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Abstract

We evaluated the use of EO-1 Hyperion hyperspectral satellite imagery for mapping structure and floristic diversity in a Neotropical tropical
dry forest as a way of assessing a region’s ecological fingerprint. Analysis of satellite imagery provides a means to spatially appraise the dynamics
of the structure and diversity of the forest. We derived optimal models for mapping canopy height, live aboveground biomass, Shannon diversity,
basal area and the Holdridge Complexity Index from a dry season image. None of the evaluated models adequately estimated stem or species
density. Due to the dynamic nature of the leaf phenology we found that for the application of remote sensing in Neotropical dry forests, the
spectro-temporal domain (changes in the spectral signatures over time—season) must be taken into account when choosing imagery. The analyses
and results presented here provide a means for rapid spatial assessment of structure and diversity characteristics from the microscale site level to an

entire region.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Tropical dry forest; Holdridge Complexity Index; Structure; Biomass; Hyperspectral remote sensing; Costa Rica; Wavelet decomposition; Hyperion;

Neural network

1. Introduction

In the tropics, with increasing threats of forest degradation,
biodiversity loss and the loss of environmental services, there
has been an escalating need for in-depth studies into forest
dynamics and biophysical characteristics in order to support
sustainable resource development and achieve environmental
protection goals (Daily et al., 1997; Sanchez-Azofeifa et al.,
2003, 2005). Forty-seven percent of the global forest cover is in
the tropics (FAO, 2001) and of that, 75% is considered Dry or
Moist Forest (Holdridge, 1967 as cited by Murphy & Lugo,
1986). However, those two ecosystems are also among the most
frequently disturbed (anthropogenically) and among the least
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protected (Janzen, 1986; Mooney et al., 1995; Quesada &
Stoner, 2004).

Tropical forest monitoring by means of optical and infrared
remote sensing has become both increasingly popular and
feasible with the advent of satellite sensors such as Landsat 7
ETM+, ASTER, IKONOS, Quickbird, Hyperion and ALI. Mo-
nitoring efforts have generally consisted of large scale land use/
land cover change (Sanchez-Azofeifa et al., 2001; Townshend
et al.,, 1991) and the estimation of broad forest biophysical
characteristics (Fournier et al., 2003; Running et al., 1986;
Tuner et al., 1999; Thenkabail et al., 2004; White et al., 2001
among others) which are integral for understanding physiolog-
ical, ecological and biogeochemical processes (Asner et al.,
2002).

Forest characteristics extracted from remotely sensed data
are important for global atmosphere—biosphere models (i.e.
water, energy and carbon dioxide flux) (Schlerf et al., 2005), the
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creation of environmental policies and conservation areas (Pfaff
et al., 2000; Pfaff and Sanchez-Azofeifa, 2004) and secondary
forest characterization (Arroyo-Mora et al., 2005). Recently,
there has been considerable interest in estimating detailed forest
biophysical characteristics such as leaf area index (LAI), tree
height, biomass and crown diameter from remotely sensed data
(Asner et al., 2002; Atzberger, 2004; Clark et al.,, 2004;
Greenberg et al., 2005a,b; Kalacska et al., 2004a, 2005b;
Schlerf et al., 2005; White et al., 2002, among many others).
Canopy demography is then often further employed to improve
harvest plans (Asner et al., 2002) and assess canopy damage and
recovery after selective logging (Asner et al., 2004). Neverthe-
less, the majority of the studies linking remote sensing and
ecosystem succession in the tropics have been from the Amazon
(Brondizio et al., 1996; Foody et al., 1996; Mausel et al., 1993;
Steininger, 1996, 2000 among others; see Castro et al., 2003 for
a comprehensive review).

A second area of recent interest has been the estimation of
biodiversity from remotely sensed data. In general there are two
approaches: direct remote sensing of species assemblages and
communities or an indirect estimation through the use of other
environmental variables (Turner et al., 2003). Examples of the
direct approach include species composition and land cover
discrimination. The indirect approach comprises broad areas
such as primary productivity, chlorophyll, climate (e.g. soil
moisture, phenology) and habitat structure (e.g. topography,
vertical canopy structure) (Kerr & Deguise, 2004; Turner et al.,
2003). Some of the most important uses of the indirect approach
are biomass estimation, drought prediction and mapping land
cover dynamics and land cover heterogeneity (Gould, 2000;
Foody, 2003) all of which have important impacts on
biodiversity. A similar indirect measure of biodiversity is the
classification (in descending order of scale) of ecoregions,
ecomosaics and ecotopes (Nagendra & Gadgil, 1999a). In this
classification, each ecoregion has a unique community of
species and environmental conditions. Ecomosaics are finer
types within an ecoregion and ecotopes are characterized by an
even finer spatial detail colonized by a unique species
composition of a particular group such as flowering plants. At
each of the levels, the classes are distinguishable by remote
sensing and are significantly different from each other in
composition with respect to the different entities at the next
lower level (Nagendra & Gadgil, 1999a,b). Measures of
vegetation biodiversity (i.e. indices of species richness and
evenness) have been linked to remotely sensed data most often
through the classification of the forest based on the similarity of
tree species or similarity in landscape elements (Foody &
Cutler, 2003; Menon & Bawa, 1997; Nagendra & Gadgil,
1999a,b; Nagendra, 2001). At the landscape scale the results are
employed for conservation science and management decisions.
However, in many studies, the remotely sensed data has been
underutilized by the calculation of vegetation indices and the
use of surrogates (i.e. biomass, land cover type and heteroge-
neity) for species richness estimations (Foody & Cutler, 2003).
An important drawback to such studies is the non-transferability
of results from one area to another, even within ecosystem types
(Foody et al., 2003).

