because of the
smaller sample size. But to use a single sample requires an assessment of
land surface events over the entire estimation period (fifteen years in
the case of the presented study). In rapidly changing landscapes, such
an assessment would be time-consuming and could potentially elim-
inate the cost saving of the single-sample-approach.

5.2. Stratification and omission errors

An important difference between this study and Cohen et al. (2016)
and Potapov et al. (2017) is the size of the land change activities of
interest in relation to the study area. In the former studies, forest dis-
turbance activities occupied 1.5-4.5% and 4-9% of the forest area per
year respectively, whereas the corresponding numbers in this study are
about a quarter of a percent. Inferring information about such a small
part of a population by sampling is difficult in general and often asso-
ciated with large uncertainty; the same statistical problem is en-
countered in many medical and public health studies concerned with
the prevalence of rare conditions, behaviors and diseases among large
populations (Rahme and Joseph, 1998). In general, the problem is a
consequence of the difficulty involved in achieving a sampling that
results in sufficient precision in estimates of the phenomenon of interest
(e.g. area of deforestation, prevalence of a disease, or votes in an
election) across the entire population. In the context of using remote
sensing to map and estimate areas of land change activities, a map
depicting the spatial distribution of change is normally used to stratify
the study area (i.e. the population) with the aim of ensuring sufficient
sampling of activities. As witnessed in several countries, if very large
strata are present, like Forest in this study, in which activities are ob-
served (i.e. omission errors in the map used as stratification), the im-
pact can be substantial (Espejo and Jonckheere, 2017). From the for-
mulas of the stratified estimator and the associated variance estimator
(Cochran, 1977, Egs. (5.1) and (5.7)), it can be deduced that the impact
of omission errors is a result of the size of the stratum in which the

Table 2

Comparison of standard error of areas in kha per period for the change strata, with and without the buffer stratum.
Period Forest to pasture Forest to sec. forest Gain of sec. forest Loss of sec. forest

No buffer Buffer No buffer Buffer No buffer Buffer No buffer Buffer

2001-2003 316 104 184 104 0.8 0.8 11.8 11.8
2003-2005 355 53 36 36 12.3 12.3 0.5 0.5
2005-2007 327 7 130 4 1.3 1.3 12.8 12.8
2007-2009 272 10 241 8 49.2 49.2 92.6 13.7
2009-2011 223 103 159 15 36.4 36.4 98.4 36.7
2011-2013 285 10 157 6 2.7 2.7 2.3 2.3
2013-2015 255 15 128 9 5.6 5.6 6.3 6.3
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Table 3
User's accuracy.
2001-2003 2003-2005 2005-2007 2007-2009 2009-2011 2011-2013 2013-2015
Stable forest 99 98 98 99 98 98 99
Stable grassland 87 91 89 89 92 92 91
Stable Urban + Stable other 42 32 44 22 20 42 24
Stable pasture-cropland 81 89 84 92 81 95 85
Stable secondary forest 30 24 42 58 54 12 38
Stable water 86 78 72 68 92 76 56
Forest to pasture 62 64 58 38 38 48 40
Forest to secondary forest 50 28 34 52 58 24 22
Gain of secondary forest 4 4 2 10 6 2 2
Loss of secondary forest 8 6 22 28 20 8 18
Other to other 4 0 0 4 0 4 4

errors occur in combination with the sampling intensity: the larger the
stratum and the lower the sampling intensity, the higher the impact of
omitted land change activity, especially if the activity data stratum is
small. That is exactly the situation in this study: a land change activity
stratum of less than a percent of the study area, and a forest stratum of
80% with low sampling intensity because of a relatively small sample
size (< 40%, or 400 out of 1050, of the sampling units were allocated
to the Forest stratum). By creating a buffer stratum around map classes
of land change activity with a much smaller area but with higher
sampling intensity that hopefully contains the activities omitted in the
map, the impact of omission errors in the map is reduced. This ap-
proach has been successfully explored in other studies of land change
activities in support of REDD+ (Potapov et al., 2017), and our results
further support the recommendation of using a buffer stratum to reduce
the impact of omission errors. The number and area weight of omission
errors “captured” by the buffer stratum are presented in the confusion
matrices in Appendix 2.