In this study we use the concept of an “ecological
fingerprint” as a “spatial description of forest structure and
floristic diversity” that is analogous to a snapshot in time.
Secondary forests are becoming more prominent in the
landscape in many Neotropical countries, and therefore, are
the future of forest management and monitoring. We incorpo-
rate their inherent heterogeneity into the ecological fingerprint
and develop models that can monitor the dynamics of their
changes over time. Until the acceptance that secondary forests
could act as positive carbon sinks (Brown & Lugo, 1990), they
were generally regarded as inferior to old-growth. Furthermore,
the characterization of these forests has generally been through
“age since abandonment” chronosequences (Lucas et al., 2000;
Ruiz et al., 2005). However, as Arroyo-Mora et al. (2005) have
shown, successional stages quantified by forest structure, are a
more accurate categorization especially for the Neotropical
tropical dry forest and for studies incorporating remotely sensed
data specifically. Hence the creation of models to examine
individual structural and diversity elements (e.g. canopy height,
basal area, ctc.) that quantify successional stage will produce
“snapshots” of their regeneration state and a method for
monitoring over time.

Here, we directly examine forest structure and biodiversity
(through the Shannon diversity index) estimation from satellite
imagery. We address the inference and mapping of Neotropical
dry forest biophysical characteristics (i.e. structure), biomass
and species richness directly from hyperspectral remote sensing
imagery acquired over three seasons: wet, transition and dry. We
explore techniques such as spectral vegetation indices and the
application of wavelet decomposition — a common practice in
the signal processing community — with regression models for
inference. We also reconstruct the wavelet decomposition as a
way to locate the most important spectral regions for mapping
the biophysical characteristics. Each aforementioned technique
is described in the following methods section. Through these
methods the potential for monitoring forest structure and
diversity is shown with potentials for monitoring over time;
applications for which range from testing theoretical regener-
ation hypotheses to assessing habitat quality.

2. Methods
2.1. Study area

The study site is located in the Santa Rosa National Park
(Guanacaste Province), a World Heritage Site, in north-western
Costa Rica (10° 48’ 53''N, 85° 36’ 574W). Over time, the
national park has come to be known as the Santa Rosa sector of
a larger conservation area called the Area de Conservacién
Guanacaste (ACQG). This area receives an average of 1500 mm
of precipitation per year with a 6 month dry season (December
to May) where the majority of the vegetation is deciduous. We
refer to this area as a seasonally dry Neotropical forest based on
the definition from Sanchez-Azofeifa et al. (2005): an area with
a vegetation type dominated by deciduous trees, with a mean
temperature >25 °C, a total annual precipitation range of 700—
2000 mm and three or more dry months (precipitation
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<100 mm). The vegetation in Santa Rosa is a mosaic of
secondary forest in various successional stages with inter-
spersed pastures (Janzen, 1988a,b, 2000; Kalacska et al.,
2004b). The land use history, intensity of past uses and discrete
anthropogenic fire history of Santa Rosa is highly varied
(Kalacska et al., 2004b). Some of the more common past land
uses for this area were pasture, dryland rice, timber extraction,
agriculture and banana plantation (Kalacska et al., 2004b). The
majority of the park is located in relatively flat uplands
(~ 250 m a.s.l.). Towards the south end of the park canyons
with steep slopes descend to sea level ending in a mangrove
ecosystem. The structure of the regenerating vegetation has
been greatly affected by the various land uses in the area dating
back to the colonial times but with greater changes over the last
50 years. Taking this into account we categorize the forest by its
horizontal and vertical structures when sampling the vegetation
and describing the successional stages. We refer to three
successional stages for the vegetation (Table 1): early,
intermediate and late as described by Kalacska et al. (2004b,
2005a,b) and Arroyo-Mora et al. (2005). The early stage is
composed of many small trees, shrubs and open areas and in
general has a heterogeneous canopy with an average basal area
of 11.745.4 m?ha. The intermediate stage is composed
generally of deciduous trees with lianas forming a substantial
component of the canopy (average basal area of 21.4+6.8m?/ha
and the late stage is composed of two canopy strata including
dominant canopy trees, shade tolerant species and overlapping
crowns; average basal area has been shown to be 30.1+6.5 m?/
ha (Kalacska et al., 2004b). At the time of images acquisition
(December 2002—March 2003) the intermediate stage com-
prised 40% of the study site, the late stage 27%, the early stage
19% and pasture lands 12% and the other 2% roads and
buildings that belong to the research station (Arroyo-Mora et al.,
2005).

2.2. Field data

Structure and floristic composition was measured in twenty-
six 20 x50 m (0.1 ha) plots (10 early, 10 intermediate, 6 late) for
woody stems (trees and lianas) with a DBH >5 cm during two
field seasons in December 2002 and February 2003 (Kalacska
et al., 2004b) (Fig. 1). The 0.1 ha plot size was chosen for the

Table 1
Summary of the biophysical and diversity characteristics per successional stage

Holdridge Complexity Index (Holdridge, 1967) as described
below. The location of each plot was recorded with a Trimble
GeoExplorer III GPS unit, spatial accuracy of the GPS is
estimated at +5-8 m. At the time of site selection the
heterogeneity of the forest was examined such that the plots
were located within forest areas that have not only similar
structure but also a similar reflectance as expressed by the
Normalized Difference Vegetation Index (Kalacska et al.,
2004b). Analysis of Ripley’s K function (Freeman & Ford,
2002; Ripley, 1976) indicates a random distribution of the sites
at scales of 0-5000 m indicating that at those scales the
locations of the plots are randomly oriented in space and are not
spatially auto-correlated (Kalacska et al., 2004b). Total above
ground live biomass was calculated from the following
allometric equation from Brown (1997):

ATB = exp{~1.996 + 2.32(InD)} (1)

where biomass is expressed in kilograms of dry mass and D
is DBH in centimeters. From the structural variables we calcu-
lated the Holdridge Complexity Index (HCI) from Holdridge
(1967):
HGDS

HC=T0000 @
where H is canopy height (m), G is basal area (m*/ha), D is stem
density (No./0.1 ha) and S is species density (No./0.1 ha). Being
a quantitative index, HCI provides a more objective measure of
overall forest physiognomy than verbal descriptions or single
structural variables. To estimate floristic diversity we use the
Shannon diversity index (H') (Magurran, 2004):

H = —Z piln p; (3)

where p; is the proportion of individuals from the ith species.
Plant-area-index (PAI) was estimated optically with the LAI-
2000 in sixteen of the plots (7 early, 6 intermediate, 3 late)
(Kalacska et al., 2005a,b). PAI was subsequently calibrated
using dry season measurements of wood-area-index (from
hemispherical photographs) and leaf litter traps to calculate leaf-
area-index (LAI) (Kalacska et al., 2005a). Though not included
in this analysis, minimum and maximum LAI for the stages is

Stage Height Basal area  Stem density ~ Species density ~ Shannon diversity — Biomass HCI Mean LAI Mean LAI
(dry season)  (wet season)

Early 75422 11.7+£5.4 11264 157 1.77+0.56 5.6+3.3 28.0+36.0 0.3+£0.7 3.8+2.6
(4.6-11.5) (3-19) (21-195) (5-28) (0.57-2.65) (1.1-10.9) (0.5-121.1)

Intermediate  10.3+3.4 21.4+6.8 130435 29+5 2.88+0.36 10.9+4.6 68.8+57.7 0.3+0.6 3.7+1.2
(6.7-15.8) (13-32) (51-177) (23-35) (2.14-3.36) (5.8-17.0) (27.4-129.8)

Late 15.0+2.2 30.1+6.5 107+42 29+7 2.75+0.56 16.0+4.3 159.0+57.7 1.5+£0.9 11.3+4.9
(12.7-17.5)  (21-39) (88-209) (22-40) (2.22-3.39) (10.5-23.4) (110.2-235.8)

Data indicates mean=one standard deviation with the values in parentheses representing the range. Height is measured in meters, basal area in m*/ha, stem density in
No. stems/0.1 ha, species density in No. species/0.1 ha, biomass in #/0.1 ha and Shannon diversity and HCI are unit less. Data adapted from Kalacska (2004a,b, 2005b).
Canopy height was determined through the use of a clinometer and thus we estimate it to have an error in measurement of +1.0 m. LAI values are adapted from

Kalacska et al. (2005a,b) and represent calibrated LAI values.
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included for completeness in the summary of the structural and
floristic characteristics in Table 1.

2.2.1. Image processing—pre-processing

The satellite images used in this study were three
atmospherically corrected Hyperion scenes (220 bands, 30 m
spatial resolution) acquired March 2002, December 2002 and
January 2003 as shown in Fig. 2 with the leaf phenological
cycle. The Hyperion imagery pre-processing and atmospheric
correction followed the methodology presented by White et al.
(2004) using the Imaging Spectrometer Data Analysis Systems
(ISDAS), an image processing tool developed at the Canada
Centre for Remote Sensing (Staenz et al.,, 1998). Their
methodology consists of geometrically registering the short-
wave infrared with the visible-near infrared data. Subsequently,
stripes and pixel dropouts are removed and noise is reduced
using techniques developed (Sun et al.,, submitted for
publication). Next, keystone and smile detection software is
applied to characterize distortions (Neville et al., 2003) and
finally a MODTRAN based atmospheric correction procedure is
used to convert radiance to reflectance (Khurshid et al., 2000).

The pixel values for each of the twenty-six sites were
extracted from each image in a 3 %3 pixel window around the
centre of each plot. Because the orientation of the plots does
not coincide with the orientation of the pixels and because
single pixels cannot be precisely registered to a GPS locations

a)

Fig. 1. a) IKONOS high spatial resolution image of Santa Rosa National Park
with the location of the field sites. Circles represent early sites, squares represent
intermediate sites, triangles represent late sites. Dashed line represents area
covered by the Hyperion imagery; b) photograph of the successional stages in
the dry and wet seasons A: representative early stage, B: extreme early stage,
C: representative intermediate stage, D: representative late stage.

b) Dry Season

Wet Season

A

Fig. 1 (continued).

we chose to use a 3x3 pixel window. At the time of site
selection the heterogeneity of the forest was examined to
locate the plots within forest areas that have uniform structure
and reflectance as expressed by the Normalized Difference
Vegetation Index (Kalacska et al., 2004b; Arroyo-Mora et al.,
2005). The bands with a low signal-to-noise ratio (<430 nm
and >2400 nm) and within water absorption features (centered
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around 1400 nm and 1900 nm) were removed resulting in a
total of 153 bands for the analysis. The following analyses
were applied separately for each of the three images.

2.2.2. Image processing — calculation of spectral metrics
Spectral vegetation indices — We examined six narrowband
spectral vegetations (SVIs) namely the Normalized Difference
Vegetation Index — ND~ps — (Sims & Gamon, 2002), Canopy
Normalized Difference Vegetation Index — ND ynopy — (Sims
& Gamon, 2003), Single Ratio — SR5p5 — (Sims & Gamon,
2002), Canopy Single Ratio — SR unopy — (Sims & Gamon,
2002), Modified Single Ratio — MSR — (Chen, 1996), and
Canopy Structure Index — CSI — (Sims & Gamon, 2003)
(Table 2). These indices were chosen because they are both
common in the literature and have shown to be sensitive to
canopy characteristics in other ecosystems by exploiting the
variability of features such as the chlorophyll absorption well.
Wavelet transform — Wavelet transform is a time-scale
signal analysis technique that may reveal features of a signal
(e.g. reflectance spectrum) such as trends or discontinuities that
other techniques may miss (Misiti et al., 1996). A wavelet is a
waveform of limited duration and, accordingly breaks up a
signal into shifted and scaled versions of the original waveform
(i.e. mother wavelet) corresponding to increasing degrees of
detail or higher frequencies. The benefit of the wavelet
transform is that it occurs in both temporal and spectral
domains and so retaining positional information while also
encoding detail or spectral information. With discrete wavelet
transforms, signals are analyzed over a set of discrete dyadic
scales (i.e. one that increments by the power of two (%,
j=1,2,3....m)). The set of wavelet basis functions {, (1)} are