The issue of the impact of omission errors further highlights the
importance of sample allocation when designing a stratified sample; a
larger sample size in large strata will reduce the impact of omission
errors (i.e. a sample allocated proportionally to the strata area) when
sampling for area estimation (Stehman, 2012). As more and more
countries and studies are facing issues related to omission errors and
precision in estimates of land change activity data, combined with an
increasing number of studies highlighting the efficiency of buffer strata,
more research is needed on how to define buffer strata. For example, a
larger buffer would capture more errors but its stratum weight would
increase with its size; this in turn could be balanced by increased
sampling intensity, but that would raise cost. How to best define the
buffer spatially for optimal efficiency? These relevant questions require
better answers if remote sensing is to reach its full potential for
greenhouse gas reporting.

Stratified random sampling was used to select the location of the
sample units for the single-sample- and multiple-sample-approach. The
main benefit of using stratification when estimating land change is the
ability to target the sampling to ensure a sample size in each category

that is large enough to produce sufficiently precise area estimates
(GFOI, 2016, p. 126). But for stratified sampling, achieving an alloca-
tion of sample units to strata that is proportional to the strata weights
would require a very large sample size simply because some strata are
very small. The result is often that fewer sample units are allocated to
large strata relative their weights. As discussed above, the impact of
omission errors is a result of the size of the stratum in which the errors
occur in combination with the sampling intensity. Hence, in a situation
as in this study with a very large forest stratum (90%) and very small
land change stratum (< 1%), simple random sampling merits con-
sideration. The standard errors of the area estimates that would have
occurred for simple random sampling were approximated by using the
variance estimator for simple random sampling (Cochran, 1977, p. 26)
and the area proportions estimated from the stratified random sample
(Table 5, Appendix 3). For the bi-annual area estimates of Forest-to-
Pasture, the standard errors would have been two times larger on
average if using simple random sampling instead of a stratified random
sampling, and more than four times larger for certain intervals (al-
though smaller than stratified random sampling for two out of the seven
bi-annual estimates) — hence, a substantial benefit was gained by the
stratified design. The result supports the recommendations of Olofsson
et al. (2014, p. 47) and GFOI (2016, p. 126) of employing a stratified
design when aiming at estimating areas of land change activity.

Area estimates and the uncertainty in estimates are of primary im-
portance to this study but because of the impact of omission errors on
estimates, user's and producer's accuracy (Tables 3 and 4) of map
classes need mentioning. The complement of omission error is produ-
cer's accuracy and for some of the map classes, especially the ones in-
volving land change activities, large omission errors were observed as
illustrated by the error matrices in Appendix 2. Look for example at the
error matrices for 2001-2003 in Tables S1 and S2: even though 31 out
of 50 sample units allocated to the Forest-to-Pasture stratum were cor-
rect, the one single omission of Forest-to-Pasture in the Forest stratum
represents an area of 114 Mha (or a 0.22 proportion of the study area)!
In comparison, the 31 units correctly classified as Forest-to-Pasture re-
present an area of 40 Mha (0.077). The very large area proportion

Table 4
Producer's accuracy.
2001-2003 2003-2005 2005-2007 2007-2009 2009-2011 2011-2013 2013-2015

Stable forest 99 99 99 99 99 98 98
Stable grassland 90 72 76 89 83 85 88
Stable Urban + Stable other 85 95 87 99 86 91 60
Stable pasture-cropland 83 76 73 83 80 76 73
Stable secondary forest 45 46 48 64 53 29 51
Stable water 97 97 98 94 94 96 86
Forest to pasture 21 23 49 48 24 54 59
Forest to secondary forest 8 11 37 22 20 22
Gain of secondary forest 36 6 10 2 2 3 1
Loss of secondary forest 7 100 16 20 9 26 29
Other to other 100 0 0 98 22 100
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represented by this single omission error, in addition to a very low
Producer's accuracy of 20.7% (Table 4), yields a large confidence in-
terval that includes zero (because the 2001-2003 estimate was not
significantly different from zero, it was not plotted in Fig. 7h). Note that
the buffer stratum in this case “captures” 11 sample units observed as
Forest-to-Pasture that otherwise would have been present in the Forest
stratum to further decrease the precision of the area of Forest-to-Pasture.
The total area represented by these 11 units was 20 Mha (0.037).