December

January

+ =}
T T

Leaf Area Index

r2
T

Mar. 2003

Dec. 2001

Month

Fig. 2. Hyperion images for Santa Rosa National Park (March, December and
January) superimposed above the leaf phenological cycles for the early (dashed),
intermediate (long dashes) and late (solid) stages. Reprinted from Tree
Physiology, 25, Kalacska, Calvo-Alvarado, Sanchez-Azofeifa G.A. Calibration
and assessment of seasonal changes in leaf area of a tropical dry forest in
different stages of succession, 733—744 Copyright (2004), with permission from
Heron Publishing.

Table 2
Spectral vegetation indices used in this study

Spectral vegetation index Formula

NDvcanopy (Rg00—Resg0)/ (Rsoo+ Rego)
ND7o5 (R750 = R705)/ (R750+ R705)
SRcanopy RSOO/RGSO
SR R750/ R70s
MSR Rsoo
Rego—1
R
Vi +1
CSI 2sSR—sSR*+SWI*
where:
Ryoo
§SR = —feo _
Roo
Reso max
Roo 1
SWI = Riiso

Ropo |
Riso max

calculated for spectral data by shifting and scaling the mother
wavelet, ¥(A), across the data (Bruce et al., 2002).

{0 () (@

with a zero average condition ff:’ W (4)04 = 0 where a>0 and
b are real numbers with “a” being the scaling factor of the basis
function and “b” the shifting/translational variable along the
function’s range (Bruce et al., 2002). The discrete wavelet
transform basis functions can be defined as:

V(2 = 2027 i) (5)

where j is the jth decomposition level and & is the kth wavelet
coefficient at the jth level. The wavelet coefficients can be
obtained by:

Wik = {f(2), ¥, (1)} (6)

where the scales are a=2,4,8....2/,.... 2 (Bruce et al., 2002).

At each level of the decomposition, the result of the high and
low pass filters is a set of approximation (cA;) (from low pass
filter) and detail (cD;) (from high pass filter) coefficients (Li
et al.,, 2001; Mallat, 1989; Misiti et al., 1996) (Fig. 3). The
theoretical maximum number of decomposition levels is
p=log,(N) where N is the length of the initial input signal
(Bruce et al., 2002) (e.g. number of spectral bands).

We conducted a discrete wavelet transform of the Hy-
perion spectra using a mother wavelet from the Daubechies
family (db3). While the choice of the mother wavelet is
generally arbitrary, the db3 wavelet was chosen because of
the results from Pu and Gong (2004) who after comparing
several mother wavelets, found the db3 to be the best for the
estimation of canopy openness and leaf area index. The mul-
tilevel decomposition to 7 levels was implemented in Matlab
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Ip: lowpass decomposition filter
d: downsampling

hp: highpass decomposition filter

Ip’: lowpass reconstruction filter
u: upsampling

hp’: highpass reconstruction filter

D,

u+ hp’

Spectrum

Fig. 3. Schematic representation of the a) wavelet decomposition and b) reconstruction., cA,,=approximation coefficients, cD, =detail coefficients.

v.6.5 resulting in 7 detail coefficients (cD;_;) and the largest
approximation coefficient (cA;) with a combined length of
182 elements.

Energy feature vector — Our final spectral metric approach
consisted of calculating the scalar energy feature vector of the
detail and approximation coefficients from the wavelet
decomposition described above using the following formula
(Bruce et al., 1999; Li et al., 2001; Pu & Gong, 2004):

where K is the number of coefficients at level j, Wy is the kth
coefficient at level j. The length of the vector is j+1 (i.e. the
detail coefficients and the approximation coefficient) where j is
the maximum number of decomposition levels. With this
method, the dimensions of the data have been reduced to 8.

2.2.3. Image processing — model building/validation
Following the calculation of the spectral metrics, various
regression models were employed with the reduced/transformed
data to infer the forest characteristics from the images (Fig. 4).
For the SVIs the regression models had one predictor variable
(i.e. one regression model for each SVI). Depending on the
relationship of each index with the forest characteristics, both
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Hyperion
Image

Image
Preparation
153 bands

Vegetation
Indices
(db3)

Wavelet
Decomposition

6 Indices Uz

Dimensions

Energy Feature
Vector

: I

Regression
(1 per index)

Stepwise
Regression

|

8 predictors

8 predictors

Multiple
Regression

> GNNR

A

Fig. 4. Image processing methodologies for estimating forest structure, biomass and species richness from the March Hyperion image. Optimal method is highlighted

in grey. GNNR =Generalized Neural Network Regression.

linear and non-linear models were constructed to find the best
forest characteristic prediction model for a given SVI.

For the wavelet transforms, a stepwise linear regression was
first used to reduce the 182 elements to the optimal predictor
elements (Fig. 4). For each forest characteristic, the optimal
model from the stepwise regression consisted of a linear model
with 8 elements (i.e. 8 predictor variables for each forest
characteristic). For the energy feature vector, the regression
models for the forest characteristics also included 8 predictor
variables (i.e. the 8 elements from the calculation of the energy
feature vector for the detail coefficients of the 7 decomposition
levels and the approximation coefficients from the final level)

(Fig. 4).

Subsequently, because the wavelet transform and the energy
feature techniques both have multiple predictor variables (i.e.
8 predictor variables for each forest characteristic) we compared
a multiple regression and a generalized regression neural net-
work to estimate the forest characteristics from the 8 predictor
variables (Fig. 4). Generalized regression neural networks con-
sist of a radial basis layer and a special linear layer and are often
used to estimate functions (Wasserman, 1993).

To test the effectiveness of the final models we used a cross-
validation (Isaaks & Srivastava, 1989) to assess the validity of
the models. This “leave-one-out” validation technique was used
due to the limited number of data points (i.e. 26 sites total). Each
withheld data point was sequentially estimated by the models to



M. Kalacska et al. / Remote Sensing of Environment 108 (2007) 82-96 89

produce an overall estimation of the fit. The model with the best
fit following validation was then run on a pixel by pixel basis
over the image (using Matlab v.6.5) to create maps of the
biophysical characteristics and floristic diversity.

2.2.4. Wavelet decomposition

Specifically for the wavelet decomposition, the wavelength
regions corresponding to the elements chosen by the stepwise
regression were obtained by conducting an inverse discrete
wavelet transform (Fig. 3b). The wavelet decomposition
approach may be “reversed” to reconstruct each decomposition
level (starting from cA, and cD-) by inverting the decompo-
sition step first through upsampling (i.e. addition of zeros
between each element in the “odd” locations of the vector) and
subsequently convolving the resulting array with reconstruction
filters for the given wavelet (db3 in this case). The general
reconstruction formula is (de Carvalho et al., 2004; Mallat,
1989):

=Y _[h(k=20)dji1 1 + g(k=2D)]d)11 (8)
/

for all j, k, where & and g are the high pass and low pass
reconstruction filters, j and k are the level and location in the
array (e.g. a3 is third element in the approximation coefficients
at the second level), d are the detail coefficients and / is the
length of the vector.

3. Results

For most of the 26 sites, the most distinct reflectance
spectrum in terms of its shape is the one from the early stage in
March (dry season) (Fig. 5). For nearly all early stage sites a
higher reflectance in the near infrared is observed in comparison
to the other two time periods (December and January). For the
intermediate and late stages, the most distinct difference is a less
prominent green peak and red absorption in the dry season
image (most dramatic in the early stage) (Fig. 5).

For all three images, none of the vegetation indices had the
strongest relationship with the biophysical variables. The values
for the coefficient of determination were between 0.27 and 0.56
for the SVIs. The only exception was the relationship between
the SVIS NDcanopy» ND79s, MSR, SRianopy» SR and canopy
height that had an R? consistently between 0.62 and 0.66 for all
images.

The results from the regression models (both multiple
regression and generalized neural network) with the wavelet
energy feature vectors were also similar to the SVIs. The models
for all of the biophysical characteristics for December and
January ranged from R*=0.20 for species density (January) to
R*=0.68 for canopy height (January). For the March image the
models were weaker with a range from R*=0.05 (stem density,
species density, Shannon diversity, HCI) to R?*=0.45 for
biomass.

When specific elements from the approximation and detail
coefficients were selected from the wavelet decomposition
using the stepwise regression the models for all variables

a)
4p4 January Early
Intermediate
....... Late
< 30 - ale
o
S
=
&JJ 2{] -4
%
3
10 1
427 682 934 1186 1438 1691 1944 2197
Wavelength (nm)
Early
Intermediate
------- Late
S
]
= -
< /\
& TN
427 682 934 1186 1438 1691 1944 2197
Wavelength (nm)
c)
404 December Early
Intermediate
------- Late

Reflectance

e

427 682 934 1186 1438 1691 1944 2197
Wavelength (nm)

Fig. 5. Mean spectra for representative plots for the early, intermediate and
late stages from the a) January (transition season), b) March (dry season),
¢) December (wet season).

improved for each image for both the final multiple regression
or generalized neural network regression (i.e. models for each
variable had an R*>0.80). When considering whether to
construct the maps using regression from the multiple
regression or the generalized neural network regression, we
took the strong variability in forest characteristics among sites
(Table 1) into consideration because the generalized neural
network regression tends to be sensitive to outliers. For the sites
that were close to the mean value of the biophysical char-
acteristics, the neural network regression had the lowest error in
the cross-validation. However, for the sites that were outliers
from the mean the error from the cross-validation on the neural
network regression was very large indicating that model had
overfit the data and would thus not be useful in predicting
variables over a broader area in the landscape (Boddy & Morris,
1999; Russell & Norvig, 2003). For the multiple regression the
error from the cross-validation remained fairly constant for all
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Table 3
Results from the best fit validation models for estimating the forest
characteristics: wavelet decomposition followed by a stepwise regression

Forest characteristic Image Adj. R? RMSE
Biomass (kg/0.1 ha) March 0.85 2109.7
Height (m) March 0.92 1.1
Basal area (m*/ha) March 0.88 3.2
Shannon species richness March 0.84 0.26
Holdridge Complexity Index March 0.63 333
Species density (No./0.1 ha) March 0.47 6.6
Stem density (No./0.1 ha) March 0.20 43.5

Units are respective to each characteristic.

sites regardless of whether they were close to the mean, thus less
sensitive to outliers This is an important consideration because
as can be seen in Table 1, there is a wide range of values with
several outliers for all biophysical characteristics.

The overall best model for biomass, Shannon species
richness, canopy height, Holdridge Complexity Index and
basal area were the multiple regression using the elements
from the wavelet transform approximation and detail coeffi-
cients selected by the stepwise procedure from the March
image (Table 3, Fig. 4). There was no suitable model following
validation for stem or species densities. However, species den-
sity has a relatively strong relationship with Shannon species
richness (R?=0.79) for our study area and could subsequently be
mapped from Shannon species richness (S=9.96 x H"). Unfor-
tunately, no such relationship is present for stem density and thus
it cannot be reliably mapped using the methods presented here
for this study site.