Finally, it is important to mention that the allocation of 50 units per
rare stratum was chosen to balance the precision of area and accuracy
estimates of these classes (Olofsson et al., 2014). However, if the only
objective is to maximize the precision of area estimates, an allocation
more heavily weighted to the largest class, in this case the Forest
stratum, would be advisable.

5.3. Future steps

A major motivation for this study is to advance the monitoring of
carbon dynamics associated with land change activities. We envision a
system that tracks carbon emissions and removals in time and space
simultaneously by coupling the presented methodology with a carbon
bookkeeping model. Research is currently underway to implement a
carbon bookkeeping model (Reinmann et al., 2016) “on top” of the
presented monitoring system such that carbon dynamics are computed
at the pixel level following land activities as informed by the CCDC/
YATSM algorithm. A complicated but important component of such a
framework will be estimation of bias and uncertainty. Most carbon
bookkeeping models suitable for a gain/loss approach to estimating
carbon emissions operate on estimates pertaining to large areas and
large time spans (Houghton et al., 2012; Kuemmerle et al., 2011;
Olofsson et al., 2011). For the modeling of carbon emissions to be
spatially explicit, estimates of area bias and uncertainty at the popu-
lation scale need to be spatialized, preferably at the pixel level. For
example, a conversion of primary forest to pasture followed by re-
generation of forest would trigger a release of carbon from the logged
primary forest and soil according to the emissions curves used in the
model, followed by sequestration of carbon by the recovering forest
according to a pre-defined growth curve. Because such events would
occur in one specific pixel, there is no direct way of knowing if the
conversions are commission errors or actual events on land surface,
even if population-specific estimates of bias and uncertainty exist. New
and exciting research published recently attempts to predict the spatial
variation in map accuracy down to the pixel-level using population-
scale estimates of map accuracy and Landsat spectral features (Khatami
et al., 2017a, 2017b). Such solutions could potentially provide pixel-
level information that could be used to propagate bias and uncertainty
information to estimates of carbon emission and removals. Another
issue that requires attention is the carbon content (emissions factors) of
landscapes experiencing recovery or degradation. While recent studies
in the Amazon have started to provide such important data (Longo
et al., 2016; Poorter et al., 2016), more measurements are needed to
better understand the carbon dynamics of post-disturbance landscapes.

Finally, a note on forest degradation. Forest degradation is defined
by the IPCC as the process leading to long-term loss of carbon but
without a change in land cover (GFOI, 2016). We did not consider forest
degradation but the IPCC definition and the monitoring approach pre-
sented provide an opportunity for future work to include degradation:
as the trend in spectral signature is monitored, and land category labels
are provided for each time series segment, a segment classified as Forest
while also exhibiting a spectral trend indicative of vegetation loss (such
as an increase in shortwave infrared or red surface reflectance) would
represent potential forest degradation. Research is currently being
conducted in tropical landscapes to characterize forest degradation by
spectral signatures and CCDC/YATSM model coefficients.
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6. Conclusions

The Colombian Amazon has experienced a continuous level of de-
forestation but at a small rate of < 0.3% of the study area, or around
103 kha, for the 2013-2015 period. The deforestation, primarily driven
by establishment of pasturelands, was estimated to have increased after
2005. Some of the post-deforestation landscapes did not stay deforested
but were abandoned and reverted to secondary forest. We estimated
that around 29 kha of the pasturelands were quickly abandoned in the
2013-2015 period, — hence, less than the equivalent of 30% of the post-
deforestation landscapes was estimated to have begun to regenerate.
These results show that the fate of post-disturbance landscapes can be
monitored and estimated with the presented methodology, but that
more work is needed to further reduce the uncertainties. Increasing
sample size, improving map accuracy and introducing buffer strata are
all viable approaches to increase precision. The latter option was tested
and it was found that the addition of a buffer stratum to capture
omission errors had a marked effect on reducing the uncertainty on area
estimates. Guidelines for how to design buffer strata in other situations
with different distributions of strata weights, sample size, map ac-
curacies etc. require more research. Finally, it was determined that the
use of a single sample to estimate the area of land change activities at
bi-annual frequency did not achieve acceptable levels of precision.
Higher precision was achieved when sample data were collected for
each time interval for which area estimates were desired.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2019.01.013.
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