In summary, the most accurate and robust model for
estimating the biophysical characteristics and diversity was
the wavelet transform, followed by a stepwise regression from
the March (dry season) image to select the optimal elements for

Fig. 6. Resulting forest structure, biomass and species richness maps estimated from the March Hyperion image. a) canopy height (m), b) Shannon species richness,

¢) biomass (kg/0.1 ha) d) basal area (m? ha) ¢) Holdridge complexity index.
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inclusion in a multiple regression model. Subsequently as
illustrated in Fig. 4, we mapped canopy height, biomass, basal
area, Shannon diversity and HCI (Fig. 6).The majority of the
features chosen from the wavelet decomposition were from cD;
and cD,. Upon closer examination of the wavelengths that were
associated with the elements chosen for each stage, it was found
that for biomass the wavelengths were primarily in the visible
(498, 621, 682 nm) and near infrared regions (743, 865 nm) of
the spectrum with only three from the shortwave infrared (1227,
1589, 2237 nm). For canopy height, HCI and basal area, all
wavelengths were from the near infrared and shortwave infrared
(743-2257 nm). Finally, for Shannon species richness all
wavelengths were from the shortwave infrared (1206—2237 nm)
except for one from the visible (621 nm).

4. Discussion

Our results highlight the importance of considering the
season of image acquisition (“spectro-temporal domain”) when
mapping variables that define ecological succession for the
tropical dry forest. The differences in horizontal canopy
structure (i.e. LAI and canopy openness) between the stages
are the most pronounced during the dry season. These
differences in structure translate into different levels of
contribution from green leaves, leaf litter, non-photosynthetic
elements such as bark, exposed soil and dry grass to the spectral
response for each stage. Utilizing the methodology presented
here, the dynamics — the changes over time (e.g. 5 year change)
of the structure and composition of the forest over a larger area
can be monitored from snapshots of variables that comprise the
forest’s structure such as 5 year changes in basal area or biomass.
While this methodology only provides an index of species
diversity and does not identify individual species given the
coarse spatial resolution of our data, results from Clark et al.
(2005), Castro-Esau et al. (2006) and Zhang et al. (2006) show
that certain individual species from the tropics can be identified
spectrally using in-situ spectrometry and high spatial resolution
hyperspectral imagery. Including such identifications (by means
of finer spatial resolution hyperspectral data) and monitoring
species turnover through time would add another dimension to
the concept of the ecological fingerprint. The importance of
season is also emphasized by Castro-Esau et al. (2006) who
illustrate the changes to the spectral reflectance of individual
tropical species over seasons. Similarly, for a temperate forest
located in the Pacific Northwest of the United States, Roberts
et al. (2004) show a trend between stand attributes (such as age,
composition and structure) and hyperspectral canopy reflectance
along with the changes through forest succession. Roberts et al.
(2004) also reaffirm the utility of remote sensing to illustrate the
spatial patterns of stands in various stages of succession.

The relationships between the structure, diversity and the
imagery were the most accurate when the spectra were
decomposed by means of a wavelet transform. This decompo-
sition highlighted subtle spectral features that other techniques
such as the SVIs missed. The strongest relationships of the SVIs
with canopy height can be somewhat expected because the SVIs
exploit chlorophyll absorption features, thus being sensitive to

chlorophyll, which is related to LAI. LAI is in turn related to
successional stage and canopy height (Kalacska et al., 2005a).

It is also clear from the results that there is much redundant
and confounding information in the spectra; the use of select
components of the wavelet decomposition chosen by means of a
stepwise regression filtered the spectra in order to use only the
most significant features. This type of “feature selection” on the
product of the wavelet decomposition allowed us to utilize only
the most meaningful features of the reflectance spectra and
provides an insight into the areas of the spectrum that are the
most useful for each canopy characteristics as discussed below.
Feature selection has been an important aspect in the analysis of
hyperspectral data (Castro-Esau et al., 2004; Clark et al., 2005;
De Backer et al., 2005; Huang & He, 2005); here we emphasize
its importance in combination with wavelet analysis to extract
subtle spectral features (Bruce et al., 1999, 2002; Li et al., 2001;
Mallat, 1989; Misiti et al., 1996).

Our findings tend to agree with others such as Lee et al.
(2004) and Thenkabail et al. (2004) that the large number of
narrow bands of hyperspectral data is an advantage for the
estimation of canopy characteristics. By tracing the elements
chosen from the wavelet decomposition back to the original
wavelengths, it can be seen that all canopy characteristics share
similarities in the wavelength regions utilized (such as the
shortwave infrared), except for biomass which had important
spectral regions in the visible, near infrared and shortwave
infrared. In addition, for species richness the shortwave infrared
was also heavily favored with the exception of one wavelength
from the visible. In contrast, for canopy height, basal area and
HCI none of the wavelengths were from the visible range.

The early stage, which is highly variable in its canopy
structure, has a dynamic understory through the seasons
(Fig. 1b). In the wet season the small (DBH<5 cm) treelets,
shrubs and herbs along with grasses (as in pastures) form a thick
understory confounding the spectral signature in the open areas
and filling the canopy gaps of the early and intermediate stages
which begins to resemble that of a mature forest canopy (Fig. 5).
In the dry season however, the stages of forest succession are
readily separable due primarily to differences in canopy open-
ness (Arroyo-Mora et al., 2005). Kalacska et al. (2004b) found
that the majority of the structural variables are distinct for the
successional stages in the study area. And thus the reason for the
strongest relationships with spectra from the March image is
that in a dry season image the various stages of forest regen-
eration are clearly highlighted in the spectral response (Arroyo-
Mora et al., 2005) and the confusion from green herbaceous
understory vegetation is minimized. As illustrated in Fig. 2, the
timing of this image corresponds to minimal LAIL It also
corresponds to the point in the leaf phenological cycle where the
woody component of the canopy has the greatest contribution to
reflectance (Kalacska et al., 2005a). At the canopy level, Asner
(1998) found that dry herbaceous vegetation significantly alters
the spectral response of sparse/open canopies (such as the early
stage). Asner (1998) also illustrates a large variability in the
reflectance spectra of non-photosynthetic vegetation such as
leaf litter and bark with the variability attributed to residual
water and species specific differences in carbon and nitrogen for
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the leaf litter and moisture and carbon contents for the bark.
Both the litter and bark have smaller water features in the near
and shortwave infrared and thus other features characteristic of
organic compounds that are usually masked by the water
absorption become visible (Asner, 1998; Jacquemoud et al.,
1996; Lacaze & Joffre, 1994; Wessman et al., 1988). Soil,
exposed in the canopy gaps also plays an important role in
altering the spectral response (Stoner & Baumgardner, 1981;
van der Meer, 1999).

Kalacska et al. (2004b) inventoried 159 woody species in the
plots used in this study, with several species being found in
either only the early or late stages. The shape of the spectra from
the dry season (Fig. 5b) for the early stage approximates the
shape of the spectral response of leaf litter and bark illustrated
by Asner (1998). As shown in the photographs in Fig. 1b, in the
dry season, there is a substantial contribution of leaf litter, dry
grasses and exposed bark to the reflectance spectra with the
exception of the late stage where green leaves also contribute
to the canopy reflectance (Figs. 1b 2 and 5b). The spectral
response from Fig. 5b is therefore, presumably the result of both
the differences in canopy structure and the optical properties of
the non-photosynthetic components of the various species that
comprise the canopy and are exposed in the dry season. In
canopies with a low LAI (such as dry season image) increased
photon interactions with the non-photosynthetic components,
litter and the soil significantly alter the spectral response (Asner
et al., 1998; Asner,1998). In the wet season (i.e. December)
when herbaceous understory is a large contributor to the spectral
response, our results (Figs. 1b and 5c) also coincide with Asner
(1998) who found differences in the reflectance for green leaves
between woody and herbaceous species (across seven biomes)
with the grasses having a higher reflectance in the visible and a
lower reflectance in the near-infrared (but no difference in the
shortwave infrared) due to the large variation in leaf nitrogen,
carbon and water content amongst woody and herbaceous
species. The differences in carbon and nitrogen contents were
attributed not only to the range of species sampled, but also to
the influence of different soil nutrient content, nitrogen fixers
and non-nitrogen fixers and the difference in water content due
to several factors such as leaf mesophyll structure, plant
physiology and stress (Asner, 1998). Similar differences in
reflectance due to various forms of stress, adaptation to solar
irradiation (Merzlyak & Chivkunova, 2000; Pefiuelas & Filella,
1998) or leaf senescence (Gitelson et al., 2001) among others
have also been shown. This is an important consideration for the
use of wet and transition season imagery in the Neotropical
tropical dry forest where the herbaceous understory and the
grasses form a major contribution to the spectral response of
early and intermediate stages.

The main changes in canopy spectral response attributed to
differences in the leaf area index (LAI) (i.e. increased canopy
biomass — horizontal and vertical canopy structure) were
found to be stronger water absorption features in the near
infrared, changes in the red edge, and in the shortwave infrared
(Asner, 1998; Ross, 1981). These findings coincide with the
differences in mean spectral response between the stages
(Fig. 5), especially in the dry season and the importance of the

near and shortwave infrared bands for height, basal area and
HCI (canopy structure attributes). These differences may be
related to the differences in the leaf area index and exposed
wood-area-index from the dry and wet seasons respectively
among the stages (Kalacska et al., 2005b).

Asner (1998) concluded that at the canopy level, leaf optical
properties due to the pigment contents are not an important
factor at the canopy level, unless LAI was high where multiple
scattering among the leaves enhances biochemical features (e.g.
wet season imagery). In addition, differences in canopy leaf
angle are significant contributors to the spectral response in the
visible region around 550 nm, the red edge and the shortwave
infrared. From our results of the most significant wavelength
regions, biomass was equally related to the visible, near infrared
and shortwave infrared. Based on the results found by Asner
(1998) we attribute the difference in canopy openness (Kalacska
et al.,, 2005b) and structure (Table 1) as the most important
factor in predicting biomass. Low canopy LAI such as in the
early stage (lowest biomass) exposes woody material, leaf litter
and soil with minimal to no contribution from green leaves, thus
accounting for the importance of the shortwave and near
infrared regions. The intermediate stage has an increased
contribution of woody material, dry leaves with minimal soil
and minimal green leaves while the late stage has a fairly
substantial green leaf contribution to the spectral response
potentially accounting for the importance of the visible region
of the spectrum. The reliance of height, basal area and the
Holdridge Complexity Index (all canopy structure attributes) on
the near infrared and shortwave infrared tends to indicate that
these variables are mostly influenced by canopy water content
(i.e. importance of band around 1200 nm) and the relative
contribution of the exposed non-photosynthetic components of
the canopy by the different stages. For the Neotropical dry forest
in Santa Rosa N.P. Kalacska et al. (2005a) show that because of
the nature of the canopy and the increased number of lianas the
intermediate successional stage has a woody-area-index more
than double that of the early and late stages. Finally the Shannon
species richness estimator with all bands from the shortwave
infrared except for one from the visible also tends to indicate
sensitivity to the variation in contribution from the non-
photosynthetic components of the canopy and canopy water
content as well as being influenced by the green leaf con-
tribution from the late stage.

The results from the vegetation indices are consistent with
what was found by Schlerf et al. (2005) using both broadband
and narrow band SVIs to estimate stem biomass, volume and
LAI in a temperate environment. The strength of the relation-
ships are also similar to the strength of the best correlations
reported by Tuomisto et al. (2003) who linked understory
floristic patterns to Landsat imagery from the Ecuadorian
Amazon. Our lack of an adequate model for estimating stem
density is contrary to Ingram et al. (2005) who found a strong
inverse relationship between NDVI and stem density in a
tropical secondary forest in Madagascar. In the aforementioned
analysis a subset of extreme pixel values was used. Because of
the inherent heterogeneity within each successional stage and
the landscape as a whole for each structure and diversity
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characteristic in this study area however, it is important to use an
inference technique that is not overly influenced by outliers.

We stress that forest structure and diversity analyses with
remotely sensed data must focus on the canopy (i.e. the surface
that is reflecting the radiation measured by the sensors) which in
the dry season is a complex mixture of various contributors. It is
inappropriate to assume however, that by using canopy
reflectance reliable relationships can be established directly
with subcanopy elements such as understory species richness,
soil type or other structures or elements that are covered by a
mature homogeneous canopy.

Maps such as the ones in Fig. 6 are a valuable resource for the
management and conservation of this ecosystem, especially
when considered in the context of being a comprehensive spatial
snapshot of the forest structure and floristic diversity. Simple
forest/non forest maps do not offer the detail necessary to assess
forest degradation (Ingram et al., 2005) or recuperation.
Therefore, on a regional scale, by illustrating the characteristics
of'the forest, areas can be more precisely assessed and prioritized
for conservation than from only LAI or forest/non-forest maps.
The changes in the characteristics of the forest (i.e. HCI, basal
area, Shannon diversity, etc.) are the details needed to properly
assess the condition of the forest within a specific area.

The analysis and interpretation of remotely sensed data as
presented here in the form of structure and diversity components
provide the opportunity to explore one of the most prevalent
questions in forest regeneration: scale. As discussed by Webb et al.
(1972), scale and thus the appearance of specific patterns or
distributions in the landscape are a matter of perception driven by
scale. The rapid analysis on a large scale of numerous structure
and diversity variables over several years could lead to the
discovery of the spatial dynamics of the Neotropical dry forest at
numerous scales from the microscale plot level to an entire region.
Furthermore expanding these analyses to include high spatial
resolution airborne imagery (e.g. HyMap) could potentially
improve the models. HyMap (Cocks et al., 1998) collects
hyperspectral images with 128 bands from 400—2500 nm with a
spectral bandwidth of 15-20 nm.

Models incorporating high resolution hyperspectral data such
as HyMap may further improve our understanding of the
dynamics of secondary tropical dry forest regeneration.
Analyzing changes in the structural and diversity components
the distribution of individual species may be monitored to
expand on observations such as the role of past anthropogenic
disturbance along with random thinning, dispersal modes and
colonization rates on the clumped distribution of Neotropical dry
forest trees (Hubbell, 1979). Kalacska et al. (2004b) found that
the pattern of species richness through the stages in Santa Rosa
N.P. were partly consistent with Connell’s (1978) ecological
succession hypothesis. With the structure and diversity models
constructed, long term remotely sensed monitoring of the area
may reveal whether that pattern is consistent or whether the area
follows a different trend over time. Stern et al. (2002) found that
economically valuable species did not regenerate in disturbed
areas of tropical dry forest whereas Kennard (2002) and Gould
et al. (2002) reported the contrary. By including high spatial
resolution hyperspectral imagery it would allow for expanding

the scale of the studies by Castro-Esau et al. (2006), Zhang et al.
(2006) and Clark et al. (2005) to map common (e.g. Rehdera
trinervis, Guazuma ulmifolia, Semialarium mexicanum) and/or
endangered and valuable (e.g. Guaiacum sanctum, Swietenia
macrophylla, Platymiscium pleiostachyum) tree species from
the tropical dry forest on a regional level and follow their pat-
terns of regeneration (or lack thereof).

5. Conclusions

In this study we explored the use of Hyperion hyperspectral
imagery from three seasons to estimate canopy biophysical
parameters and floristic diversity. Data reduction/transformation
and inference techniques were compared over the dry, wet and
transition seasons and consequently we conclude the following:

O The dry season image produced the optimal results for
modeling. The dry season is also optimal for image
acquisition (i.e. minimal cloud cover).

O A wavelet decomposition followed by stepwise regression to
construct a model with only the most significant elements
produced the best overall results following cross-validation.

O The subtle spectral features detected by the wavelet decom-
position are optimal for estimating dry forest biophysical
characteristics.

For future studies it is also important to quantitatively inves-
tigate the various contributors to the reflectance spectra in the dry
season in this ecosystem to understand their respective impor-
tance in the various stages. In addition, the temporal change of the
results, such as examining how an SVI changes for a given
successional stage from the dry season to the wet season may
improve the results of the models with the SVIs. The examination
of this model in other dry and wet forest ecosystems would be
important in order to investigate how the models change based on
forest type (e.g. would neural networks produce better results in
more homogeneous ecosystems?). In drier ecosystems such as
Chamela in Mexico where apart from Riparian zones the entire
forest is leafless in the dry season (regardless of successional
stage), the forest structure poses different challenges in
comparison to Santa Rosa (i.e. the structural variables do not
follow the same trends for the successional stages) (Kalacska
et al., 2005b). Wet forest ecosystems with denser canopies and
less dramatic changes in leaf phenology and would possibly pose
a different type of challenge because the differences in spectral
reflectance based on general canopy characteristics (such as those
examined here) may be even more subtle. The relative contri-
bution of the different canopy elements would be substantially
different in those contrasting ecosystems. The wavelength regions
of greatest importance may therefore, help to understand the
interactions and importance of the different canopy elements to
the spectral response.
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